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Background: Manual planning of scans in clinical magnetic resonance imaging (MRI) exhibits poor 
accuracy, lacks consistency, and is time-consuming. Meanwhile, classical automated scan plane positioning 
methods that rely on certain assumptions are not accurate or stable enough, and are computationally 
inefficient for practical application scenarios. This study aims to develop and evaluate an effective, reliable, 
and accurate deep learning-based framework that incorporates prior physical knowledge for automatic head 
scan plane positioning in MRI. 
Methods: A deep learning-based end-to-end automated scan plane positioning framework has been 
developed for MRI head scans. Our model takes a three-dimensional (3D) pre-scan image input, utilizing 
a cascaded 3D convolutional neural network to detect anatomical landmarks from coarse to fine. And then, 
with the determined landmarks, accurate scan plane localization can be achieved. A multi-scale spatial 
information fusion module was employed to aggregate high- and low-resolution features, combined with 
physically meaningful point regression loss (PRL) function and direction regression loss (DRL) function. 
Meanwhile, we simulate complex clinical scenarios to design data augmentation strategies. 
Results: Our proposed approach shows good performance on a clinically wide range of 229 MRI head 
scans, with a point-to-point absolute error (PAE) of 0.872 mm, a point-to-point relative error (PRE) of 0.10%, 
and an average angular error (AAE) of 0.502°, 0.381°, and 0.675° for the sagittal, transverse, and coronal 
planes, respectively. 
Conclusions: The proposed deep learning-based automated scan plane positioning shows high efficiency, 
accuracy and robustness when evaluated on varied clinical head MRI scans with differences in positioning, 
contrast, noise levels and pathologies. 
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Introduction

Magnetic resonance imaging (MRI) is an advanced imaging 
technique based on the principle of nuclear magnetic 
resonance (NMR), which acquires images by using signals 
from the spin resonance of atomic nuclei in human  
tissues (1). Several advantages, such as non-invasiveness, 
high-resolution and multimodality, which eliminates the 
need for radiation (2,3), have led to the widespread use of 
MRI in brain imaging for oncology, cerebrovascular disease, 
neurological disorders, inflammation and functional MRI. 
Spatial encoding in MRI is accomplished with gradient 
waveforms (4), enabling hassle-free arbitrary orientation 
scans comprising the imaging acquisition, without 
necessitating movement of the subject or instrument. 
However, this prescription task requires scanning 
technicians to accurately set the orientation and position 
of the scan plane prior to the imaging scan. The precision 
and consistency of the scan plane positioning has a critical 
impact on the resultant image quality and associated clinical 
diagnostic value. 

MRI scan plane positioning involves analyzing and 
identifying the region of interest using pre-scan images. 
The pre-scan images can be either two-dimensional (2D) 
or three-dimensional (3D). At the outset of an MRI scan, it 
is customary to conduct a brief and low-resolution pre-scan 
of a patient. Subsequently, technicians utilize the pre-scan 
images to finalize the scan plane positioning by determining 
the positioning and orientation of the scan planes among 
other parameters, in light of medical knowledge and scan 
objectives. Figure 1 demonstrates the procedure for planning 
a common MRI head scan using the 3D pre-scan images. 
As can be seen from the pre-scan images, the patient’s 
position may not always align with the intended diagnostic 
target. Upon manual configuration by the technician, the 
vital anatomical regions are precisely captured in the scan. 
A standard scan in clinical practice involves configuring 
various planes of target areas, which places significant 
demands on the anatomical proficiency of technicians. 
Moreover, manual positioning is laborious and ineffective. 
In addition, high accuracy of repeat scans of the same 
patient is critical for comparing anatomical evolution before 
and after clinical therapy. Furthermore, in the context 
of technical and clinical research, different institutions 
and researchers need to ensure reliable comparisons and 
analyses across different study samples, which requires a 
high level of consistency in scan positioning. Finally, as 
intelligent image analysis advances, uniform and highly 

consistent scan data has a significant impact on the training 
and use of deep neural networks (5).

Despite various attempts by researchers to develop 
and study automated scan plane positioning methods in 
the head, knee and heart (6-8), there remain numerous 
challenges to implementing widely applicable automated 
scan plane positioning methods in a clinical setting. 
These challenges are threefold. First, various anatomical 
components of the human body possess distinct anatomical 
structures and morphological attributes. Such variations 
introduce more intricate image contents in the scanned 
images, thereby significantly increasing the complexity of 
the algorithms for identifying and localizing anatomical 
landmarks.  Second,  the individual  dif ferences of 
patients are another key challenge for automated scan 
plane positioning. The anatomical structure and tissue 
characteristics of each patient may differ. At the same time, 
local tissue aberrations, tumors and other abnormalities 
can significantly affect the overall shape of the target area. 
Consequently, the robustness and accuracy of automated 
scan plane positioning algorithms must account for 
individual patient variations. The automated scan plane 
positioning algorithms must be able to recognize and adapt 
to anatomical variations in different patients to ensure 
accuracy and consistency of localization (9). Finally, even 
the same anatomical region may have a variety of different 
application needs for localization in the clinic. Within the 
head, various applications such as ophthalmic imaging and 
pituitary imaging may be necessary in addition to regular 
head scans. These specialized applications involve distinct 
requirements for scan plane positioning. The automated 
scan plane positioning algorithms, therefore, must be 
capable of adjusting to different positioning needs, and 
flexibly modifying the scanning range and direction to 
satisfy diverse clinical application requirements.

The task of automated scan plane positioning in 
medical imaging is generally defined as a landmark 
recognition problem. By detecting the relevant landmarks 
in the target anatomical region, the most suitable scan 
position and orientation for patient scanning can then be  
determined (10). Classical scan plane positioning methods 
are primarily based on target detection and image 
alignment, where the key idea is to compare the pre-scan 
image with pre-prepared standard anatomical templates and 
to obtain the localization parameters through an alignment 
algorithm. van der Kouwe et al. (6) determined the 
probability distributions of the different tissue constituents 
of the brain by obtaining a 3D pre-scan. Then, they aligned 
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these probability distributions with pre-existing brain 
templates, resulting in the calculation of brain localization 
parameters. Sharp et al. (11) proposed a semi-automatic 
localization method. Instead of using whole-brain data 
for the alignment process, the approach selects a series 
of landmark structures from pre-scan and estimates the 
automatic locating parameters from the spatial locations of 
these brain structures. The technique demonstrates high 
accuracy and stability. However, it necessitates manual 
extraction of landmark brain structures and demands 
high anatomical expertise, thus limiting its applicability 
for efficient clinical scan usage. Lu and colleagues (12) 
employed a comparable approach to (11) for localizing the 
cardiac long axis, with an improved localization time of less 
than 10 seconds for a single patient. Unlike conventional 
image matching, Nitta et al. (13) proposed an a priori 
knowledge-based approach for detecting anatomical 
features. They employed a machine learning model to 
identify landmarks from pre-scan images, which in turn 
provided the localization planes. This approach has superior 
practicality and stability compared to template matching. It 
also surpasses templated matching method by not relying on 

template images and adjusting to patient tissue deformation. 
Nevertheless, the classifier itself can only extract limited 
spatial contextual information of the landmarks. Moreover, 
an imbalance in the ratio of positive and negative samples 
contributes to significant difficulties for the classifier to 
deal with complicated scenarios. Zhan et al. (14) proposed 
a multi-layer machine learning-based approach that uses 
redundant information for the automatic localization of 
magnetic resonance (MR) slice position of the knee. The 
technique includes the duplicated and stratified anatomical 
structure data in the machine learning-driven training 
method via a pre-defined base function and the positioning 
approach demonstrates remarkable robustness in various 
experimental scenes.

Recently, deep learning techniques such as convolutional 
neural networks have made significant progress in the 
fields of computer vision, speech signal processing, and 
text processing (15). Medical image processing methods 
that utilize deep learning techniques have demonstrated 
exceptional performance in several tasks including medical 
image segmentation, quantitative estimation of image 
features, disease risk diagnosis, automatic localization, and 
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Figure 1 A typical head MRI scan plane positioning process. Based on the 3D pre-scan images (before), the transverse, coronal, and sagittal 
planes orientation is set by default in the middle of the VOI. Nonetheless, the patient’s head is typically not optimally positioned in the VOI 
center, leading to deviations of the scanning planes from the accurate location. With proper manual scan plane positioning (after), the scan 
plane can be set with precision. As can be seen in the red box, the corpus callosum is shown to be complete and accurate in the sagittal plane. 
MRI, magnetic resonance imaging; 3D, three-dimensional; VOI, volume of interest.
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so on (16). Blansit et al. (17) presented a technique that 
employed the U-Net network for landmarks heat map 
regression to identify the mitral valve, the apical and short-
axis planes of the heart in MRI. The mitral, tricuspid, aortic 
and pulmonary valves were then detected to generate the 
desired imaging plane. To address the problems posed by 
densely distributed, obstructed and transformed landmarks, 
Payer et al. (18) introduced a spatial configuration module 
to the heat map regression network. This module enhances 
the constraints on the spatial relationships of landmarks, 
leading to more accurate inference of their locations. Wang 
and colleagues (19) used a deep metric learning model based 
on convolutional neural networks to perform an in-depth 
analysis of cardiac MRI for left ventricle. Recognizing the 
effectiveness of recurrent convolutional neural networks 
in extracting sequential features and capturing structural 
information in image context, van Zon et al. (20) unified 
them to identify mitral and right ventricular landmarks 
in cardiac MRI. Le et al. (21) presented a technique 
that employs a 3D convolutional neural network for 
automatically acquiring scanning planes of the heart. The 
approach uses a 3D convolutional network to process 3D 
cardiac images, resulting in improved localization and 
processing efficiency compared to 2D techniques.

In this study, we propose and evaluate an effective, 
reliable and accurate framework for automatic head scan 
plane positioning based on state-of-art deep learning 
landmark detection technique that incorporates a 
prior physical information into neural networks. The 
contributions of this paper are as follows. First, we 
propose a clinical application scheme utilizing 3D pre-
scan acquisitions and fusion of medical anatomical 
knowledge. The 3D image-based scheme efficiently 
and comprehensively covers the 3D volume of interest, 
which benefits the consistent identification of anatomical 
landmarks. It also tackles the issues of missing and 
damaged data that arise from 2D acquisitions in real-life 
scenarios. Second, a two-tiered, end-to-end 3D cascaded 
convolutional network framework is presented to identify 
the anatomical landmarks and plane directions in a step-
by-step manner. Third, we have incorporated a multi-
scale spatial information merging module into the network 
structure, which adaptively merges low-resolution semantic 
features with high-resolution positional features. Fourth, we 
propose a loss function for automated scan plane positioning 
that combines point regression loss (PRL) and direction 
regression loss (DRL), given the physical background of the 
application scenarios. Finally, the article tackles the need 

for clinical generalization by replicating a range of intricate 
scenarios observed in the clinic to supplement the training 
data and improve the neural network’s generalization 
capacity.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional review board of Hengyang 
Central Hospital, China (the registration number of ethics 
board: No. 17. Dated June 30, 2023), and informed consent 
was taken from all the patients and volunteers. The paper 
presents an end-to-end deep learning framework that 
employs a 3D pre-scan image as input and generates a heat 
map indicating the location of five clinically predetermined 
landmarks in the head scan. Our framework incorporates 
physics knowledge in the neural network structure design, 
loss function definition and training data augmentation to 
enhance the model’s generalization ability in the context 
of head scanning application. In the following section, the 
general structure of the network will be presented initially, 
followed by the detailed components of the framework 
individually.

Network architecture

The automated scan plane positioning framework proposed 
in this paper is the 3D cascade feature pyramid U-Net (3D 
CFP-U-Net), as presented in Figure 2. The structure of the 
3D CFP-U-Net is derived from the typical 3D U-Net (22).  
It has been improved in three key areas: network 
architecture, feature extraction module and cascade 
structure. The 3D CFP-U-Net comprises two sets of 
spaced 3D-U-Net and feature pyramid modules (FPMs) 
that connect in cascade. In the first stage, “3D-U-net + 
FPM”, the input 3D image roughly locates the landmarks 
and passes the output feature map to the second stage 
“3D-U-net + FPM”, which confirms the landmarks more 
accurately. The FPM enhances the network’s ability to 
perceive various levels of image information. The model 
outputs the coordinates for predetermined landmarks.

The backbone architecture 
3D U-Net was developed from U-Net, which shares 
a similar infrastructure except that all computational 
operations are extended from 2 to 3 dimensions. This 
facilitates more efficient processing of voxel data with 
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Figure 2 Overview of the proposed 3D CFP-U-Net for automatic scan plane positioning. (A) The general framework of 3D CFP-U-Net 
which comprises two sets of spaced 3D-U-Net and feature pyramid modules that connect in cascade. Stage 1 and stage 2 share the same 
network structure. (B) Feature pyramid module, four feature maps with varying resolutions (res-1 to res-4) are combined to provide both 
identification precision and efficiency. 3D, three-dimensional; RB, residual block; FPM, feature pyramid module; CONV, convolution; BN, 
Batch normalization; ReLU, rectified linear unit; CFP, cascade feature pyramid.

a 3D structure, such as MRI images. In this paper, we 
modified the classical 3D U-net to improve its applicability 
for landmark detection in MRI by implementing several 
optimization strategies. Firstly, inspired from residual 
networks (23,24), we construct a more profound 3D U-Net 
backbone with enhanced feature extraction ability by 
incorporating additional residual convolutional kernels. As a 
3D U-Net backbone in Figure 2A, each encoder layer holds 
three residual blocks with two convolution kernels each, 
and each decoder layer holds two residual blocks, thereby 
increasing the depth of a solitary 3D U-Net module by  
4–6 times the original depth. Second, the 3D U-Net 
backbone is designed with an asymmetric structure whereby 
the encoder comprises more convolutional kernels than the 
decoder. This design choice enhances the model’s feature 
extraction capability and effectively limits the number of 
parameters in the model (25). Finally, it is necessary to 
reduce the number of convolutional kernel channels while 
increasing network depth to mitigate the risk of overfitting. 
This is because the number of feature map channels grows 
exponentially as the feature map resolution decreases during 
the encoding process. The convolutional kernel base of the 
3D U-Net backbone is set to 12 in order to control over the 
model’s parameters, which is approximately 3–4 times fewer 
than that of the classical 3D U-Net.

FPM 
The FPM integrates local and global semantic information 
to enhance multiscale image representation. It has extensive 
applications in bolstering the precision and robustness 
of medical image analysis conducted through computer 
vision (26). Pre-scan images of MRI at low resolution have 
a complex and variable background region, with various 
regions and anatomical structures having similar grayscales 
and textures. Accurate identification of landmark locations 
necessitates reliance on fine local information. Therefore, 
this paper proposes integrating the FPM into the overall 
network structure, with Figure 2B illustrating its basic 
structure. The paper’s FPM upscale four feature maps with 
distinctive resolutions to a standard size, concatenating 
them in the channel direction to create a feature pyramid. 
Following this, multiscale feature fusion is achieved with 
the aid of two residual blocks. In this module of feature 
pyramid, four feature maps with varying resolutions are 
combined. The high-resolution, shallow feature maps 
capture fine-grained details and local spatial information, 
which are particularly useful for accurately identifying 
anatomical landmarks. Meanwhile, the low-resolution 
feature maps encapsulate global contextual information and 
larger-scale patterns within the image, providing a broader 
understanding of the overall brain anatomy. At the same 
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time, FPM model enables feature fusion, allowing the model 
to use both high-resolution image detail and contextual 
information from low-resolution images, resulting in a 
comprehensive and robust feature representation. 

Cascade multi-stage framework 
Initially, simple single-stage architecture networks (27) 
were commonly used for deep learning based landmark 
detection. However, the emergence of multi-stage 
network architectures has led to successful applications 
to a variety of tasks. For instance, Zhong et al. (28) 
proposed a two-stage attention-oriented deep regression 
model for landmark detection in head and neck X-ray 
images, which achieved improved detection performance 
without increasing model complexity. Andermatt et al. (29) 
introduced a two-stage multi-dimensional gated recurrent 
unit network to localize head and neck MRI in the cerebral 
pontine cerebellar sulcus. This network achieved better 
localization errors compared to manual methods. Li  
et al. (30) provided a thorough analysis of cascade structures, 
presenting a multi-stage cascade network framework for 
human pose recognition tasks. This framework resulted in 
significant localization accuracy improvements over single-
stage networks. As shown in Figure 2A, the 3D CFP-U-
Net proposed in this study utilizes a two-stage 3D U-Net 
cascade composition, employing a coarse-to-fine design 
approach. In the first stage, the network coarsely defines the 
location of the landmarks. Subsequently, the feature maps 
produced in the first stage are fed into the second stage 
network to precisely determine the coordinates of the target 
landmarks. 

Integrated physical loss function

The suggested loss function in this study comprises two 
main components: the PRL, typically used in landmark 
identification problems, and the DRL, which is based on 
the physical meaning of the scan plane positioning task. 
Calculated consecutively in two stages of the 3D CFP-U-
Net model, the final loss function includes four loss factors 
that are combined and weighted for supervised training 
of the network. The general loss function is computed as 
follows:

( )
2

1 2
1
α

=

= +∑CFP i PRL DRL
i

L w L w L

	

[1]

 
In which,  PRLL  and DRLL  are  the PRL and DRL, 

correspondingly. The weights for the above two losses 

1w  and 2w  are both arranged as “1” in the experiment. αi  
represents the loss weights of each stage in the cascade 
network, and the first and second stages of the network 
have empirical weights of 1/3 and 2/3, respectively (29,30).

The PRL denotes the discrepancy between the landmark 
position predicted by the neural network model and the 
labelled position. The calculation of the PRL is commonly 
used in computer vision by using the heat map. The 
following equation shows the calculation of the PRL:

( ) ( )2

1
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N
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Here, N represents the count of landmarks and nZ  
signifies the network model’s confidence level in a particular 
landmark. The aim of optimizing the PRL is to increase the 
overall confidence of the network in all landmark regions, 
ultimately converging nZ  to 1.

In MRI scan plane positioning tasks, it is important to 
note that precise spatial positioning of landmarks does 
not necessarily align with plane orientation for scanning 
purposes. Given the topological relationship between 
landmarks in space and the scanning plane’s orientation, 
we have introduced plane normal vectors carrying physical 
meanings to calculate the DRL. In particular, the DRL aims 
to optimize the normal vector directions of the sagittal, 
transverse, and coronal planes predicted by the model. This 
is mathematically expressed as:

( )
3

0
1

1
=

= − ⋅∑
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d d
DRL m

d
L v v

	

[3]

Where 0



dv  represents the labelled direction of a certain 
vector, 



d
mv  indicates the predicted direction of that vector 

by the model, and “∙” denotes the point formation. The 
loss is minimized to zero when the predicted normal vector 
direction aligns with the true normal vector direction.

Data augmentation with domain knowledge

In this paper, a carefully designed data augmentation 
approach as shown in Figure 3 is implemented to improve 
the adaptability of the model to different scenarios 
encountered in the clinical setting, taking into account the 
characteristics of head planning. The first augmentation 
technique involves a stochastic 3D rotation which mimics 
the various tilt angles that may occur during scanning. This 
experiment sets the probability of random 3D rotation 
to 0.5, with the three axes’ rotation angles consisting of 
random values within [−20°, 20°]. The second technique is 
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Figure 3 Data augmentation with domain knowledge. (A) Input image; (B) effect of stochastic 3D rotation; (C) effect of random contrast 
variation; (D) effect of adding random Gaussian noise; and (E) effect of random masking. 3D, three-dimensional.

random contrast variation. Random contrast is employed 
to replicate situations where an image is influenced by the 
physiological composition, instrument status, magnetic 
field strength, and other factors which impact the contrast. 
In this paper, such simulations are realized using a random 
gamma transform where * γ=s c I . Here, I is the input image, 
γ is the contrast adjustment factor, c is the scaling factor, and 
S represents the output image. During the experiment, the 
value of c was set to 1, while γ was set randomly within the 
range of [0.7, 1.3]. A gamma transform was applied with a 
probability of 0.5.

Gaussian noise was also added randomly. When 
operating MRI scanners, the quality of the image may 
degrade due to interference from the system’s temperature, 
random thermal motion of electronic components, and 
other electronic noises. These factors can affect the model’s 
recognition capabilities. To improve the noise immunity 
of the model, Gaussian noise is randomly added to the 
training samples with a probability of 0.2, a mean of 0, and 
a variance of 0.02. The probability of 0.2 is a moderate 
value to ensure sufficient noise injection during training 
without affecting each sample. A zero mean was used so that 
the noise was symmetrically distributed and unbiased, and 
0.02 is a low variance that provided relatively subtle noise 
to avoid obscuring key image features critical to landmark 
localization.

Random masking involves randomly replacing pixel 
values in certain regions of an image with the noise mask 
during the training process. Its purpose is to simulate 
specific clinical scenarios, such as tumor occupancy, organ 
lesions, and missing images. The impact of random masking 
is illustrated in Figure 3E. In our experiment, we mask out 
four random equal-sized regions in the original image using 
four square noise blocks with side lengths of 40 pixels. The 
probability of random masking is set to 0.2. We employ 

a uniform distribution U (0, 1) for the brightness of the 
square noise blocks.

Evaluation metric

Two fundamental quantitative metrics in detecting 
landmarks are the point-to-point absolute error (PAE) and 
the point-to-point relative error (PRE). According to their 
respective definitions, the PAE and PRE are as follows:

1

1 ˆ
N

i i
i

PAE x x
N =

= −∑ 	 [4] 

= PAEPRE L
	

[5]

Here, N  symbolizes the total  number of target 
landmarks, ix  signifies the labeled coordinates of i-th 
landmark, ˆix  represents the model-predicted coordinates 
of the ith landmark, and L signifies the overall size of the 
image.

The determination of the orientation of the target plane 
is the most essential aspect of the automatic scan plane 
positioning task. Thus, this paper suggests using the average 
angular error (AAE) to assess the degree of deviation of the 
targeting plane. The AAE is described as: 

( )
3

1

1 180 ˆarccos
3 i i

i
AAE v v

π=

= ⋅∑
	

[6] 

Where, iv  represents the labelling direction of sagittal, 
coronal and transverse planes, and îv  represents the 
predicted direction of the corresponding plane by the 
model.

Experiments

2D image acquisitions in traditional auto scan plane 
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Figure 4 All five anatomical landmarks position from the view of transverse, coronal and sagittal, respectively. Five anatomical landmarks 
with clinical significance are chosen as: nasal root, superior border of the pontine midbrain, center of the inferior border of the medulla 
oblongata, rostral end of the corpus callosum, and the pressor end of the corpus callosum.

positioning pose a significant challenge to the accuracy and 
stability of landmark detection. One of the reasons for this 
is that 2D images often fail to provide complete coverage 
of the region of interest, leading to the loss of crucial 
anatomical information. Additionally, 2D images are unable 
to convey information on target landmarks from 3D space, 
which significantly constrains the performance and stability 
of landmark detection algorithms. In this study, we used the 
Turbo Field Echo 3D (TFE3D) sequence to acquire data 
and generate 3D images, and then used a 3D network to 
process and identify these images. For all images presented 
in this paper, we performed the TFE3D sequence scanning 
configured with a 16-ch head neck coil, with an image 
spatial resolution of 1.875×1.875×2 mm3, matrix size is 

160×160×120, repetition time (TR) =4.8 ms, echo time (TE) 
=2.2 ms, slice number =120, slice thickness =2.0 mm, field 
of view (FOV) =300×300 mm2.

Landmarks for the automatic scan plane positioning 
task must support accurate scanning plane orientation and 
be clinically significant. Our selection of five anatomical 
landmarks was based on clinical relevance and reliable 
identification. We chose landmarks that are clearly visible on 
MRI scans, distinct within the anatomy to avoid confusion, 
and minimally affected by movement or change between 
patients and scans. These criteria (localizability, visibility, 
specificity, and stability) ensure accurate and consistent 
positioning of the scan plane across diverse clinical 
applications, as shown in Figure 4: nasal root, superior 
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border of the pontine midbrain, center of the inferior 
border of the medulla oblongata, rostral end of the corpus 
callosum, and the pressor end of the corpus callosum. All 
of these specific and stable landmarks are easily identifiable 
within MRI images due to their distinct characteristics. 
Planning for accurate scans along the sagittal, transverse, 
and coronal planes can be achieved by combining these 
aforementioned landmarks in an orderly fashion, as shown 
in Figure 5. Specifically, the sagittal plane is defined by 
three landmarks: the nasal root, the pressor end of the 
corpus callosum, and the center of the inferior border of the 
medulla oblongata (Figure 5A). Additionally, the transverse 
plane is defined as perpendicular to the sagittal plane and 
crossing the pressor and rostral ends of the corpus callosum. 
The coronal plane is defined as perpendicular to the sagittal 
plane and should cross the landmarks of the center of the 
inferior border of the medulla oblongata and the superior 
border of the pontine midbrain.

A total of 559 brain images were collected from 
volunteers at Hengyang Central Hospital and of which 
553 were selected with acceptable image quality in this 
experiment after data screening. Clinicians manually 
labelled the test dataset using 3D Slicer software (31), 
of which 312 were assigned to the training set, 12 to the 
validation set and 229 to the test set. The data for the 
training, validation, and test sets were randomly sampled 
from the entire dataset to ensure the generalizability of 
the network model’s performance. The dataset included 
participants with an average age of 42.3 years (range,  

19.2–63.7 years), with a gender distribution of 33.8% female 
and 66.2% male. Notably, 92.4% of the participants were 
healthy controls, while the remaining 7.6% were patients. 
The data were obtained using a SuperMark 1.5T MRI 
system (Anke High-Tech Co., Ltd., Shenzhen, China), and 
all volunteers provided written informed consent. We have 
executed our 3D CFP-U-Net model within the PyTorch 
deep learning framework, utilizing four NVIDIA A4000 
graphics cards with 16G video memory. The batch size was 
12, and the learning was set at a rate of 0.001. Employing 
a regular term coefficient of 0.0005, 200 epochs of training 
were conducted in approximately 12 hours.

Results

Evaluation of 3D CFP-U-Net performance

The performance of 3D CFP-U-Net was assessed on  
229 samples with an average prediction time of 0.2 seconds 
per sample. The results are presented in Table 1. The test 
data revealed a PAE of 0.872 mm, PRE of 0.10%, and an 
AAE of 0.502°, 0.381°, and 0.675° in sagittal, transverse, and 
coronal planes, respectively. To provide a comprehensive 
assessment of the accuracy of orientation across all test 
images, we calculate the proportion of samples where the 
predicted AAEs in all three dimensions were simultaneously 
less than a specific threshold. In the test data, we found that 
100% of AAEs were ≤3°, and 92% were ≤2°. 

Figure 6 demonstrates the model’s accuracy in predicting 

B CA

Figure 5 Sagittal, transverse, and coronal planes determination based on five anatomical landmarks. (A) The sagittal plane is determined 
using three landmarks: the nasal root, pressor end of the corpus callosum, and center of the inferior border of the medulla oblongata. (B) 
The transverse plane is defined as the plane that crosses the pressor end and rostral end of the corpus callosum, and is perpendicular to the 
sagittal plane. (C) The coronal plane is defined as perpendicular to the sagittal plane and should cross the landmarks of the center of the 
inferior border of the medulla oblongata and the superior border of the pontine midbrain. 
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Table 1 Average 3D CFP-U-Net test results on 229 samples

Model PAE, mm PRE (%) AAE (SAG), ° AAE (TRA), ° AAE (COR), °

3D CFP-U-Net 0.872 0.10 0.502 0.381 0.675

3D, three-dimensional; CFP, cascade feature pyramid; PAE, point-to-point absolute error; PRE, point-to-point relative error; AAE, average 
angular error; SAG, sagittal; TRA, transverse; COR, coronal. 

Nasal root Rostral end of the corpus callosum

Pressor end of the corpus callosum Superior border of the pontine midbrain

Center of the inferior border of the medulla oblongata

Figure 6 Sagittal view of the detection results for five anatomical landmarks in two samples using the 3D CFP-U-Net model. Points with 
different colors are used to indicate five landmarks defined in the experiment process. 3D, three-dimensional; CFP, cascade feature pyramid.

anatomical landmarks in two typical clinical samples. 
The figure shows that the model accurately detected the 
locations of five anatomical landmarks, including the nasal 
root (red dot), the point at the upper edge of the pontine 
midbrain (green dot), the point at the center of the lower 
edge of the medulla oblongata (blue dot), the point at the 
rostral end of the corpus callosum (yellow dot) and the 
point at the end of the corpus callosum compression section 
(light green dot).

Based on the predicted landmark locations, the sagittal, 
transverse, and coronal imaging planes were estimated, with 
the depiction of a typical sample outcome in Figure 7. As 
shown in the figure before automatic scan plane positioning, 
there is a noticeable tilt angle in the pre-scan image of 
the subject within VOI owing to the incline of the head 
(Figure 7A). If the transverse, coronal and sagittal plane 
were simply set in the center of VOI, significant skewing 
would result (Figure 7B-7D). Accurate scanning planning 
can be accomplished by utilizing the anatomical landmarks 
anticipated by the 3D CFP-U-Net model (for instance, 
Figure 7F-7H).

Effect of network structure and physical loss function

For this study, we assess the effects of enhancing the 
network model and loss function. We will compare four 
combinations of network structures and loss functions, 
specifically: (I) 3D U-Net, a fundamental 3D U-Net 
network structure with mean square error (MSE) as the 
loss function; (II) 3D U-Net + PRL, a basic 3D U-Net 
network structure with PRL as the loss function; (III) 3D 
CFP-U-Net + PRL, a 3D CFP-U-Net and use PRL as 
the loss function; (IV) 3D CFP-U-Net + PRL + DRL, a 
3D CFP-U-Net and use point regression, and directional 
regression as the combined loss function. Table 2 shows the 
quantitative performance evaluation results for these four 
models. The table shows that the 3D CFP-U-Net + PRL + 
DRL proposed in this paper has the best performance in all 
quantitative metrics, including a PAE error of 0.886 mm, 
a PRE of 0.11%, and AAEs of 0.521°, 0.384°, and  0.681° 
were measured in the sagittal, transverse, and coronal 
planes, respectively. In comparison to the 3D U-Net, the 
3D U-Net + PRL model demonstrated varied levels of 
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Figure 7 A typical sample scan plane positioning outcome based on the prediction of the 3D CFP-U-Net model. (A-D) The 3D view, 
transverse, coronal and sagittal images of the volunteer before automatic scan planning; (E-H) the 3D view, transverse, coronal and sagittal 
images of the volunteer after 3D CFP-U-Net model scan planning. Before automatic scan plane positioning, there was a noticeable tilting 
angle in the subject’s 3D view. However, after automatic scan plane positioning, an accurate scan position can be placed in each plane. 
Specifically, landmarks such as the nasal root (red dot), the point at the rostral end of the corpus callosum (yellow dot) and the point at the 
end of the corpus callosum compression section (light green dot) are quite prominent in the sagittal plane, which provides strong evidence 
for the intuitive proof of prediction accuracy. 3D, three-dimensional; CFP, cascade feature pyramid.

Table 2 Average quantitative performance evaluation results of four models on 229 test samples

Models PAE, mm PRE (%) AAE (SAG), ° AAE (TRA) AAE (COR)

3D U-Net 3.665 0.70 1.405 2.042 2.192

3D U-Net + PRL 2.413 0.46 0.912 1.623 1.832

3D CFP-U-Net + PRL 1.125 0.25 0.603 0.525 0.732

3D CFP-U-Net + PRL + DRL 0.886 0.11 0.521 0.384 0.681

PRL, point regression loss; PAE, point-to-point absolute error; PRE, point-to-point relative error; AAE, average angular error; SAG, sagittal; 
TRA, transverse; COR, coronal; 3D, three-dimensional; CFP, cascade feature pyramid; DRL, direction regression loss. 

improvement in all quantitative assessment metrics. The 
model showed an increase in improvement with the PAE 
reducing from 3.668 to 2.413 mm and the PRE reducing 
from 0.70% to 0.46%. This suggests that the PRL loss 
function provides a greater advantage than MSE in 
locating landmarks. In comparison, the 3D CFP-U-Net 
+ PRL model showed varying degrees of improvement 
in all quantitative evaluation metrics when compared to 
3D U-Net + PRL, with PAE decreasing from 2.413 to  
1.125 mm and PRE decreasing from 0.46% to 0.25%. The 

network structure of 3D CFP-U-Net, including FPM and 
cascade structure, suggests superior learning capability in 
comparison to that of 3D U-Net. Finally, when compared 
to 3D CFP-U-Net + PRL, the ultimate model, 3D CFP-U-
Net + PRL + DRL, exhibits various levels of improvement 
across all quantitative evaluation metrics. Specifically, 
there is an improvement in PAE from 1.125 to 0.886 mm 
and PRE from 0.25% to 0.11%, strongly suggesting that 
the directional loss has significantly enhanced the model’s 
orientation determination capability.



Zhu et al. Automated brain scan plane positioning4026

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(6):4015-4030 | https://dx.doi.org/10.21037/qims-23-1740

Table 3 Average quantitative performance evaluation results of 3D CFP-U-Net model under three different data augmentation strategies

Models PAE, mm PRE (%) AAE (SAG), ° AAE (TRA), ° AAE (COR), °

3D CFP-U-Net-0 0.886 0.11 0.521 0.384 0.681

3D CFP-U-Net-1 0.875 0.10 0.509 0.382 0.679

3D CFP-U-Net-2 0.872 0.10 0.502 0.381 0.675

3D CFP-U-Net-0, model without data augmentation; 3D CFP-U-Net-1, model with random 3D rotation and random contrast 
transformation data augmentation; 3D CFP-U-Net-2, model with random 3D rotation, random contrast transformation, random Gaussian 
noise, and random masking data augmentation. 3D, three-dimensional; CFP, cascade feature pyramid; PAE, point-to-point absolute error; 
PRE, point-to-point relative error; AAE, average angular error; SAG, sagittal; TRA, transverse; COR, coronal.

Effect of data augmentation with domain knowledge

This  experiment  invest igates  how di f ferent  data 
augmentation techniques can improve the network 
model’s adaptability to complex clinical images. During 
the training phase, we implemented three distinct data 
augmentation schemes based on the 3D CFP-U-Net 
model. The 3D CFP-U-Net-0 model did not use data 
augmentation. For the 3D CFP-U-Net-1 model, two types 
of data augmentation were added, specifically random 3D 
rotation and random contrast transformation. The 3D 
CFP-U-Net-2 model employed four data augmentation 
techniques during training, including random 3D rotation, 
random contrast transformation, random Gaussian noise, 
and random masking. Table 3 displays the quantitative 
performance evaluation outcomes for all three data 
augmentation schemes. From the table, it can be seen 
that: (I) in comparison with 3D CFP-U-Net-0, 3D CFP-
U-Net-1 reduces the PAE from 0.886 to 0.875 mm, the 
PRE from 0.11% to 0.10%, and the AAE in the sagittal, 
transverse, and coronal planes decreases from 0.521°, 
0.384°, and 0.681°, respectively, to 0.509°, 0.382°, and 
0.679°; (II) compared to 3D CFP-U-Net-1, the quantitative 
evaluation indices of 3D CFP-U-Net-2 show further 
improvement. The PAE has decreased from 0.875 to 
0.872 mm, and the AAE in sagittal, transverse, and coronal 
planes has also reduced from 0.509°, 0.382°, and 0.679° to 
0.502°, 0.381°, and 0.675°, respectively. The experiments 
conducted in this paper demonstrate that the multiple data 
augmentation strategies applied have improved the model’s 
ability to generalize.

To provide a more intuitive demonstration of the impact 
of data augmentation on automatic scan plane positioning 
performance, two representative samples featuring abnormal 
clinic images were specifically chosen for detailed analysis. 
The impact of scan plane localization on the concerning 
images is depicted in Figure 8. In sample A, the pre-

scan image displays a wide range of areas with low signal 
intensity (red arrow in Figure 8A), potentially a result of 
clinical scanning or patient movement. Moreover, the signal 
corresponding to the corpus callosum pressure section at 
the critical anatomical location is largely absent, presenting 
a significant challenge for the landmark identification-based 
automatic localization algorithm. The 3D localization maps 
indicate that the 3D CFP-U-Net-0 model and 3D CFP-
U-Net-1 model exhibit notable bias in predicting such 
samples. In contrast, the 3D CFP-U-Net-2 model, which 
utilizes a more robust augmentation strategy, can achieve 
accurate scan plane localization (red box in Figure 8A). 
Significant regions of tumor occupied abnormal sample B in 
the patient’s pre-scan images, which resulted in deviations 
from normal for the location of key anatomical points in the 
patient’s images. In the results, model 3D CFP-U-Net-0 
was shown to be incorrect in its prediction without data 
augmentation, and models 3D CFP-U-Net-1 and 3D CFP-
U-Net-2 with data augmentation achieved more accurate 
scan plane localization.

Discussion

The proposed 3D CFP-U-Net is an end-to-end network 
architecture that can be applied in diverse conditions. In 
this framework, a 3D pre-scan image serves as input and 
localized labelling of predefined landmarks is the output 
during the training phase. To expand the application of 
this framework beyond the head region, we can substitute 
the input pre-scan image and the output labelled landmark 
localization for the target anatomy during the training stage. 
To reduce scanning time, the 3D pre-scan data presented in 
this paper is at a lower resolution which may present some 
challenges for finer identification and localization. In future, 
we will integrate fast imaging techniques into 3D pre-
scanning to obtain higher resolution pre-scan images while 
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Figure 8 The performance of data augmentation strategy for 3D CFP-U-Net model under two clinically abnormal samples (A,B). The red 
and yellow arrows indicate the regions of critical abnormalities, respectively. Compared to 3D CFP-U-Net-0 without data augmentation, 
3D CFP-U-Net-1 and 3D CFP-U-Net-2 show better identification and plane localization performance in abnormal samples (red and yellow 
boxes). 3D CFP-U-Net-0: model without data augmentation; 3D CFP-U-Net-1: model with random 3D rotation and random contrast 
transformation data augmentation; 3D CFP-U-Net-2: model with random 3D rotation, random contrast transformation, random Gaussian 
noise, and random masking data augmentation. 3D, three-dimensional; CFP, cascade feature pyramid.
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improving scanning efficiency. The proposed physically-
based directional regression loss function is pivotal in 
advancing the model’s localization accuracy. Optimizing 
model parameters, such as weight values in the loss function 
and parameters used in data augmentation, could potentially 
improve the model’s performance further. It is observed 
that the normal vectors of the scanning plane represent a 
topological association based on landmarks, and extending 
the constraints imposed on the model by this association 
has the potential to improve its effectiveness (32).

Conclusions

In this paper, we address the inefficiency, low accuracy 
and poor generalization ability of traditional scan plane 
positioning algorithms for MRI, and propose a deep 
learning automatic scan plane positioning solution based on 
a 3D data scheme by designing a specified data acquisition 
strategy, data augmentation method, network architecture 
and optimized loss function. The approach utilizes TFE3D 
sequences to promptly obtain 3D pre-scanning localization 
images for subsequent identification of anatomical 
landmarks and intelligent computation of plane orientation. 
Our proposal is a two-stage end-to-end 3D cascaded 
convolutional network framework, called 3D CFP-U-
Net, which localizes the positions of five key anatomical 
landmarks and achieves a coarse-to-fine result. Our 
approach yields satisfactory scan plane positioning outcomes 
on 229 test samples, with PAE and PRE reaching 0.872 mm  
and 0.10%, respectively, evidencing the efficacy of the 
cascade framework and the multi-scale spatial information 
fusion module. In comparison, a semi-automatic scan plane 
positioning method for cardiac imaging (12) resulted in 
higher mean distance errors of 4.96 mm. Additionally, Zhan 
et al.’s machine learning approach (14) for femur cartilage 
positioning produced a translation error of 1.53 mm, larger 
than our method’s 0.872 mm. We propose loss functions 
PRL and DRL with a physical meaning in automatic scan 
plane positioning, and verify the performance of PRL and 
DRL through comparative experiments. Considering the 
diverse clinical application scenarios, we create simulations 
of numerous complex situations encountered in the clinic 
to expand the training dataset. We then integrate domain 
knowledge into the neural network using the augmented 
training data to enhance the neural network’s generalization 
ability. Data augmentation proves to be effective in 
improving the performance indices of the model, as 
demonstrated by the results of 229 test samples. Its 

improved performance in clinical anomaly samples provides 
further evidence of the potential of data augmentation in 
enhancing model robustness.
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