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ABSTRACT: Advancements in neural machinery have led to
a wide range of algorithmic solutions for molecular property
prediction. Two classes of models in particular have yielded
promising results: neural networks applied to computed
molecular fingerprints or expert-crafted descriptors and
graph convolutional neural networks that construct a learned
molecular representation by operating on the graph structure
of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when
generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research
settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16
proprietary industrial data sets spanning a wide variety of chemical end points. In addition, we introduce a graph convolutional
model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural
architectures on both public and proprietary data sets. Our empirical findings indicate that while approaches based on these
representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant
improvements over models currently used in industrial workflows.

■ INTRODUCTION
Molecular property prediction, one of the oldest cheminfor-
matics tasks, has received new attention in light of recent
advancements in deep neural networks. These architectures
either operate over fixed molecular fingerprints common in
traditional QSAR models, or they learn their own task-specific
representations using graph convolutions.1−11 Both approaches
are reported to yield substantial performance gains, raising state-
of-the-art accuracy in property prediction.
Despite these successes, many questions remain unanswered.

The first question concerns the comparison between learned
molecular representations and fingerprints or descriptors.
Unfortunately, current published results on this topic do not
provide a clear answer. Wu et al.2 demonstrate that convolution-
based models typically outperform fingerprint-based models,
while experiments reported in Mayr et al.12 report the opposite.
Part of these discrepancies can be attributed to differences in
evaluation setup, including the way data sets are constructed.
This leads us to a broader question concerning current
evaluation protocols and their capacity to measure the
generalization power of a method when applied to a new
chemical space, as is common in drug discovery. Unless special
care is taken to replicate this distributional shift in evaluation,

neural models may overfit the training data but still score highly
on the test data. This is particularly true for convolutional
models that can learn a poor molecular representation by
memorizing the molecular scaffolds in the training data and
thereby fail to generalize to new ones. Therefore, a meaningful
evaluation of property prediction models needs to account
explicitly for scaffold overlap between train and test data in light
of generalization requirements.
In this paper, we aim to answer both of these questions by

designing a comprehensive evaluation setup for assessing neural
architectures. We also introduce an algorithm for property
prediction that outperforms existing strong baselines across a
range of data sets. The model has two distinctive features: (1) It
operates over a hybrid representation that combines con-
volutions and descriptors. This design gives it flexibility in
learning a task specific encoding, while providing a strong prior
with fixed descriptors. (2) It learns to construct molecular
encodings by using convolutions centered on bonds instead of
atoms, thereby avoiding unnecessary loops during the message
passing phase of the algorithm.
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We extensively evaluate our model and other recently
published neural architectures with over 850 experiments on
19 publicly available benchmarks from Wu et al.2 and Mayr et
al.12 and on 16 proprietary data sets from Amgen, Novartis, and
BASF (Badische Anilin und Soda Fabrik). Our goal is to assess
whether the models’ performance on the public data sets and
their relative ranking are representative of their ranking on the
proprietary data sets. We demonstrate that under a scaffold split
of training and testing data, the relative ranking of the models is
consistent across the two classes of data sets. We also show that a
scaffold-based split of the training and testing data is a good
approximation of the temporal split commonly used in industry
in terms of the relevant metrics. By contrast, a purely random
split is a poor approximation to a temporal split, confirming the
findings of Sheridan.13 To put the performance of current
models in perspective, we report bounds on experimental error
and show that there is still room for improving deep learning
models to match the accuracy and reproducibility of screening
results.
Building on the diversity of our benchmark data sets, we

explore the impact of molecular representation with respect to
the data set characteristics. We find that a hybrid representation
yields higher performance and generalizes better than either
convolution-based or fingerprint-based models. We also note
that on small data sets (up to 1000 training molecules)
fingerprint models can outperform learned representations,
which are negatively impacted by data sparsity. Beyond
molecular representation issues, we observe that hyper-
parameter selection plays a crucial role in model performance,
consistent with prior work.14 We show that Bayesian
optimization yields a robust, automatic solution to this issue.
The addition of ensembling further improves accuracy, again
consistent with the literature.15

Our experiments show that our model achieves consistently
strong out-of-the-box performance and even stronger optimized
performance across a wide variety of public and proprietary data
sets. Our model achieves comparable or better performance on
12 out of 19 public data sets and on all 16 proprietary data sets
compared to all baseline models. Furthermore, no single
baseline model is clearly superior across the remaining 7 public
data sets, and the relative performance of the baseline models
often varies from data set to data set, whereas our model is
consistently strong across data sets. These results indicate that
our model and learned molecular fingerprints, in general, are
applicable and ready to be used as a powerful tool for chemists
actively working on drug discovery.

■ BACKGROUND

Since the core element of our model is a graph encoder
architecture, our work is closely related to previous work on
graph encoders, such as those for social networks6,16 or for
chemistry applications.1,7−9,17−24

Common approaches to molecular property prediction today
involve the application of well-knownmodels like support vector
machines25 or random forests26 to expert-engineered descrip-
tors or molecular fingerprints, such as the Dragon descriptors27

or Morgan (ECFP) fingerprints.28 One direction of advance-
ment is the use of domain expertise to improve the base feature
representation of molecular descriptors27,29−32 to drive better
performance.12 Additionally, many studies have leveraged
explicit 3D atomic coordinates to improve performance
further.2,33−36

The other main line of research is the optimization of the
model architecture, whether the model is applied to descriptors
or fingerprints12,37 or is directly applied to SMILES38 strings12

or the underlying graph of the molecule.1−11 Our model belongs
to the last category of models, known as graph convolutional
neural networks. In essence, such models learn their own expert
feature representations directly from the data, and they have
been shown to be very flexible and capable of capturing complex
relationships given sufficient data.2,4

In a direction orthogonal to our own improvements, Ishiguro
et al.39 also make a strong improvement to graph neural
networks. Liu et al.40 also evaluate their model against private
industry data sets, but we cannot compare against their method
directly owing to data set differences.40

The property prediction models most similar to our own are
encapsulated in the Message Passing Neural Network (MPNN)
framework presented in Gilmer et al.4 We build upon this basic
framework by adopting a message-passing paradigm based on
updating representations of directed bonds rather than atoms.
Additionally, we further improve the model by combining
computed molecule-level features with the molecular represen-
tation learned by the MPNN.

■ METHODS
We first summarize MPNNs in general using the terminology of
Gilmer et al.,4 and then we expand on the characteristics of
DirectedMPNN (D-MPNN)19 used in this paper. (D-MPNN is
originally called structure2vec in Dai et al.19 In this paper, we refer
to it as Directed MPNN to show it is a variant of the generic
MPNN architecture.)

Message Passing Neural Networks. An MPNN is a
model which operates on an undirected graph G with node
(atom) features xv and edge (bond) features evw. MPNNs
operate in two phases: a message passing phase, which transmits
information across the molecule to build a neural representation
of the molecule, and a readout phase, which uses the final
representation of the molecule to make predictions about the
properties of interest.
More specifically, the message passing phase consists of T

steps. On each step t, hidden states hv
t and messages mv

t

associated with each vertex v are updated using message
function Mt and vertex update function Ut according to
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whereN(v) is the set of neighbors of v in graphG, and hv
0 is some

function of the initial atom features xv. The readout phase then
uses a readout function R to make a property prediction based
on the final hidden states according to

̂ = { | ∈ }y R h v G( )v
T

The output ŷ may be either a scalar or a vector, depending on
whether the MPNN is designed to predict a single property or
multiple properties (in a multitask setting).
During training, the network takes molecular graphs as input

and outputs a prediction for each molecule. A loss function is
computed based on the predicted outputs and the ground truth
values, and the gradient of the loss is backpropagated through
the readout phase and the message passing phase. The entire
model is trained end-to-end.
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Directed MPNN. The main difference between the Directed
MPNN (D-MPNN)19 and the generic MPNN described above
is the nature of the messages sent during the message passing
phase. Rather than using messages associated with vertices
(atoms), D-MPNN uses messages associated with directed
edges (bonds). The motivation of this design is to prevent
totters,41 that is, to avoid messages being passed along any path
of the form v1v2···vnwhere vi = vi+2 for some i. Such excursions are
likely to introduce noise into the graph representation. Using
Figure 1 as an illustration, in D-MPNN, the message 1→ 2 will
only be propagated to nodes 3 and 4 in the next iteration,
whereas in the original MPNN it will be sent to node 1 as well,
creating an unnecessary loop in the message passing trajectory.
Compared to the atom based message passing approach, this
message passing procedure is more similar to belief propagation
in probabilistic graphical models.42 We refer to Dai et al.19 for
further discussion about the connection between D-MPNN and
belief propagation.
The D-MPNN works as follows. The D-MPNN operates on

hidden states hvw
t and messages mvw

t instead of on node based
hidden states hv

t and messages mv
t . Note that the direction of

messages matters (i.e., hvw
t and mvw

t are distinct from hwv
t and

mwv
t ). The corresponding message passing update equations are

thus
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Observe that message mvw
t+1 does not depend on its reverse

messagemwv
t from the previous iteration. Prior to the first step of

message passing, we initialize edge hidden states with

τ=h W x e( cat( , ))vw i v vw
0

where ∈ ×Wi
h hi is a learned matrix, ∈ x ecat( , )v vw

hi is the
concatenation of the atom features xv for atom v and the bond
features evw for bond vw, and τ is the ReLU activation function.43

We choose to use relatively simple message passing functions
Mt and edge update functions Ut. Specifically, we define Mt(xv,
xw, hvw

t ) = hvw
t , and we implement Ut with the same neural

network on every step

τ= = ++ + +U h m U h m h W m( , ) ( , ) ( )t vw
t

vw
t

vw
t

vw
t

vw m vw
t1 1 0 1

where ∈ ×Wm
h h is a learned matrix with hidden size h. Note

that the addition of hvw
0 on every step provides a skip connection

to the original feature vector for that edge.
Finally, we return to an atom representation of the molecule

by summing the incoming bond features according to

∑
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where ∈ ×Wa
h h is a learned matrix.

Altogether, the D-MPNN message passing phase operates
according to

τ=h W x e( cat( , ))vw i v vw
0

followed by
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for t ∈ {1, . . ., T}, followed by

Figure 1. Illustration of bond-level message passing in our proposed D-MPNN. (a) Messages from the orange directed bonds are used to inform the
update to the hidden state of the red directed bond. By contrast, in a traditional MPNN, messages are passed from atoms to atoms (for example, atoms
1, 3, and 4 to atom 2) rather than from bonds to bonds. (b) Similarly, a message from the green bond informs the update to the hidden state of the
purple directed bond. (c) Illustration of the update function to the hidden representation of the red directed bond from diagram (a).
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The readout phase of the D-MPNN is the same as the readout
phase of a generic MPNN. In our implementation of the readout
function R, we first sum the atom hidden states to obtain a
feature vector for the molecule

∑=
∈

h h
v G

v

Finally, we generate property predictions ŷ = f(h) where f(·) is a
feed-forward neural network.
Initial Featurization. Our model’s initial atom and bond

features are listed in Tables 1 and 2, respectively. The D-

MPNN’s initial node features xv are simply the atom features for
that node, while the D-MPNN’s initial edge features evw are the
bond features for bond vw. All features are computed using the
open-source package RDKit.44

D-MPNN with Features. Next, we discuss further
extensions and optimizations to improve performance. Although
an MPNN should ideally be able to extract any information
about a molecule that might be relevant to predicting a given
property, two limitations may prevent this in practice. First,
many property prediction data sets are very small, i.e., on the
order of only hundreds or thousands of molecules. With so little
data, MPNNs are unable to learn to identify and extract all
features of a molecule that might be relevant to property
prediction, and they are susceptible to overfitting to artifacts in
the data. Second, most MPNNs use fewer message passing steps
than the diameter of the molecular graph, i.e., T < diam(G),
meaning atoms that are a distance of greater than T bonds apart
will never receive messages about each other. This results in a
molecular representation that is fundamentally local rather than
global in nature, meaning the MPNN may struggle to predict
properties that depend heavily on global features.
In order to counter these limitations, we introduce a variant of

the D-MPNN that incorporates 200 global molecular features

that can be computed rapidly in silico using RDKit. The neural
network architecture requires that the features are appropriately
scaled to prevent features with large ranges dominating smaller
ranged features, as well as preventing issues where features in the
training set are not drawn from the same sample distribution as
features in the testing set. To prevent these issues, a large sample
of molecules was used to fit cumulative density functions
(CDFs) to all features. CDFs were used as opposed to simpler
scaling algorithms mainly because CDFs have the useful
property that each value has the same meaning: the percentage
of the population observed below the raw feature value. Min-
max scaling can be easily biasedwith outliers, and Z-score scaling
assumes a normal distribution which is most often not the case
for chemical features, especially if they are based on counts.
The CDFs were fit to a sample of 100k compounds from the

Novartis internal catalog using the distributions available in the
scikit-learn package,45 a sample of which can be seen in Figure 2.
One could do a similar normalization using publicly available
databases such as ZINC46 and PubChem.47 scikit-learn was used
primarily due to the simplicity of fitting and the final application.
However, more complicated techniques could be used in the
future to fit to empirical CDFs, such as finding the best fit general
logistic function, which has been shown to be successful for
other biological data sets.48 No review was taken to remove odd
distributions. For example, azides are hazardous and rarely used
outside of a few specific reactions, as reflected in the fr_azide
distribution in Figure 2. As such, since the sample data was
primarily used for chemical screening against biological targets,
the distribution used here may not accurately reflect the
distribution of reagents used for chemical synthesis. For the full
list of calculated features, please refer to the Supporting
Information.
To incorporate these features, we modify the readout phase of

the D-MPNN to apply the feed-forward neural network f to the
concatenation of the learned molecule feature vector h and the
computed global features hf

̂ =y f h h(cat( , ))f

This is a very general method of incorporating external
information and can be used with any MPNN and any
computed features or descriptors.

Hyperparameter Optimization. The performance of
MPNNs, like most neural networks, can depend greatly on the
settings of the various model hyperparameters, such as the
hidden size of the neural network layers. Thus, to maximize
performance, we perform hyperparameter optimization via
Bayesian Optimization14 using the Hyperopt49 Python package.
We specifically optimize our model’s depth (number of
message-passing steps), hidden size (size of bond message
vectors), number of feed-forward network layers, and dropout
probability.

Ensembling. A common technique in machine learning for
improving model performance is ensembling, where the
predictions of multiple independently trained models are
combined to produce a more accurate prediction.15 We apply
this technique by training several copies of our model, each
initialized with different randomweights, and then averaging the
predictions of thesemodels (each with equal weight) to generate
an ensemble prediction.
Since prior work did not report performance using

ensembling, all direct comparisons we make to prior work use
a single D-MPNN model for a fair comparison. However, we

Table 1. Atom Featuresa

feature description size

atom type type of atom (ex. C, N, O), by atomic number 100
# bonds number of bonds the atom is involved in 6
formal charge integer electronic charge assigned to atom 5
chirality unspecified, tetrahedral CW/CCW, or other 4
# Hs number of bonded hydrogen atoms 5
hybridization sp, sp2, sp3, sp3d, or sp3d2 5
aromaticity whether this atom is part of an aromatic system 1
atomic mass mass of the atom, divided by 100 1

aAll features are one-hot encodings except for atomic mass, which is a
real number scaled to be on the same order of magnitude.

Table 2. Bond Featuresa

feature description size

bond type single, double, triple, or aromatic 4
conjugated whether the bond is conjugated 1
in ring whether the bond is part of a ring 1
stereo none, any, E/Z or cis/trans 6

aAll features are one-hot encodings.
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also report results using an ensemble to illustrate the maximum
possible performance of our model architecture.
Implementation. We implement our model using the

PyTorch50 deep learning framework. All code for the D-MPNN
and its variants is available in our GitHub repository.51 Code for
computing and using the RDKit feature CDFs is available in the
Descriptastorus package.52 Additionally, a Web demonstration
of our model’s predictive capability on public data sets is
available online.53

■ EXPERIMENTS

Data. We test our model on 19 publicly available data sets
from Wu et al.2 and Mayr et al.12 These data sets range in size
from less than 200 molecules to over 450,000 molecules. They
include a wide range of regression and classification targets
spanning quantum mechanics, physical chemistry, biophysics,
and physiology. Detailed descriptions are provided in Table 3.
Summary statistics for all the data sets are provided in Table 4,

and further details on the data sets are available in Wu et al.,2

with the exception of the ChEMBL data set which is described in
Mayr et al.12 Additional information on the class balance of the
classification data sets is provided in the Supporting
Information. Although most classification data sets are
reasonably balanced, the MUV data set is particularly
unbalanced, with only 0.2% of molecules classified as positive.
This makes our model unstable, leading to the wide variation in
performance on this data set in the subsequent sections.

It is worth noting that for some data sets, the number of
compounds in Table 4 does not precisely match the numbers
from Wu et al.2 This is because Wu et al.2 included duplicate
molecules in that count while we count the unique number of
molecules. Additionally, we left out one or two molecules which

Figure 2. Four example distributions fit to a random sample of 100,000 compounds used for biological screening in Novartis. Note that some
distributions for discrete calculations, such as fr_pyridine, are not fit especially well. This is an active area for improvement.

Table 3. Descriptions of the Public Data Sets Used in This
Paper

data set category description

QM7, QM8,
QM9

quantum
mechanics

computer-generated quantum
mechanical properties

ESOL physical
chemistry

water solubility

FreeSolv physical
chemistry

hydration free energy in water

Lipophilicity physical
chemistry

octanol/water distribution coefficients

PDBbind biophysics protein binding affinity
PCBA biophysics assorted biological assays
MUV biophysics assorted biological assays
HIV biophysics inhibition of HIV replication
BACE biophysics inhibition of human β-secretase 1
BBBP physiology ability to penetrate the blood-brain

barrier
Tox21 physiology toxicity
ToxCast physiology toxicity
SIDER physiology side effects of drugs
ClinTox physiology toxicity
ChEMBL physiology biological assays
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could not be processed by RDKit.44 However, the impact of
removing these molecules is negligible on overall model
performance. Furthermore, we have fewer molecules in QM7
because we used SMILES strings generated by Wu et al.2 from
the original 3D coordinates in the data set, but the SMILES
conversion process failed for ∼300 molecules. For this reason,
we do not directly compare our model’s performance on QM7
to the QM7 performance numbers reported by Wu et al.2

Experimental Procedure. Cross-Validation and Hyper-
parameter Optimization. Since many of the data sets are very
small (2000 molecules or fewer), we use a cross-validation
approach to decrease noise in the results both while optimizing
the hyperparameters and while determining final performance
numbers. For consistency, wemaintain the same approach for all
of our data sets. Specifically, for each data set, we use 20
iterations of Bayesian optimization on 10 randomly seeded
80:10:10 data splits to determine the best hyperparameters,
selecting hyperparameters based on validation set performance.
We then evaluate the model by retraining using the optimal
hyperparameters and checking performance on the test set. Due
to computational cost, we only use 3 splits for HIV, QM9,MUV,
PCBA, and ChEMBL. When we run the best model from Mayr
et al.12 for comparative purposes, we optimize their model’s
hyperparameters with the same splits, using their original
hyperparameter optimization script.
Split Type. We evaluate all models on random and scaffold-

based splits as well as on the original splits from Wu et al.2 and
Mayr et al.12 The one exception is the model of Mayr et al.,12

which we only ran on scaffold-based splits, due to the large
computational cost of optimizing their model. Results on
scaffold-based splits are reported below, while results on random
splits are presented in the Supporting Information.
Our scaffold split is similar to that of Wu et al.2 Molecules are

partitioned into bins based on their Murcko scaffold calculated
by RDKit.44 Any bins larger than half of the desired test set size
are placed into the training set, in order to guarantee the scaffold

diversity of the validation and test sets. All remaining bins are
placed randomly into the training, validation, and test sets until
each set has reached its desired size. As this latter process
involves randomly placing scaffolds into bins, we are able to
generate several different scaffold splits for evaluation.
None of our splits on classification data sets are stratified; we

do not enforce class balance. Compared to random splits, the
scaffold splits have more class imbalance on average but are not
excessively imbalanced; we analyze this class balance quantita-
tively in the Additional Data Set Statistics section of the
Supporting Information.
Compared to a random split, a scaffold split is a more

challenging and realistic evaluation setting as shown in Figures
11 and 13. This allows us to use a scaffold split as a proxy for the
chronological split present in real-world property prediction
data, where one trains a model on past data to make predictions
on future data, although chronological splits are still preferred
when available. However, as chronological information is not
available for most public data sets, we use a scaffold-based split
for all evaluations except for our direct comparison with the
MoleculeNet models from Wu et al.,2 for which we use their
original data splits.

Baselines.We compare our model to the following baselines:

• The best model for each data set from MoleculeNet by
Wu et al.2

• The best model from Mayr et al.,12 a feed-forward neural
network on a concatenation of assorted expert-designed
molecular fingerprints.

• Random forest on binary Morgan fingerprints.
• Feed-forward network (FFN) on binary Morgan finger-

prints using the same FFN architecture that our D-
MPNN uses during its readout phase.

• FFN on count-based Morgan fingerprints.
• FFN on RDKit-calculated descriptors.

The models in MoleculeNet by Wu et al.2 include MPNN,4

Weave,3 GraphConv, kernel ridge regression, gradient boost-
ing,54 random forest,26 logistic regression,55 directed acyclic
graph models,56 support vector machines,57 Deep Tensor
Neural Networks,10 multitask networks,58 bypass networks,59

influence relevance voting,60 and/or ANI-1,61 depending on the
data set. Full details can be found in Wu et al.2 For the feed-
forward network model from Mayr et al.,12 we modified the
authors’ original code with their guidance in order to run their
code on all of the data sets, not just on the ChEMBL data set
they experimented with. We tuned learning rates and hidden
dimensions in addition to the extensive hyperparameter search
already present in their code.

■ RESULTS AND DISCUSSION
In the following sections, we analyze the performance of our
model on both public and proprietary data sets. Specifically, we
aim to answer the following questions:

1. How does our model perform on both public and
proprietary data sets compared to public benchmarks, and
how close are we to the upper bound on performance
represented by experimental reproducibility?

2. How should we be splitting our data, and how does the
method of splitting affect our evaluation of the model’s
generalization performance?

3. What are the key elements of our model, and how can we
maximize its performance?

Table 4. Summary Statistics of the Public Data Sets Used in
This Papera

data set
no. of
tasks task type

no. of
compounds metric

QM7 1 regression 6,830 MAE
QM8 12 regression 21,786 MAE
QM9 12 regression 133,885 MAE
ESOL 1 regression 1,128 RMSE
FreeSolv 1 regression 642 RMSE
Lipophilicity 1 regression 4,200 RMSE
PDBbind-F 1 regression 9,880 RMSE
PDBbind-C 1 regression 168 RMSE
PDBbind-R 1 regression 3,040 RMSE
PCBA 128 classification 437,929 PRC-AUC
MUV 17 classification 93,087 PRC-AUC
HIV 1 classification 41,127 ROC-AUC
BACE 1 classification 1,513 ROC-AUC
BBBP 1 classification 2,039 ROC-AUC
Tox21 12 classification 7,831 ROC-AUC
ToxCast 617 classification 8,576 ROC-AUC
SIDER 27 classification 1,427 ROC-AUC
ClinTox 2 classification 1,478 ROC-AUC
ChEMBL 1310 classification 456,331 ROC-AUC

aNote: PDBbind-F, PDBbind-C, and PDBbind-R refer to the full,
core, and refined PDBbind data sets from Wu et al.2
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In the following sections, all results using root-mean-square
error (RMSE) or mean absolute error (MAE) are displayed as
plots showing change relative to a baseline model rather than
showing absolute performance numbers. This is because the
scale of the errors can differ drastically between data sets. All
results using R2, area under the receiver operating characteristic
curve (ROC-AUC), or area under the precision recall curve
(PRC-AUC) are displayed as plots showing the actual values.
For RMSE and MAE, lower is better, while for R2, ROC-AUC,
and PRC-AUC, higher is better. Table 4 indicates the metric
used for each data set. Tables showing the exact performance
numbers for all experiments can be found in the Supporting
Information. Note that the error bars on all plots show the
standard error of the mean across multiple runs, where standard
error is defined as the standard deviation divided by the square
root of the number of runs.
We evaluate statistical significance using two statistical tests: a

one-sided Wilcoxon signed-rank test and a one-sided Welch’s t
test. While the Wilcoxon test is stronger, as it is a paired test
comparing performance molecule-by-molecule, it requires
knowing per-molecule predictions, which we do not have easy
access to for the models from MoleculeNet2 and Mayr et al.12

Furthermore, comparisons between data split types inherently
involve comparing performance on different test molecules,
meaning a per-molecule test is not possible. Therefore, for these
comparisons we use the weaker Welch’s t test, and for all other
comparisons we use the Wilcoxon test. When using the

Wilcoxon test for regression data sets, we directly compare
test errors molecule-by-molecule. For the classification data sets,
we divide all the test molecules into 30 equal parts, compute
AUC on each part, and then use theWilcoxon test on these AUC
values. This subdivision of the test molecules into 30 parts gives
the Wilcoxon test more strength than evaluating directly on the
original 3 or 10 test cross-validation folds while still keeping each
part large enough to result in a meaningful AUC computation.
We define statistical significance as p-value less than 0.05.
Additionally, note that in all figures and tables, “D-MPNN”

refers to the base D-MPNN model, “D-MPNN Features” refers
to the D-MPNN with RDKit features, “D-MPNN Optimized”
refers to the D-MPNN with RDKit features and optimized
hyperparameters, and “D-MPNN Ensemble” refers to an
ensemble of five D-MPNNs with RDKit features and optimized
hyperparameters.

Comparison to Baselines. After optimizing our model, we
compare our best single (nonensembled)model on each data set
against models from prior work.

Comparison to MoleculeNet. We first compare our D-
MPNN to the best model from MoleculeNet2,62 on the same
data sets and splits on whichWu et al.2 evaluate their models.We
were unable to reproduce their original data splits on BACE,
ToxCast, and QM7, but we have evaluated our model against
their original splits on all of the other data sets. The splits are a
mix of random, scaffold, and time splits, as indicated in Figure 3.

Figure 3. Comparison of our D-MPNN with features to the best models from Wu et al.2
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Overall on the 10 data sets where the MoleculeNet models
only use 2D information, i.e., all data sets except the QM and
PDBbind data sets, our D-MPNN is significantly better than the
best MoleculeNet models on 5 data sets, is not significantly
different on 3 data sets, and is significantly worse on 2 data sets.
This indicates that D-MPNN tends to outperform even the best
MoleculeNet models, with the added benefit that the D-MPNN
model architecture is the same for every data set while the best
MoleculeNet model architecture differs between data sets.
Furthermore, we note that there are two cases in which our D-

MPNNmay underperform. The first is the MUV data set, which
is large but extremely imbalanced; only 0.2% of samples are
labeled as positives. Wu et al.2 also encountered great difficulty
with this extreme class imbalance when experimenting with the
MUV data set; all other data sets we experiment on contain at
least 1% positives (see the Supporting Information for full class
balance information). The second exception is when there is
auxiliary 3D information available, as in the three variants of the
PDBbind data set and in QM9. The current iteration of our D-
MPNN does not use 3D coordinate information, and we leave
this extension to future work. Thus, it is unsurprising that our D-
MPNN model underperforms models using 3D information on
a protein binding affinity prediction task such as PDBbind,
where 3D structure is key. Nevertheless, our D-MPNN model
outperforms the best graph-based method in MoleculeNet on
PDBbind and QM9. Moreover, we note that on another data set
that provides 3D coordinate information, QM8, our model

outperforms the best model in MoleculeNet with or without 3D
coordinates.

Comparison to Mayr et al.12 In addition, we compare D-
MPNN to the baseline from Mayr et al.12 in Figure 4. We
reproduced the features from their best model on each data set
using their scripts or equivalent packages.63 We then ran their
code and hyperparameter optimization directly on the
classification data sets, and we modified their code to run on
regression data sets with the authors’ guidance.63 On most
classification data sets, we obtain a similar performance to Mayr
et al.12 On regression data sets, the baseline from Mayr et al.12

performs poorly in comparison, despite extensive tuning. We
hypothesize that this poor performance on regression in
comparison to classification is the result of a large number of
binary input features to the output feed-forward network; this
hypothesis is supported by the similarly poor performance of our
Morgan fingerprint FFN baseline. In addition, their method
does not employ early stopping based on validation set
performance and therefore may overfit to the training data in
some cases; this may be the source of some numerical instability.
Overall, our D-MPNN is significantly better than the Mayr et

al.12 model on 8 data sets, is not significantly different on 10 data
sets, and is significantly worse on 1 data set. This indicates that
D-MPNN generally outperforms the Mayr et al.12 model,
especially on regression data sets.

Out-of-the-Box Comparison of D-MPNN to Other Base-
lines. For our final baseline comparison, we evaluate our model’s

Figure 4. Comparison of our best single model (i.e., optimized hyperparameters and RDKit features) to the model from Mayr et al.
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performance “out-of-the-box”, i.e., using all the default settings
(hidden size = 300, depth = 3, number of feed-forward layers = 2,
dropout = 0) without any hyperparameter optimization and
without any additional features. For this comparison, we
compare to a number of simple baseline models that use
computed fingerprints or descriptors:

1. Random forest (RF) with 500 trees run on Morgan
(ECFP) fingerprints using radius 2 and hashing to a bit
vector of size 2048.

2. Feed-forward network (FFN) on Morgan fingerprints.
3. FFN on Morgan fingerprints which use substructure

counts instead of bits.
4. FFN on RDKit descriptors.

The parameters of the simple baseline models are also out-of-
the-box defaults. We make this comparison in order to

demonstrate the strong out-of-the-box performance of our
model across a wide variety of data sets. Finally, we include the
performance of the automatically optimized version of our
model as a reference.
Figure 5 shows that even without optimization, our D-MPNN

provides an excellent starting point on a wide variety of data sets
and targets, though it can be improved further with proper
optimization.

Proprietary Data Sets. We also ran our model on several
private industry data sets, verifying that our model’s strong
performance on public data sets translates to real-world
industrial data sets.

Amgen.We ran ourmodel along withMayr et al.12 model and
our simple baselines on four internal Amgen regression data sets.
The data sets are as follows:

Figure 5. Comparison of our unoptimized D-MPNN against several baseline models. We omitted the random forest baseline on PCBA, MUV,
ToxCast, and ChEMBL due to large computational cost. Random forest is omitted on ClinTox due to numerical instability. The D-MPNN
significantly outperforms each baseline on at least 8 data sets.

Table 5. Details on Internal Amgen Data Setsa

category data set no. of tasks task type no. of compounds metric

ADME rPPB 1 regression 1,441 RMSE
physical chemistry solubility 3 regression 18,007 RMSE
ADME RLM 1 regression 64,862 RMSE
ADME hPXR 2 regression 22,188 RMSE
ADME hPXR (class) 2 classification 22,188 ROC-AUC

aNote: ADME stands for absorption, distribution, metabolism, and excretion.
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1. Rat plasma protein binding free fraction (rPPB).
2. Solubility in 0.01 M hydrochloric acid solution, pH 7.4

phosphate buffer solution, and simulated intestinal fluid
(Sol HCL, Sol PBS, and Sol SIF, respectively).

3. Rat liver microsomes intrinsic clearance (RLM).
4. Human pregnane X receptor % activation at 2 μM and 10

μM (hPXR).

In addition, we binarized the hPXR data set according to
Amgen’s recommendations in order to evaluate on a

classification data set. Details of the data sets are shown in

Table 5. Throughout the following, note that rPPB is in logit

while Sol and RLM are in log10.
For each data set, we evaluate on a chronological split. Our

model outperforms the baselines across the data sets, as shown

in Figure 6. Thus our D-MPNN’s strong performance on

scaffold splits of public data sets can translate well to

chronological splits of private industry data sets.

Figure 6.Comparison of our D-MPNN against baseline models on Amgen internal data sets on a chronological data split. D-MPNNoutperforms all of
the baselines. Note that the ensembles were ensembles of 3 models rather than 5 for the Amgen data sets only. Also note that RF onMorgan andMayr
et al. FFN were only run once on RLM.

Table 6. Details on Internal BASF Data Setsa

category data set tasks task type no. of compounds metric

quantum mechanics benzene 13 regression 30,733 R2

quantum mechanics cyclohexane 13 regression 30,733 R2

quantum mechanics dichloromethane 13 regression 30,733 R2

quantum mechanics DMSO 13 regression 30,733 R2

quantum mechanics ethanol 13 regression 30,733 R2

quantum mechanics ethyl acetate 13 regression 30,733 R2

quantum mechanics H2O 13 regression 30,733 R2

quantum mechanics octanol 13 regression 30,733 R2

quantum mechanics tetrahydrofuran 13 regression 30,733 R2

quantum mechanics toluene 13 regression 30,733 R2

aNote: R2 is the square of Pearson’s correlation coefficient.
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BASF. We ran our model on 10 highly related quantum
mechanical data sets from BASF. Each data set contains 13
properties calculated on the same 30,733 molecules, varying the
solvent in each data set. Data set details are in Table 6.
For these data sets, we used a scaffold-based split because a

chronological split was unavailable. We found that the model of
Mayr et al.12 is numerically unstable on these data sets, and we
therefore omit it from the comparison below. Once again we find
that our model, originally designed to succeed on a wide range of
public data sets, is robust enough to transfer to proprietary data
sets as shown in Figure 7.
Novartis. Finally, we ran our model on one proprietary data

set from Novartis as described in Table 7. As with other
proprietary data sets, our D-MPNN outperforms the other
baselines as shown in Figure 8.

Experimental Error. As a final “oracle” baseline, we
compare our model’s performance to an experimental upper
upper bound: the agreement between multiple runs of the same

assay, which we refer to as the experimental error. Figure 9 shows
the R2 of our model on the private Amgen regression data sets
together with the experimental error; in addition, this graph
shows the performance of Amgen’s internal model using expert-
crafted descriptors. Both models remain far less accurate than
the corresponding ground truth assays. Thus there remains
significant space for further performance improvement in the
future.

Analysis of Split Type. We now justify our use of scaffold
splits for performance evaluation. The ultimate goal of building a
property prediction model is to predict properties on new
chemistry in order to aid the search for drugs from new classes of
molecules. On proprietary company data sets, performance on
new chemistry is evaluated using a chronological split of the
data, i.e., everything before a certain date serves as the training
set while everything after that date serves as the test set. This
approximates model performance on molecules that chemists
are likely to investigate in the future. Since chronological data is
typically unavailable for public data sets, we investigate whether
we can use our scaffold split as a reasonable proxy for a
chronological split, following the work of Sheridan.13

Figure 10 provides motivation for a scaffold split approach. As
illustrated in the figure, train and test sets according to a
chronological split share fewer molecular scaffolds than train and
test sets split randomly. Since our scaffold split enforces zero
molecular scaffold overlap between the train and test sets, it

Figure 7.Comparison of our D-MPNN against baseline models on BASF internal regression data sets on a scaffold data split (higher = better). Our D-
MPNN outperforms all baselines.

Table 7. Details on the Internal Novartis Data Set

category
data
set tasks task type

no. of
compounds metric

physical
chemistry

logP 1 regression 20,294 RMSE

Figure 8. Comparison of our D-MPNN against baseline models on the Novartis internal regression data set on a chronological data split (lower =
better). Our D-MPNN outperforms all baseline models.
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should ideally provide a split that is at least as difficult as a
chronological split.
As illustrated in Figures 11, 12, and 13, performance on our

scaffold split is on average closer to performance on a
chronological split on proprietary data sets from Amgen and
Novartis and on the public PDBbind data sets. However, the
results are noisy due to the nature of chronological splitting,
where we only have a single data split, as opposed to random and

scaffold splitting, which both have a random component and can
generate different splits depending on the random seed. We can
alleviate the problem with noise in chronological data sets by
using a sliding time window to get different equally sized splits,
at the cost of significantly decreasing the data set size. We report
results on such sliding window splits in the Supporting
Information, as the conclusions from these splits are
qualitatively similar to those in the main paper.

Figure 9. Comparison of Amgen’s internal model and our D-MPNN (evaluated using a single run on a chronological split) to experimental error
(higher = better). Note that the experimental error is not evaluated on the exact same time split as the two models since it can only be measured on
molecules which were tested more than once, but even so the difference in performance is striking.

Figure 10. Overlap of molecular scaffolds between the train and test
sets for a random or chronological split of four Amgen regression data
sets. Overlap is defined as the percent of molecules in the test set which
share a scaffold with a molecule in the train set.

Figure 11. Performance of D-MPNN on four Amgen regression data sets according to three methods of splitting the data (lower = better). The
chronological split is significantly harder than both random and scaffold on Sol and hPXR, while the scaffold split is significantly harder than the
random split on Sol only.

Figure 12. Performance of D-MPNN on the Novartis regression data
set according to three methods of splitting the data (lower = better).
The chronological split is significantly harder than the random split
while the scaffold split is not.
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Figure 14 shows the difference between a random split and a
scaffold split on the publicly available data sets, further
demonstrating that a scaffold split generally results in a more
difficult, and ideally more useful, measure of performance.
Therefore, all of our results are reported on a scaffold split rather
than a random split in order to better reflect the generalization
ability of ourmodel on new chemistry. Nevertheless, it should be
emphasized that the chronological split is still the ideal split on

which to evaluate when it is available. Thus we additionally
report the results on chronological splits on all data sets where
they are available.
Overall, our results confirm the findings of Sheridan13 that

scaffold and chronological splits are more difficult than random
splits, and hence scaffold splits should be preferred over random
splits during evaluation. Our findings differ somewhat from
those in Sheridan13 in that we find some evidence that

Figure 13. Performance of D-MPNN on the full (F), core (C), and refined (R) subsets of the PDBbind data set according to three methods of splitting
the data (lower = better). The chronological and scaffold splits are significantly harder than the random split in all cases except for the PDBbind-C
scaffold split.

Figure 14. Performance of D-MPNN on random and scaffold splits for several public data sets. Only the results on PDBbind-C, HIV, ClinTox, and
ChEMBL are not statistically significant.
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chronological splits may actually be harder than scaffold splits.
However, owing to the small number of data sets where
chronological splits are available, further investigation is
necessary on this point, ideally on a larger range of data sets.
Ablations. Finally, we analyze and justify our modeling

choices and optimizations.
Message Type. The most important distinction between our

D-MPNN and related work is the nature of the messages being
passed across the molecule. Most prior work uses messages
centered on atoms, whereas our D-MPNN uses messages
centered on directed bonds. To isolate the effect of the message
passing paradigm on property prediction performance, we
implemented message passing on undirected bonds and on
atoms as well, as detailed in the Supporting Information and in
our code. Figure 15 illustrates the differences in performance
between these three types of message passing. While on average
the method using directed bonds outperforms the alternatives,
the results are largely not statistically significant, so more
investigation is warranted on this point.
RDKit Features. Next, we examined the impact of adding

additional molecule-level features from RDKit to our model.
Figure 16 shows the effect on model performance. The results
appear to be highly data set-dependent. Some data sets, such as
QM9 and ESOL, show marked improvement with the addition
of features, while other data sets, such as PCBA and HIV,
actually show worse performance with the features. We
hypothesize that this is because the features are particularly

relevant to certain tasks while possibly confusing and distracting
the model on other tasks. This implies that our model’s
performance on a given data set may be further optimized by
selecting different features more relevant to the task of interest.
Another interesting trend is the effect of adding features to the

three PDBbind data sets. The features appear to help on all three
data sets, but the benefit is much more pronounced on the
extremely small PDBbind-C (core) data set than it is on the
larger PDBbind-R (refined) and PDBbind-F (full) data sets.
This indicates that the features may help compensate for the lack
of training data and thus may be particularly relevant in low-data
regimes. In particular, we hypothesize that the features may help
to regularize a representation derived from a small data set:
because the features are derived from more general chemical
knowledge, they implicitly provide the model some under-
standing of a larger chemical domain. Thus, it is worthwhile to
consider the addition of features both when they are particularly
relevant to the task of interest and when the data set is especially
small.

Hyperparameter Optimization.To improvemodel perform-
ance, we performed Bayesian Optimization to select the best
model hyperparameters for each data set. Figure 17 illustrates
the benefit of performing this optimization, as model perform-
ance improves on virtually every data set. Interestingly, some
data sets are particularly sensitive to hyperparameters. While
most data sets experience a moderate 2−5% improvement in
performance following hyperparameter optimization, the

Figure 15. Comparison of performance of different message passing paradigms.
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quantum mechanics data sets (QM7, QM8, and QM9) and
PCBA see dramatic improvements in performance, with our D-
MPNN model performing 37% better on QM9 after
optimization.
Ensembling. To maximize performance, we trained an

ensemble of models. For each data set, we selected the best
single modeli.e., the best hyperparameters along with the
RDKit features if the features improved performanceand we
trained five models instead of one. The results appear in Figure
19. On most data sets, ensembling only provides a small 1−5%
benefit, but as with hyperparameter optimization, there are
certain data sets, particularly the quantum mechanics data sets,
which especially benefit from the effect of ensembling.
While each of the latter three optimizations (RDKit

descriptors, hyperparameter optimization, and ensembling) on
its own has limited benefits, altogether they significantly
improve the model’s performance on every data set except
MUV.
Effect of Data Size. Finally, we analyze the effect of data size

on the performance of our model, using the ChEMBL data set.
ChEMBL is a large data set of 456,331 molecules on 1,310
targets but is extremely sparse: only half of the 1,310 targets have
at least 300 labels. For this analysis, we use the original scaffold-
based split of Mayr et al.,12 containing 3 cross-validation folds.
From Figure 20, we hypothesize that our D-MPNN struggles on
low-label targets in comparison to this baseline. As our D-
MPNN model does not use any human-engineered fingerprints

or descriptors and must therefore learn its features completely
from scratch based on the input data, it would be unsurprising if
the average ROC-AUC score of D-MPNN is worse than that of
the feed-forward network running on human-engineered
descriptors in Mayr et al.12

When we filter the ChEMBL data set by pruning low-data
targets at different thresholds, we find that our D-MPNN indeed
may outperform the best model of Mayr et al.12 at larger data
thresholds (Figure 20, though our results are not fully
conclusive).

■ CONCLUSION AND FUTURE WORK

In this paper, we performed an extensive comparison of
molecular property prediction models based on either fixed
descriptors or learned molecular representations by performing
over 850 experiments on 19 public and 16 proprietary data sets.
Table 8 shows a summary of how our D-MPNN compares to
each of the baseline models. Our model consistently matches or
outperforms each baseline individually, and across all baselines,
our model achieves comparable or better performance on 12 of
the 19 public data sets: QM7, QM8, QM9, ESOL, FreeSolv,
Lipophilicity, BBBP, PDBbind-F, PCBA, BACE, Tox21, and
ClinTox. On the remaining 7 data sets, no single baseline model
is consistently superior. Furthermore, our model’s strong results
transfer to proprietary data sets, where our model outperforms
the random forest, feed-forward neural network, and Mayr et
al.12 models on every one of the 16 data sets. The strong

Figure 16. Effect of adding molecule-level features generated with RDKit to our model.
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performance of our model over these baselines, many of which
use computed fingerprints or descriptors, demonstrate that
learned molecular representations are indeed ready for “prime
time” use in industrial property prediction settings.
Nevertheless, several avenues for future research remain.

When analyzing the performance of our D-MPNN, we found
that it typically underperforms when either 1) the other models
incorporate 3D information, as in MoleculeNet’s best QM and

PDBbind models, 2) the data set is especially small, as in the
PDBbind-C data set, or 3) the classes are particularly
imbalanced, as in the MUV data set. One avenue of
improvement is the incorporation of additional 3D information
into our model, which currently includes only a very restricted
and naive representation of such features. Another potential
improvement is a principled pretraining approach, which some
authors have already begun to explore.64,65 Such an approach

Figure 17. Effect of performing Bayesian hyperparameter optimization on the depth, hidden size, number of fully connected layers, and dropout of the
D-MPNN.

Figure 18. An illustration of ensembling models. On the left is a single model, which takes input and makes a prediction. On the right is an ensemble of
3 models. Each model takes the same input and makes a prediction independently, and then the predictions are averaged to generate the ensemble’s
prediction.
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could enable models to transfer learning from large chemical
data sets to much smaller data sets, thereby improving
performance in limited data settings. Another direction for
future research is to determine how to adapt models and training
algorithms to classification data sets with extreme class
imbalance. Finally, in addition to these potential improvements,
our analysis of how estimation of model generalizability is
affected by split type opens the door to future work in
uncertainty quantification and domain of applicability assess-
ment.
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ACS Publications website at DOI: 10.1021/acs.jcim.9b00237.

Links to our code and to demonstration of ourWeb-based
user interface, further comparisons of model performance
on both scaffold-based and random splits of data, tables
with all raw performance numbers (including p-values)
which appear in charts in this paper, analysis of class
balance of classification data sets, and list of RDKit
calculated features used by our model (PDF)

Figure 19. Effect of using an ensemble of five models instead of a single model.

Figure 20. Effect of data size on the performance of the model from
Mayr et al.12 and of our D-MPNN model (higher = better). All
comparisons besides the first are statistically significant.

Table 8. Number of Public Data Sets Where D-MPNN Is
Statistically Significantly Better than, Equivalent to, orWorse
than Each Baseline Model

baseline
D-MPNN is

better
D-MPNN is
the same

D-MPNN is
worse

no. of
data sets

MoleculeNet2 5 3 2 10
Mayr et al.12 8 10 1 19
RF on Morgan 14 0 1 15
FFN on Morgan 14 5 0 19
FFN on Morgan
Counts

15 4 0 19

FFN on RDKit 8 5 4 19
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