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Abstract

Using DNA sequence data from pathogens to infer transmission networks has traditionally been done in the context of
epidemics and outbreaks. Sequence data could analogously be applied to cases of ubiquitous commensal bacteria;
however, instead of inferring chains of transmission to track the spread of a pathogen, sequence data for bacteria
circulating in an endemic equilibrium could be used to infer information about host contact networks. Here, we show—
using simulated data—that multilocus DNA sequence data, based on multilocus sequence typing schemes (MLST), from
isolates of commensal bacteria can be used to infer both local and global properties of the contact networks of the
populations being sampled. Specifically, for MLST data simulated from small-world networks, the small world parameter
controlling the degree of structure in the contact network can robustly be estimated. Moreover, we show that pairwise
distances in the network—degrees of separation—correlate with genetic distances between isolates, so that how far apart
two individuals in the network are can be inferred from MLST analysis of their commensal bacteria. This result has important
consequences, and we show an example from epidemiology: how this result could be used to test for infectious origins of
diseases of unknown etiology.
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Received May 24, 2011; Accepted June 28, 2011; Published August 1, 2011

Copyright: � 2011 Plucinski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MMP was funded by a National Science Foundation Graduate Research Fellowship. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mateusz@berkeley.edu

Introduction

The widespread availability of DNA sequencing has led to their

increased use as tools in the study of infectious disease dynamics. It

has been used to track the spatiotemporal spread of pathogens and

to infer chains of transmission for various bacteria and viruses,

including HIV [1], MRSA [2], rabies [3], foot and mouth disease

[4], hepatitis C [5], and tuberculosis [6]. These studies have as

their primary focus the pathogen itself – the implicit goal of

understanding disease dynamics is the eventual control of

pathogen spread. Here, we argue that sequence data for

ubiquitous commensal bacteria – an endemic instead of epidemic

setting – can instead be used as a tool to study the host contact

network. The structure of the host contact network is known to

strongly affect the dynamics of infectious diseases [7]. Moreover,

network structure also strongly determines the population genetics

of the pathogen spreading on the network. For example, previous

modeling studies have shown that the degree to which a network is

randomly wired affects the overall diversity of strains of

commensal bacteria such as Neisseria meningitidis [8] [9].

Recently, multilocus sequence typing (MLST) has become one of

the most popular techniques for the genotyping of bacteria, and

involves the amplification and sequencing of several (usually seven)

housekeeping genes, with a sequence type being defined by the

combination of its seven alleles [10]. One way to summarize MLST

data for isolates from a population is to calculate the distribution of

pairwise distances, defined as the number of discordant alleles. For

many commensal bacteria, including Neisseria meningitidis, Staphylo-

coccus aureus, and Streptococcus pneumoniae, this distribution has a

characteristic ‘‘U shape’’ (Figure 1A). This shape is inconsistent with

traditional population genetics models of neutral evolution, which

would predict either a strictly increasing or decreasing function [11].

In practice, the ‘‘U shape’’ is a result of an overrepresentation of

clonal strains, and has been alternately attributed to small outbreaks

of clonal strains (‘‘microepidemics’’) [11], or more recently, to

heterogeneity in the reproductive potential of different strains under

selective pressure from the host [12].

Fundamentally, the ‘‘microepidemic’’ explanation corrects for the

overrepresentation of clonal strains by introducing an extra

parameter to account for local spread. Here, we show that once

network structure is accounted for, it is no longer necessary to

explicitly account for this additional local spread - we show that

certain network structures naturally lead to this characteristic ‘‘U

shape’’. Specifically, the degree of local structure in the network,

defined by the small world parameter p can be found to directly result

in this characteristic shape. Moreover, if we assume that the network

topology is the main determinant of the shape of the distribution of

the number of discordant alleles, the shape of this curve can then be

used to infer the structure of the host contact network.

Results

A particularly robust way of modeling human social networks is

to consider small world networks, networks that retain both the

high clustering and low characteristic path length (meaning most

points are separated by only a few nodes) characteristic of human
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networks [13]. Moreover, small world networks are parameterized

in such a way that a single parameter, the small world parameter

p, uniquely controls the global structure of the network, with p~0
resulting in an ordered lattice-like network, and p~1 in fully

random networks, and intermediate values of p resulting in

realistic small-world networks.

An individual-based model that simulates MLST data from

commensal bacteria spreading among individuals linked together

on a randomly generated small world network suggests that the

characteristic ‘‘U shape’’ of the distribution of pairwise discordant

alleles previously observed for commensal pathogens only occurs

for some values of the small world parameter p (Figure 1A). While

the other parameters of the model do affect the form of the

distribution (Figure S1), only the small world parameter controls

the existence and magnitude of the dip in the distribution for

intermediate values of the number of discordant alleles (Figure 1B).

Since the small world parameter is a measure of how structured

the population is, in practice these results suggest that highly

structured populations (p?0) result in localized pockets of local

strains, resulting in an overrepresentation of low discordance pairs

– recent, local transmission – and maximally discordant pairwise

comparisons between different pockets of local strains separated in

the network. As the network gets more random (p?1), this local

structure disappears, and the form of the distribution of pairwise

discordant alleles becomes either strictly increasing or strictly

decreasing, depending on the mutation rate (Fig. S1A).

Given that the small world parameter p strongly determines the

form of the pairwise genetic distance distribution, it seems

plausible that given bacterial isolates sampled from a single

population, one might be able to infer some information about the

host contact structure of the population, specifically the small

world parameter p. While the individual MLST datapoints are

independent, the set of pairwise distances among them is not, and

the likelihood consequently cannot be computed straightforwardly;

we instead employ a variant of Approximate Bayesian Compu-

tation (see Methods). Using simulated MLST data from our model

for a given random network with fixed small world parameter p,

we ran inference on the set of pairwise distances. One sample of

MLST data from 50 individuals resulted in a posterior distribution

for p that peaked close to the true value, but whose uncertainty

was quite wide. However, repeated independent samples of 50

isolates from the same kind of population at later times narrowed

that peak (Figure 2). Our results therefore suggest that global

properties of host contact networks, such as the degree of

randomness, can indeed be inferred from MLST data for

ubiquitous commensal bacteria spreading on that network.

If global network properties can be inferred from MLST data

then it is also plausible that some of the local network structure can

also be gleaned from the same data. While it is not feasible to

reconstruct an entire host contact network from bacterial MLST

data, the distance between a single pair of individuals in the

network, defined as the number of nodes in the shortest path

connecting the two individuals (the degrees of separation) can be

inferred. Intuition suggests that individuals that are closer together

in the network would have MLST isolates that are genetically more

similar to each other, and simulations from our model confirmed

this correlation (Figure S2). Moreover, using the simulated MLST

data, we quantified the probability (P(djd)) that a given pair of

individuals was separated by d nodes given that the observed allelic

distance between their isolates of the commensal bacterium was d

(Figure 3). Given that information, one can then proceed to looking

at sets of pairs of individuals. For example, what is the likelihood

that individuals A and B are closer together in the network than

individuals C and D if the MLST data from isolates from C and D

are closer together than the isolates from A and B? In other words,

what is the probability that the ordering based on genetic distance of

isolates is reversed from the ordering based on network distance?

Effectively, this is the probability of type I error, the probability of

erroneously classifying the relative strengths of the pairwise

distances (between two sets of pairs) in the social network. As seen

in Figure S3, the probability for this kind of error decreases as the

difference in the number of discordant alleles increases.

Figure 1. A) Observed distributions of pairwise number of
discordant alleles for S. aureus, N. meningitidis, S. pneumonia.
Data from [18] [19] [20], cited in [11]. B) Distributions of pairwise
number of discordant alleles drawn from simulated networks with
various values for the small world parameter p.
doi:10.1371/journal.pone.0022685.g001
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Discussion

One of our primary results, that population genetic data of

commensal bacteria can be used to quantitatively characterize

social networks of humans, comes at a time of increased focus on

the microflora found in and on humans. Already the effort to

characterize the human microbiome [14] has had similarly

unexpected results, such as the potential use of microbial

community composition for forensics purposes [15].

The idea that global characteristics of human contact networks,

specifically the degree to which they are structured, embodied by

the small world parameter p, can be inferred from MLST data

suggests genotyping of commensal bacteria as a possible tool to

quantitatively characterize distinct contact networks. For example,

analysis of MLST data might be used by sociologists to rigorously

identify differences in social structure between different populations.

Similarly, the result that local properties of host contact

networks can be inferred from MLST data, specifically, the

likelihood of correctly identifying the relative strengths of links in

the network suggests further applications. For example, the

degree to which social networks exhibit associate mixing

behavior, where there is preferential mixing among certain

ethnic, social, and socioeconomic sub-groups of a population, can

be quantified by analyzing a subset of the population for a

commensal bacterium, running MLST analysis on the isolates,

and then investigating whether the isolates from within the

different sub-groups are closer together on average than isolates

compared across sub-groups.

A potential application of this method is the detection of

outbreaks of emerging diseases, or the identification of an

infectious origin for a disease of unknown etiology. We consider

the situation in which an unknown infectious disease is spreading

by human to human transmission in a population. Assuming that

it is not known whether the disease is caused by an infectious

agent (either because it is a new, unidentified emerging disease, or

because its infectious origin has not yet been confirmed), we ask,

can the fact that this disease is being spread by person to person

transmission on the social network be determined by looking only

at isolates of commensal bacteria? The methodology would be

standard: take isolates of a commensal bacterium from cases and

healthy controls, and see whether isolates from cases are closer to

each other than isolates from controls. By simulating a disease

being spread independently on the same network as the

commensal bacterium (Figure 4A), we were able to test this

hypothesis. Because the network structure, in particular the

degrees of separation between all the nodes was known to us, we

first tested whether the distribution of pairwise network distances

between cases was different from the distribution of pairwise

network distances between controls. The fact that the curve for

cases was shifted to the left in Figure 4B is evidence that cases are

closer together in the network, which is expected of cases that

arise from an infectious disease process that leads to clustering.

However, network distance is not generally available in the real

world, but we argue that it can be indirectly measured by looking

at pairwise distances from MLST analysis of the isolates from

cases and controls that happen to be coinfected with the

commensal bacterium. Indeed, the distribution of pairwise

MLST distances for the isolates from cases was shifted to the

left in comparison with the distribution for controls, (Fig. 4C) and

this difference was statistically significant, suggesting that it is

enough to look at isolates of commensal bacteria to prove that the

unidentified disease was spread by person to person contact on

the network.

Despite the promising nature of our findings, we emphasize that

they are based on simulation results. To rigorously prove our claim

that network structure can be inferred from sequence data for

commensal bacteria, one would need to validate our method by 1)

choosing an appropriate closed population, 2) fully measuring the

network structure using existing methodologies such as surveys, 3)

Figure 2. Likelihood of the small world parameter p, for
increasing numbers of independent samples from networks
with true small world parameter p~0:1.
doi:10.1371/journal.pone.0022685.g002

Figure 3. Likelihood for d, the number of nodes separating two
individuals in the network, given that the number of discor-
dant alleles in their isolates is d. The area of the shaded region is
the probability that a pair of individuals with seven discordant alleles
will be closer together in the network than a pair of individuals with no
discordant alleles, the Type I error (see Methods, and Figure S3).
doi:10.1371/journal.pone.0022685.g003
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isolating and MLST typing an appropriate commensal bacterium

(such as S. aureus) from the individuals, and 4) testing whether there

is correspondence between network distance between pairs in the

conventionally measured network and the genetic distance

between the pairs of isolates. We propose that future carriage

studies of ubiquitous commensal bacteria, in addition to MLST of

the isolates, also attempt to measure the social structure of the

population being sampled, to test whether MLST data can be used

to shed light on the social structures of human populations.

Materials and Methods

Simulation of MLST data
We wrote an individual-based model that simulated MLST data

for bacteria spread on random small-world networks. First, the

model generated a random small-world network using the Watts

and Strogatz algorithm [13]. For each individual on the network,

the model tracked its state (susceptible/infected) and if infected,

the seven MLST alleles of the pathogen. Transmission and neutral

Figure 4. Simulated epidemic on the network. A) Spread of a new pathogen (large red nodes) on a small world network, with an endemic
commensal pathogen (small black nodes). B) Cumulative distribution of the network distance for healthy controls in the network (dashed line) and
only for individuals infected with the new pathogen (solid line). C) Cumulative distribution of the number of discordant alleles between pairs of
isolates from healthy controls (dashed line) and cases (solid line). Both B) and C) show significant differences between cases and controls.
doi:10.1371/journal.pone.0022685.g004
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evolution of the bacteria were simulated concurrently, with

independent events occurring consecutively, according to the

Gillespie algorithm. The possible events of the Gillespie algorithm

are transmission of infection among susceptible-infected pairs

connected in the network with rate bnSI , where b is the

transmission rate, and nSI is the number of susceptible-infected

pairs in the network; transmission of infection among infected-

infected pairs connected in the network with rate bnII , where nII is

the number of infected-infected pairs in the network; clearance of

carriage (no immunity is assumed and thus the alleles are not

under selective pressure) with rate cnI , where c is the recovery rate

and nI is the number of infecteds; mutation of an allele, occurring

with a fixed probability pm for each transmission event; and

recombination, occurring with a fixed probability pr for each

transmission from an infected to another infected individual, with

the latter two parameters derived from observed mutation versus

recombination ratios and observed total mutation rates. The

simulations were initially started with a subset of the population

infected with a clonal strain. The system was then allowed to

evolve, until an endemic equilibrium was reached, marked by a

stable distribution of pairwise distances of the MLST alleles from

the population. Once equilibrium was reached, the system was

allowed to evolve further, and the population sampled at random

times to yield simulated MLST data. The process repeated for

multiple realizations of the random small-world generator yielded

independent observations of MLST data from networks generated

with the given parameters.

The number of parameters was kept at a minimum, and can be

divided into three categories: the transmission parameters, the

pathogen evolution parameters, and the network parameters. The

transmission parameters were b and c; c was estimated from the

average observed duration of carriage of the pathogen, and b was

estimated to fit the observed prevalence of carriage. The pathogen

evolution parameters were
r

m
, the ratio of the rates of recombination

to mutation, and n, the total rate of per nucleotide substitution. Both

of these parameters have traditionally been estimated based on

MLST data. The network parameters used to generate the small

world network were n, the size of the network, c, the average

number of contacts, and p, the small world parameter; n and c can

directly be observed in the field, and we argue that p can be

estimated from the observed distribution of pairwise MLST

distances from isolates drawn from the population.

When choosing parameters for the simulations used to generate

the figures, we chose parameters that fit observable data for S.

aureus (prevalence of carriage, ratio of recombination to mutation,

and total rate of mutation). However, we were unable to fit the full

model to a real data set from S. aureus MLST isolates because

important parameters such as the size of network and the average

number of contacts are not usually measured and reported when

MLST data are uploaded to online repositories.

One key assumption of the model is that the bacteria are

assumed to not be under any selective pressure, a potential

limitation for bacteria such as S. pneumoniae that encounter both

vaccines and host immune responses. However, this assumption

does not draw away from the main results - that host contact

structure can be inferred from MLST data of commensals.

Inference of Network Structure
To estimate the small world parameter p, we first generated a

table of simulated MLST data for different values of p. This

allowed us to approximate P(Djp) and P( ~DDjp), where D denotes

the data - a matrix of pairwise distances - and ~DD denotes the vector

describing the distribution of D.

The posterior probability of p given the network distances Dij

(equivalent to the likelihood when the prior is uniform) was

calculated using a variation [16] of Approximate Bayesian

Computation (ABC) [17]. Instead of using a cutoff distance as in

the original ABC algorithm, the posterior is smoothed using a

kernel function. We chose as a summary statistic the empirical

distribution of distances q

qk~
X

i

X

j

I(Dij~k) ð1Þ

and utilized a Gaussian kernel function

K(q,r)~ exp ({
X

k

(qk{rk)2=s) ð2Þ

giving the approximate posterior likelihood

P(p~xjDij~dijVi,j)~

P
l

I(pl~x)K(dl ,d)

P
l

K(dl ,d)
ð3Þ

The value of s in the kernel was chosen to minimize square

error in the posterior mean using cross validation, giving

s&0:0067.

From the simulations, we can also approximate

P(Dij~djdij~d,p), that is, the probability that the number of

discordant alleles between isolates from individual i and j (Dij ) is d,

given that individuals i and j are separated by d degrees of

separation (the number of nodes in the shortest path from

individual i to individual j) on a small world network with

parameter p. Of greater interest, however, is the posterior

distribution P(dij~djDij~d), that is, what can we say about the

relative connectedness of individual i and individual j given an

observed d number of discordant alleles in their isolates. This

crucial information can be calculated from the simulated MLST

data as:

P(dij~djDij~d)~
X

p

P(Dij~djdij~d,p)P(dij~djp)P(pjD) ð4Þ

Here, P(dij~djp) is the expected distribution of degrees of

separation in a small-world network with small world parameter p,

which can be approximated numerically from the simulated runs.

Once P(dij~djDij~d) is known, we can calculate the

probability that for two sets of pairs in a network, the ordering

of genetic versus network distance will be reversed - the probability

that a pair of individuals that are closer together in a network than

another pair has isolates that are further apart genetically than the

other pair:

P(dijwdkl jdijvdkl)~
X

d

P(dklvdjdkl)P(dij~djdij) ð5Þ

This equation, calculated for all combinations of dij and dkl ,

yields Figure 3B.

Infectious Disease Outbreak Simulations
To simulate an outbreak of a new pathogen, a random

individual in the network was infected and the pathogen allowed

Inferring Social Network Structure
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to independently spread on the same network as the commensal

bacterium. Since the infection with the new pathogen is assumed

to result in immunity, the outbreak is self-limiting. The outbreak

over, the distribution of pairwise network distances of those who

were ultimately infected was computed and compared with the

distribution for healthy individuals in the network. A chi-squared

test yielded a p-value of 4|10{6, strong evidence that the two

distributions were different. The same analysis was repeated, but

looking at the distribution of MLST allelic discordance among

those coinfected with the unknown pathogen and the commensal

bacterium (the cases), and those only infected with the commensal

bacterium (the controls). A chi-squared p-value of 3|10{5 also

suggested that the two distributions were significantly different.

Supporting Information

Figure S1 Sensitivity of the shape of the distribution of pairwise

number of discordant alleles to key parameters of the model: A)

Total per nucleotide mutation rate n, B) rate of recombination to

mutation r=m, C) number of individuals in the network n, and D)

the average number of contacts in the network c. All simulations

were run with small world parameter p~1 (no local structure), and

resulted in distributions either monotonically decreasing or

monotonically increasing. The fact that as c, the average number

of contacts, goes to 0 this trend is broken, reinforces the result that

localized interactions (low p) yield the characteristic ‘‘U shape’’.

To generate the figures in the paper, the following parameters

were used: n~5|10{7, r=m~1=15, n~100, c~5,

b~1:9|10{3, and c~3:9|10{3.

(EPS)

Figure S2 Scatter plot of network distance (degrees of

separation) versus allelic difference (number of discordant alleles)

for all pairs of nodes in the network. Points are randomly jittered

for illustrative purposes. A linear fit to the data (red line) shows a

positive correlation between the two distances, and motivates the

idea that distances in isolates can be used as a proxy for network

distances between individuals.

(TIF)

Figure S3 The type I error for all combinations of observed

pairwise distances (see Methods).

(EPS)
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