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This work proposes an evolution-operator-based single-time-step method for image and signal processing. The key component of
the proposed method is a local spectral evolution kernel (LSEK) that analytically integrates a class of evolution partial differential
equations (PDEs). From the point of view PDEs, the LSEK provides the analytical solution in a single time step, and is of spectral
accuracy, free of instability constraint. From the point of image/signal processing, the LSEK gives rise to a family of lowpass filters.
These filters contain controllable time delay and amplitude scaling. The new evolution operator-based method is constructed by
pointwise adaptation of anisotropy to the coefficients of the LSEK. The Perona-Malik-type of anisotropic diffusion schemes is
incorporated in the LSEK for image denoising. A forward-backward diffusion process is adopted to the LSEK for image deblurring
or sharpening. A coupled PDE system is modified for image edge detection. The resulting image edge is utilized for image en-
hancement. Extensive computer experiments are carried out to demonstrate the performance of the proposed method. The major
advantages of the proposed method are its single-step solution and readiness for multidimensional data analysis.
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1. INTRODUCTION

Image denoising, restoration, edge detection, and enhance-
ment are fundamental problems in image processing,
computer vision, and artificial intelligence [1]. The solution
to these problems is crucial to automatic control, robotics,
imaging, target tracking, and telecommunication. A vari-
ety of methods have been proposed to tackle these prob-
lems in the past few decades. Among these methods, partial-
differential-equation- (PDE-) based methods have recently
received much attention. Witkin [2] introduced a parabolic
evolution equation (i.e., the heat equation) for image
denoising. The basic idea behind Witkin’s approach is to
evolve an original image under a diffusion process so as to
effectively remove noise in the image surface. Such process is
formally equivalent to the standard Gaussian filter. His ap-
proach has been intensively studied in terms of the scale-
space process [3–5]. Based on a discrete version of the dif-
fusion equation

us+1
j = usj + R

(
usj−1 − 2usj + usj+1

)
,

u0
j = uj

(
t1
)
, j = 1, . . . ,N , s = 0, 1, . . . , S,

(1)

where

R = bΔt, S =
(
t2 − t1

)

Δt
, (2)

Wei and Zhao showed that [6] the effect of the diffusion after
S iterations can be expressed as a convolution

uSj =
j+S∑

k= j−S
W(k, S)uk

(
t1
)
, (3)

where the filter W(k, S) can be explicitly given by
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⎧
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)
!
(
(S− k − h)/2

)
!h!

. (5)

Therefore, the result of the multiple-step time evolution
described in discrete diffusion equation (1) can be exactly
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obtained via the single-step convolution (3). It can be veri-
fied that

j+S∑

k= j−S
W(k, S) = 1,

W(−k, S) =W(k, S), ∀k = 1, . . . , S.

(6)

A two-dimensional (2D) generalization of (3) is straightfor-
ward. Wei and Zhao also showed that W(k, S) is a general-
ization of the Hanning filter [7] and applied it to chaos syn-
chronization [6] and trend estimation [8].

Like the Gaussian filter, the diffusion process not only re-
moves noise, but also smears image edges and leads to poor
visual effects. To address such an issue, Perona and Malik
proposed anisotropic diffusion process [9] in which the dif-
fusion coefficient is replaced by a function of position gradi-
ent

∂u(r, t)
∂t

= ∇ · [d(|∇u(r, t)|)∇u(r, t)
]
,

u(r, 0) = I(r),
(7)

where I(r) is the original image and d(|∇u|) is a generalized
diffusion coefficient which is so designed that its values are
very small at the edge of an image. Perona and Malik sug-
gested the Gaussian d(x) = exp[−x2/2σ2] and the Lorentz
d(x) = [1 + (x/σ)2]−1, where σ is a constant to be tuned for
a particular application. The Perona-Malik equation has re-
cently stimulated much interest in image processing and ap-
plied mathematical communities [5, 10–19]. It is commonly
believed that the Perona-Malik equation facilitates a new and
potentially more effective algorithm for noise removing, im-
age restoration, edge detection, and image enhancement.

Catté et al. [11] pointed out the possibility of generating
additional maximum and minimum which do not belong to
the initial image data. The problem was analyzed in detail by
Kichenassamy [12]. Further studies [5, 11, 13, 19] showed
that the anisotropic diffusion process may break down when
the gradient generated by noise is comparable to image edges
and features. A preconvolution with a smoothing function,
such as a Gaussian filter was proposed as a regularization
procedure to alleviate the instability. Such a preprocess in fact
degrades image quality. One of the present authors [20] pro-
posed a statistical method which discriminates noise from
image edges. The idea is to choose σ in the Gaussian or
Lorentz as a local statistical variance of |∇u|,

σ(r, t) = |∇u−∇u|2, (8)

where X(r) denotes the local average of X(r) centered at
point r. The area of the local average can be selected in partic-
ular application. This simple approach works well in restora-
tion of noisy images. More sophisticated approaches, includ-
ing variational methods, curvature, and active contours, have
been extensively explored in the literature [21–26].

Another problem with the original Perona-Malik equa-
tion concerns its efficiency in noisy removing and image en-
hancement. This problem was addressed by Wei [20] by in-
troducing high-order edge-controlled diffusion operators. A

fourth-order variation-based PDE was proposed by Chan et
al. [27] for image restoration. You and Kaveh [28] intro-
duced a fourth-order curvature diminishing diffusion equa-
tion. The high-order Perona-Malik equation [20] takes the
form
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(9)

Solute-solvent dielectric interfaces here dq(u, |∇u|) are edge-
sensitive diffusion functions and e(u(r, t), |∇u(r, t)|) is an
edge-sensitive (kinetic) production term. Numerical exper-
iments were carried out in [20] for a simplified version of
(9):
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(10)

A linear and discrete version of the fourth-order diffusion
operator was tested for time series analysis [6]. Clearly, the
motivations behind the generalized Perona-Malik equation
(10) include high-order phenomenological kinetic equations
for pattern formation in alloys, glasses, polymer, combus-
tion, and biological systems, and hyperdiffusion used to sta-
bilize the direct numerical simulation of turbulence flow
by damping small-scale oscillations around the Nyquist fre-
quency. Image sharpening can be achieved by a balance be-
tween forward diffusion and backward diffusion in (10) via
appropriately choosing the signs of d1 and d2. Bertozzi and
Greer [29–31] have carried out mathematical analysis of
the generalized Perona-Malik equation (10). The latter was
found to be efficient for treating medical magnetic resonance
images [32]. Gilboa et al. [33] constructed an efficient im-
age sharpening scheme by using (10) with a triple-well po-
tential for the kinetic production e(u(r, t), |∇u(r, t)|). Witel-
ski and Bowen [34] proposed alternating-direction implicit
(ADI) schemes for the integration of (9).

The other problem in the Perona-Malik equation is its in-
efficiency for image edge detection, particularly for edge de-
tection of images with a large amount of texture. This is due
to the fact that edge detection is naturally a highpass filtering
operation, while the diffusion process is inherently a lowpass
filtering process. Wei and Jia [35] address this problem by
introducing a pair of weakly coupled nonlinear equations:

ut = F1
(
u,∇u,∇2u, . . .

)
+ ε1(v − u), (11)

vt = F2
(
v,∇v,∇2v, . . .

)
+ ε2(u− v), (12)

where ε1 and ε2 are the coupling strengths. Here, F1 and
F2 are nonlinear functions and can both be chosen as the
Perona-Malik operator

Fq = ∇ ·
[
dq
(|∇u|)∇u], q = 1, 2, (13)

but evolve at entirely different time scales. For complicated
application, the generalized Perona-Malik operator (10) can
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be used. This approach was motivated by the synchroniza-
tion analysis of two nonlinear chaotic systems. Image edges
are detected by the so-called synchronization residual at an
appropriate time:

R(r, t) = u(r, t)− v(r, t) (14)

provided that the common initial value is a digital image field
u(r, 0) = v(r, 0) = I(r). This coupled PDE approach has been
shown [35] to be very robust and efficient, and it provides su-
perior results in image edge detection compared to those ob-
tained by using other existing approaches, such as the Sobel,
Prewitt, and Canny operators, and by anisotropic diffusion.

Furthermore, the time in the evolution equation is an
extra parameter for images and often does not have much
justification for its necessity. In particular, there is no rigor-
ous and common rule to determine the period of the time
evolution. An automatically controlled generalized Perona-
Malik operator was proposed [20] by introducing a time-
dependent factor

e0

t + t0
, (15)

where e0 and t0 are positive constants. Since each term in the
generalized Perona-Malik equation may have a different time
dependence, this actually turns the time into an additional
dimension for optimizing image properties. Such an idea was
adopted and the related technique was further explored by
Gilboa et al. [36]. They proposed two time-dependent diffu-
sion coefficients for (7) in the form of

d
(|∇u|, t) =

[
1 +

( |∇u|
k(t)

)2]−1

, (16)

with k(t) = 1/(ε + α1t) and

d
(|∇u|, t) =

[
1 +

( |∇u|
k

)α2t]−1

, (17)

where α1, α2 are parameters for controlling the diffusion rate,
ε is a constant, and k is the gradient threshold. Controlled
evolution is an important concept for Perona-Malik type of
evolution equations. In fact, two types of controls have been
introduced in the literature. One control, originally proposed
by Wei [20], is to control the magnitude of an individual op-
erator as an explicit function of time, such as (15), so that its
effect on the image can be optimized. The other is to control
the exit time of the time evolution based on the character-
istic of the evolving image. The second type of control was
proposed by Wei and Jia [35] to stop the time evolution of
their couple edge detection equations based on the difference
in variance of two evolving images. Certainly, more research
work on the automatic control of time evolution is required
in order to make PDE-based image processing a really com-
petitive approach against a host of other methods, such as
wavelets, Wiener filter, neural networks, and so forth.

One advantage of PDE-based image processing meth-
ods is being elegant and mathematically rigorous. Another
advantage is their readiness for systematic generalization

to the processing of three-dimensional (3D) and higher-
dimensional data. Geometric selectivity and parameter con-
trollability also endow these methods great flexibility and po-
tential for a variety of applications in medical imaging, astro-
nomic imaging, pattern recognition, and computer vision.
Nevertheless, there are obstacles which prevent PDE-based
image processing methods from being used in practical ap-
plications, that is, industrial codes. First of all, multiple itera-
tions involved in solving nonlinear PDEs are in general much
more expensive than the single-step operation of most classic
image processing methods. This lack of efficiency is very se-
vere for the processing of large 3D medical image data. More-
over, the numerical solution of Perona-Malik type of non-
linear PDEs is nontrivial. Numerical instability exists when
the time step is too large in explicit schemes. For implicit
schemes, stability may not be a problem, but other undesired
features might be introduced to the solution.

Many efficient solution techniques were proposed [37–
40] for the linear heat equation. However, when the empha-
sis of the diffusion process is changed from the linear filter-
ing to the nonlinear one, poor computational efficiency be-
comes a main obstruction in the practical applications of the
nonlinear diffusion equation. In time, explicit schemes like
forward Euler (first-order), multilevel explicit finite-differ-
ence schemes are most widely used. However, these explicit
schemes require very small time steps in order to be stable.
It is doomed that the whole diffusion procedure is rather
time consuming. Consequently, accelerated explicit schemes
are desirable. A fast explicit numerical scheme (λ-resolution)
was presented to approximate the solution of the linear dif-
fusion filtering [41]. More sophisticated and absolutely sta-
ble approaches are semi-implicit schemes [11, 18]. Weickert
et al. [18] proposed an additive operator splitting (AOS)
scheme for nonlinear diffusion process. In contrast to tra-
ditional multiplicative splitting such as the ADI and locally
one-dimensional splitting, all axes are treated in the same
manner in AOS scheme. However, this scheme needs to com-
pute matrix inversions which are usually a source of com-
putational errors and require much computer memory. In
space, since the pixel structure of digital images provides a
natural discretization on a fixed rectangular grid, it is not sur-
prising that finite-difference-based methods, such as second-
order, fourth-order, and sixth-order central finite-difference
schemes, are commonly used for the task of discretization.
Alternatives to the finite-difference methods include finite-
element methods [42–44], finite-volume schemes [45, 46],
pseudospectral approaches [47], wavelets [20, 47, 48], multi-
grid methods [49], fast level-set methods [50], high-order
ENO [51], lattice Boltzmann methods [52], and stochastic
simulations [53].

Recently, a local spectral (LS) method, also called the dis-
crete singular convolution (DSC) [54], was proposed as an
efficient numerical tool for solving PDEs. The mathematical
foundations of the DSC algorithm are the theory of distribu-
tion and wavelet analysis. The DSC algorithm has found to be
useful in a number of scientific and engineering applications
[55–63]. More recently, a family of local spectral evolution
kernels (LSEKs) [64] have been constructed for analytically
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integrating a class of evolution PDEs:

∂

∂t
f (x, t) =

(
A(t)

∂2

∂x2
+ B(t)

∂

∂x
+ C(t)

)
f (x, t), (18)

where A, B, and C are functions of time, and Re(A) ≥ 0.
The proposed local spectral method has the same level of ac-
curacy as that of spectral methods in space, and is analytic
in time. The local spectral evolution kernels are constructed
by using Hermite functions. However, unlike the standard
global Hermite spectral methods [65], the LSEKs adopt uni-
form grids and have banded matrices, just like other DSC
kernels. In fact, the length of the computational stencil, and
thus the accuracy of the LSEK, can be controlled according to
the needs of the problem of interest, which is another feature
of the DSC inherited from wavelet analysis. Moreover, the
local property endows the LSEK method with sufficient flex-
ibility to handle moderately complex geometry and complex
boundary conditions. In principle, Fourier spectral methods
can also solve many evolution equations analytically. How-
ever, they are restricted to periodic boundary conditions and
lead to distortion near image boundaries.

The objective of the present paper is to introduce an evo-
lution-operator-based single-step image processing method.
The LSEK systematically incorporates anisotropic diffusion
coefficients at each pixel. The new method arrives at a de-
sired evolution time in a single step. Moreover, the proposed
method is free of instability constraint and is of spectral ac-
curacy for integrating evolution PDEs (18). Furthermore, by
an appropriate design of coefficient C(t), one can achieve the
automatic termination of the time integration. In this pa-
per, we explore the use of the proposed single-step method
for several important tasks, including image deblurring, de-
noising, edge detection, and enhancement. Image denoising
is accomplished by incorporating anisotropic diffusion type
of coefficients in the LSEK, while image deblurring is realized
by an appropriate forward-backward diffusion process. The
coupled PDE system (11) is simplified and utilized as a model
for constructing new schemes for image edge detection, and
the resulting image edge is employed for image enhance-
ment. It is believed that the proposed evolution-operator-
based method is one of the fastest schemes for image pro-
cessing. In particular, the proposed PDE-based method has
great potential for processing large-scale multidimensional
data and for data mining.

This paper is organized as follows. In Section 2, the the-
ory of local spectral evolution kernel (LSEK) is briefly re-
viewed. The frequency response of the LSEK is studied. The
efficiency of the LSEK is examined by 1D and 2D diffu-
sion processes that are exactly solvable. Numerical results are
compared with those obtained by using other standard meth-
ods. A LSEK-based quasinonlinear method is proposed for
image processing. Section 3 is devoted to the applications of
the proposed method. Computer experiments are conducted
to demonstrate the performance and efficiency of the pro-
posed single-step method for a number of image processing
tasks. This paper ends with a conclusion.

2. THEORY AND ALGORITHM

In this section, we give a brief review on the local spectral
method and its evolution kernels. Discrete Fourier analysis is
carried out to study the filter properties of the LSEK. Accu-
racy of the the kernel and efficiency of the scheme are exam-
ined. A new evolution-operator-based method is introduced
for image processing.

2.1. Local spectral evolution kernels

The discrete singular convolution (DSC) is a general frame-
work for constructing local spectral methods. It is an efficient
approach for the numerical realization of singular convolu-
tion

F(t) = (T ∗ η)(t) =
∫∞

−∞
T(t − x)η(x)dx, (19)

where η(x) is an element of the space of test functions, and
T(t − x) a singular kernel. Interesting examples include sin-
gular kernels of delta type and Hilbert (Able) type. The latter
plays an important role in the theory of analytic functions,
processing of analytical signals, theory of linear responses,
and Radon transform. The delta-type kernels are of the form

T(x) = δ(n)(x), n = 0, 1, 2, . . . , (20)

where δ(x) is the delta distribution. We focus on these singu-
lar kernels since they are key elements in the approximation
theory and the numerical solution of differential equations.
Because of their singular nature, their approximation is nec-
essary for numerical computations. A variety of candidates
are available for the approximation in the literature. Among
these examples, Shannon’s delta kernel is of particular inter-
est. It essentially gives rise to classic Fourier spectral meth-
ods. Some of local spectral kernels [54] are constructed by
the regularized Shannon kernel

δ(l)
h,σ

(
x − xk

) = dl

dxl
sin(π/h)

(
x − xk

)

(π/h)
(
x − xk

) exp

[−(x − xk
)2

2σ2

]

,

(21)

where h is the grid spacing. The delta distribution can also be
approximated by classical polynomials. Korevaar [66] pro-
posed a Hermite function approximation to the delta distri-
bution. Independently, Hoffman et al. [67] derived the same
approximation and an expression for its arbitrary derivatives

δ(l)
h,σ

(
x − xk

) = (−1)lh
2l/2σl+1

Mh∑

n=0

(
− 1

4

)n 1√
2πn!

h2n+l

(
x − xk√

2σ

)
,

l = 0, 1, 2, . . . ,
(22)

where the Hermite function hn is defined as

hn(x) = exp
(− x2)Hn(x). (23)

Here Hn(x) is the classic Hermite polynomial.
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In the DSC algorithm, a function and its derivatives can
be approximated by

g(l)(x) =
M∑

k=−M
δ(l)
h,σ

(
x − xk

)
g
(
xk
)
, l = 0, 1, 2, . . . , (24)

where 2M + 1 is the computational bandwidth, or effec-
tive kernel support. This approach has been extensively val-
idated by solving nonlinear PDEs [58, 61], vibration anal-
ysis [59, 60], Maxwell’s equations [55, 57], incompressible
and compressible Navier-Stokes equations [62, 63], and im-
age edge detection [56]. It is also used in this work for com-
puting derivatives.

What is crucial for the present work is an analytical inte-
grator of the PDEs given in (18). Their formal solution can
be expressed as

f (x, t) =
∫

dx′K(x, x′, t, t′) f (x′, t′), (25)

where K(x, x′, t, t′) is an evolution operator, defined as

K(x, x′, t, t′) =
(
x, exp

(∫ t

t′
Ldt

)
x′
)
. (26)

Here the standard inner product ( f , g) is defined as ( f , g) =∫
f ∗(x)g(x)dx. The operator can be converted into an alge-

braic expression by using a Fourier projection operator and
then carrying out the integration over the wavenumber. The
resulting kernel is diagonal in the position representation
K(x, x′, t, t′) = K(x− x′, t, t′) and can be cast in a local spec-
tral representation

Kh,σ(x, t, t′) = 1
h

∫

K(x − x′, t, t′)δ(0)
h,σ(x′)dx′. (27)

One therefore obtains [64]

Kh,σ(x, t, t′)

= h

σ
eC

t
t′
Mh/2∑

n=0

(
− 1

4

)n 1√
2πn!

(
σ

σtt′

)2n+1

h2n

(
x + Bt

t′√
2σtt′

)
,

(28)

where Xt
t′ =

∫ t
t′ X(s)ds, for X = A,B, and C. Here σtt′ is given

by

σtt′ =
√
σ2 + 2At

t′ . (29)

Expression (28) is called a local spectral evolution kernel
(LSEK). The case of A=0 can be recovered by setting σtt′ =σ .
Another simplification occurs when A,B, and C are indepen-
dent of time, that is, X(t) = X . Then, Xt

t′ = X(t − t′) = XΔt,
and Kh,σ(x, t, t′) = Kh,σ(x, t − t′) = Kh,σ(x,Δt).

For an initial function f (x, t′), the solution f (x, t) of
(18) at an arbitrary time t can be analytically given by

f (x, t) =
M∑

k=−M
Kh,σ

(
x − xk, t, t′

)
f
(
xk, t′

)
, (30)

or for a grid point xj ,

f
(
xj , t

) =
M∑

k=−M
Kh,σ(kh, t, t′) f

(
xj − kh, t′

)
. (31)

This implementation is the same as that for other local spec-
tral kernels, given in (24). Equation (31), together with (28),
implies that the evolution operation has been converted into
an algebraic operation and the local spectral solution (31) to
PDEs given in (18) is analytical. This approach is therefore
free of stability constraint and is in principle of spectral ac-
curacy when the support of the stencil is sufficiently large.

For image and data analysis, it is necessary to deal with
higher dimensions. If the operator in (18) is of q-dimension-
al,

∂

∂t
f (x1, . . . , xi, . . . , xq, t)

=
xq∏

xi=x1

[
Ai(t)

∂2

∂xi2
+ Bi(t)

∂

∂xi
+ Ci(t)

]

× f
(
x1, . . . , xi, . . . , xq, t

)
,

(32)

its solution on an arbitrary grid point (x1 j1, . . . , xiji, . . . ,
xqjq, t) can easily be constructed by tensor product

f
(
x1 j1, . . . , xiji, . . . , xqjq, t

)

=
xq∏

xi=x1

[ Mi∑

kxi=−Mi

Khi,σi

(
kxihi, t, t′

)]

× f
(
x1 j1−kx1h1, . . . , xiji−kxihi, . . . , xqjq−kxqhq, t′

)
,

(33)

where definitions of quantities with subscripts are self-evi-
dent.

The local spectral method also provides a freedom to
choose a desired level of accuracy so that the computing time
is reduced. This can be achieved by an appropriate choice of
Mh, σ , and M. Both forward and backward time evolutions
can be resolved by using the LSEK as long as Re(σtt′) ≥ 0 for
a given t. A detailed analysis and validation of the LSEK in-
cluding an efficient algorithm for solving complex nonlinear
PDEs via time splitting formulation are out of the scope of
the present work and have been accounted elsewhere [64].

2.2. Filter properties

To achieve a better understanding of the LSEK, we study its
filter properties by discrete Fourier analysis. Such a study al-
lows us to optimally choose the DSC parameters, that is, the
computational bandwidth Mh and the scaled Gaussian win-
dow size r = σ/h. The Fourier analysis is a classical technique
for characterizing the Fourier resolution of an interpolation
or differentiation scheme applied to a class of compactly sup-
ported periodic functions and for examining the frequency
response of a filter.

Note that if the function f (x, t) in (30) is regarded as
a two-parameter family of signal, the convolution kernel
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Figure 1: The LSEK in the coordinate domain with A(t) = B(t) =
C(t) = 0.
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Figure 2: The frequency responses of the LSEK with B(t) = C(t) =
0, M = 64, and Mh = 88. The solid lines from outside to inner are
for At

t′ = 0, 0.001σ2, 0.01σ2, and 0.1σ2.

Kh,σ(x−xk, t, t′) is a linear time-invariant system and is prac-
tically used as a finite impulse response (FIR) filter. This filter
is stable and inevitable for C < ∞. On the one hand, when
B = C = 0 and A(t) is a constant, (18) reduces to the heat
equation. As the LESK provides analytical solution to the
heat equation, one might assume that the analytic integrator
is a Gaussian filter as the action of heat equation is known
to be equivalent to the Gaussian filter [2]. However, this is
not true. In fact, it looks like a wavelet filter in the coordinate
domain, see Figure 1. Mathematically, it is called a kernel of
Dirichlet type in contrast to the kernel of positive type, for
example, a Gaussian kernel. On the other hand, when B = 0,
the kernel Kh,σ(x, t, t′) is obviously symmetric and its Fourier
response is of linear phase and real, since it contains only
even terms of the Hermite functions. As it is also the evo-
lution kernel for the parabolic PDE (when A 	= 0), it must
be a lowpass filter in general for t > t′ as shown Figure 2.
It is noted that the LSEK lowpass is almost ideal for small t,
and appropriate Mh and r values. In general, large Mh and r
values lead to a better approximation to the ideal lowpass fil-
ter. Nevertheless, since they are constructed from polynomial

1
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π π
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Figure 3: The frequency response of the LSEK with A(t) = B(t) =
C(t) = 0, M = 6, and Mh = 88.

approximation, they are Chebyshev type of filters as illus-
trated with appropriate Mh and r values, see Figure 3. More-
over, for a given set of other parameters, when t− t′ is getting
larger, that is, long time evolution, the LSEK filter response
becomes more and more focused in the low-frequency part,
corresponding to large amount of diffusion.

In general, the parameter B gives rise to a translation in
the coordinate, which leads to an extra phase factor in the fre-
quency response, see Figure 4. Obviously, in signal analysis,
it is the time-shift factor that is useful for the circuit design.
In other words, the drafting term B(t)(∂/∂x) in (18) is a time-
shift operator from the point view of signal processing. Since
B(t) is a function of time, it in fact can be used for nonlinear
time shifting. As shown in Figure 5, the parameter C pro-
vides an overall scaling factor (either exponential growth or
decay) to the amplitude of the signal, which can be useful in
practical applications.

2.3. Numerical test

We illustrate the proposed local spectral method for the dif-
fusion equation in this section. The diffusion equation is a
special case of the class of PDEs of (18) (B = 0 and C = 0).
The most important fact is that the diffusion equation has ex-
tensive applications in image processing. The accuracy of the
proposed local spectral method is obtained by comparing its
results with exact solutions. Two advantages of the present
local spectral approach (accurate and fast) have been fully
demonstrated since both forward and backward time evolu-
tions can be resolved by using the LSEK as long as Re(σtt′) ≥ 0
for a given t. When At

t′ is positive in (29), it is obviously a
forward propagation process. In this case, the numerical so-
lution of the forward diffusion equation at any time can be
obtained by (31) in only one time step. However, when time
At
t′ is negative, the problem becomes a backward propagating

process, and we still can use (31) to get the solution as long
as we ensure Re(σtt′) ≥ 0. However, the backward diffusion
is an unsteady problem. In order to obtain a reliable numer-
ical solution, we have to terminate the backward diffusion
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Figure 4: The frequency responses of the LSEK with M = 64, Mh = 88, A(t) = C(t) = 0, and different Bt
t′ : (a)–(c) Bt

t′ = 0; (d)–(f) Bt
t′ = h;

(g)–(i) Bt
t′ = 2h.

in a limited time. As was mentioned earlier, the accuracy of
the proposed local spectral method is controllable by adjust-
ing its support parameter M and the Hermite parameters Mh

and σ . In this numerical example, we choose the Hermite pa-
rameters and the computational bandwidth as Mh = 128,
σ = 3.7Δ, and M = 45 to illustrate the spectral order of
accuracy of the method. Unless stated otherwise, the above
set of parameters is used in this section. In Example 2 (2D
diffusion process), we will compare the performance of the
present local spectral method with that of Fourier spectral
method which is realized by using the fast Fourier transfor-
mation (FFT).

Example 1. We consider a one-dimensional linear diffusion
process given by

∂ f (x, t)
∂t

= α
∂2 f (x, t)

∂x2
, (34)

where α is the diffusion coefficient. With an initial delta-
function distribution localized at x0, the analytic solution is

f (x, t) =
√

1
4απ

(
t − t0

) e−(x−x0)2/[4α(t−t0)]. (35)

The computation is conducted using a sufficiently large in-
terval [−10, 10] of coordinate space to ensure that boundary
reflection is negligible. Fifty grid points are used for this
interval. The diffusion coefficient α is set to be 0.5 in all com-
putations. Since it is difficult to accurately represent a delta
function on a grid as the initial condition, we choose the
initial value as the Gaussian of (34) at t = 1.0 for the for-
ward diffusion process and the Gaussian of (34) at t = 2.0
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Figure 6: The numerical solutions of the 1D diffusion equation.
The centerlines in the descending order are at time t = 1.0, 3.0, 5.0,
7.0, and 9.0.

as the initial condition for the backward diffusion process.
The numerical solutions at time t = 1.0, 3.0, 5.0, 7.0, and
9.0 are given in Figure 6. Two kinds of numerical error mea-
sures, that is, L∞ and L2 are used to evaluate the quality of
the present local spectral method. The computational errors
are listed in Table 1. It can be observed from Table 1 that the
present local spectral method gives highly accurate numeri-
cal results. On the other hand, it can be seen clearly that the
results of the backward diffusion are not as good as those
of the forward diffusion. The loss of accuracy is due to the
fact that the backward diffusion is itself an unsteady pro-

cess. Moreover, since no time evolution scheme is needed in
the present method, there is no accumulation of time dis-
cretization error. This property guarantees the accuracy and
the speed of the present method and shows great advantage
over many other numerical algorithms.

Example 2. We consider a two-dimensional linear diffusion
equation

∂I(x, y, t)
∂t

= a2
[
∂2I(x, y, t)

∂x2
+
∂2I(x, y, t)

∂y2

]
. (36)

It is a good test problem because it admits an exact solution
of the form

I(x, y, t) = 1
4a2πt

e−(x2+y2)/4a2t , (37)

where a is a positive parameter and we will use a = 0.7
in this test. To compare with the FFT method, we impose
periodic boundary conditions in both x- and y-directions.
The computation domain is taken to be [0, 10]× [0, 10] with
equal spatial discretization. Although the grid can be set to
be any integer values for the LSEK method, for the purpose
of comparing with the FFT method in which the grid is re-
quired to be the power of 2, we choose Nx = Ny = 32 in
our computation. The forward diffusion is initialized to be a
Gaussian wave at t = 0.1,

I0(x, y) = 1
4a2πt

e−[(x−x0)2+(y−y0)2]/4a2t , (38)

where the point (x0, y0) is the center of the 2D square do-
main. The detailed LSEK method used for the 2D problem is
given in (33). Our interest is to explore the efficiency of the
present LS method. Therefore, we will not only compare the
numerical errors of the LSEK method and the FFT method
but also the computing time of both methods. They are given
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in Table 2. It is clear from Table 2 that the present LSEK
method is as accurate and fast as the FFT method when they
are solving the diffusion equations.

By comparing the present local spectral method and the
Fourier spectral method, we reach conclusions which are
summarized as follows.

(i) The accuracy of the proposed LSEK method is con-
trolled by its computational bandwidth M, Hermite parame-
tersMh and σ . Under choice ofM=45,Mh=128, and σ=3.7Δ,
the LS method can provide the same level of accuracy as that
of Fourier spectral method.

(ii) The global nature of the Fourier spectral method
makes it difficult for practical applications to problems of
complicated boundary condition and complex geometry.
However, the present LSEK is a local method which can be
used for treating complicated boundary conditions and ge-
ometries.

(iii) For the Fourier spectral method, the number of grid
points is required to be the power of 2, but there is no such a
limitation for our LS method.

(iv) The present LSEK method transforms the diffusion
equation into algebraic calculations. This implies that the
LSEK method can speed up the computation dramatically,
and thereby reduce the computational cost. Specifically, the
CPU cost of the LSEK scales as O(MN), where M and N
are half of computational bandwidth and the number of
grid points to deal with. However, asymptotically, the LSEK
method requires less CPU time than the Fourier pseudospec-
tral method does as the latter scales as O(N logN).

In practical applications, especially in image process-
ing, the aforementioned precision is entirely unnecessary. A
three-percent error does not produce much difference in vi-
sual perception. Therefore, in the following image experi-
ments, we choose Mh = 36, σ = 1.7Δ, and M = 8. In fact,
even less costing parameters can be used for certain tasks in
image processing, such as image deblurring and denoising
where the image quality is very low to start with.

2.4. Adaptation of anisotropy

Obviously, the Perona-Malik type of anisotropic diffusion
equations cannot be solved directly with the LSEK in a sin-
gle step, albeit the local spectral method given in (24) can be
used to solve these equations iteratively. Fortunately, a close
examination on the solution scheme, (31) or (33), and the
LSEK (28), one realizes that the solution scheme is of collo-
cation type and the kernel allows a localized modification of
coefficients A,B, and C, that is,

A −→ A
(|∇I|), B −→ B

(|∇I|), C −→ C
(|∇I|).

(39)

This flexibility of selecting local coefficients endows us with a
new single-step evolution-operator-based method for image
processing and data analysis.

In Perona-Malik equation (7), the break up of the oper-
ator leads to a gradient controlled diffusion term and a gra-
dient controlled drafting term. The local strength of the both

Table 1: Errors of the solutions for the 1D diffusion equation.

Forward diffusion Backward diffusion

Time L2 L∞ Time L2 L∞
2.0 7.17E-17 2.22E-16 1.8 8.25E-13 6.50E-13

3.0 3.72E-17 8.33E-17 1.6 2.32E-11 1.01E-10

4.0 3.80E-17 1.39E-16 1.4 1.19E-09 4.28E-09

5.0 9.53E-16 6.94E-17 1.2 1.74E-07 5.90E-07

Table 2: Errors of the solutions and the CPU time for the 2D diffu-
sion equation.

FFT LSEK

Time L2 L∞ CPU time L2 L∞ CPU time

0.5 1.31E-7 2.16E-7 0.0156 1.08E-7 1.70E-7 0.0156

1.0 5.10E-7 4.69E-7 0.0156 7.08E-7 4.69E-7 0.0156

1.5 2.84E-5 2.20E-5 0.0156 3.81E-5 2.20E-5 0.0156

2.0 2.08E-4 1.38E-4 0.0156 2.70E-4 1.38E-4 0.0156

terms can be easily computed and incorporated in the LSEK
expression.

Since the diffusion coefficients computed from Perona-
Malik type of equations may vary from point to point, possi-
ble N2 sets of LSEK weights may be computed. This requires
much computation if N is about 512. On the other hand,
since image resolution is normally limited to 8 bits, it is obvi-
ously unnecessary to use more than 256 sets of LSEK weights.
We therefore classify the diffusion coefficients into a total of
Nc groups. For each group, we calculate a set of LSEK weights
according to the mean value of the group. In most practical
applications, taking Nc ∼ 20 is enough and it costs less than
1 second to compute these weights. In the above argument,
we have assumed that the drafting coefficient behaves simi-
lar to the diffusion coefficient at each point. If this is not the
case, the discussed classification method can be easily mod-
ified. Thus, the basic procedure for the proposed evolution-
operator-based image processing method is the following.

(i) Compute local coefficients A(|∇I|), B(|∇I|) and
C(|∇I|) from an image function I(x, y) and classify
the weights into a total of Nc groups.

(ii) For each given group of diffusion coefficients, the
group’s mean value is taken as the diffusion coefficient,
labeled as Ac and Bc. Then compute a set of M+1 LSEK
coefficients. Here we assume a uniform grid in both x-
and y-directions and a common stencil size of 2M + 1.
Due to the symmetry of the LSEK, only M + 1 coeffi-
cients are independent.

(iii) For a pixel Ic(xj , yi, t), whose diffusion coefficients are
labeled as Ac and Bc, its value at arbitrary time t can be
updated as

Ic
(
xj , yi, t

) =
M∑

kx=−M

M∑

ky=−M
Kh,σ ,Ac ,Bc

(
kxh, t

)
Kh,σ ,Ac ,Bc

(
kyh, t

)

× I
(
xj − kxh, yi − kyh

)
,
(40)
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where Kh,σ ,Ac ,Bc(kxh, t) is obtained from (28) by setting
t′ = 0, At

t′ = Act, and Bt
t′ = Bct.

Although the proposed method has its root in nonlin-
ear PDEs, it does not exactly solve the anisotropic diffu-
sion equation. Instead, it is constructed by the pointwise
adaptation of anisotropy to the evolution kernel for the
isotropic diffusion equation. Its major advantages are its
single-step operation, freeness of numerical instability, readi-
ness for multidimensional problems. Moreover, by appropri-
ately choosing B and C, systematic time shift and amplitude
scaling can be easily accomplished in a single step.

3. APPLICATIONS

In this section, we apply the evolution-operator-based single-
step approach for image deblurring, denoising, image edge
detection, and image enhancement. The performance of the
proposed method is illustrated by a large number of stan-
dard test images and is compared with that of other existing
methods.

3.1. Image deblurring

Image blur refers to serious degradation to image qualities by
either the environment of an imaging object, or the process
of imaging, or the processing of an image [1]. Backgrounds
of imaging objects, such as fog, air pollution, texture to a
fingerprint residual and illumination, are common environ-
mental sources of image blur. Motions of the imaging ob-
ject and/or camera, or out-of-focus lens generate blur in the
process of imaging. Jiang and Wang [68, 69] discussed image
blurring due to reconstruction techniques. Very often, image
processing may lead to blur during a variety of mathemati-
cal operations, such as Gaussian convolution, interpolation,
or image registration. Deblurring is a basic image processing
task and the subject is so extensively studied that it is virtu-
ally impossible to give a comprehensive review to include all
important contributions and developments in the literature.

Essentially, deblurring methods can be classified as lin-
ear and nonlinear, global or local, time-dependent or time-
independent, a priori knowledge based or blind, and so forth.
Linear filters [70–73] do not make use of local information
of an image under processing, and are usually simple and low
cost. Many linear filers, such as Wiener filter, Hanning filter,
and Fourier filtering, work effectively when there is a priori
knowledge about the source of the blur. Moreover, linear fil-
ters are often utilized to obtain initial information for other
nonlinear filters. Nonlinear filters make use of the local in-
formation of an image to gain a better effect of deblurring.
Some nonlinear filters assume partially a priori knowledge of
an image, such as Kalman filter and Lucy-Richardson algo-
rithm. The former makes optimal use of imprecise data on a
linear (or nearly linear) system with Gaussian errors to con-
tinuously update the best estimate of system’s current state,
while the latter maximizes the likelihood that the resulting
image is an instance of the blurred image, assuming the Pois-
son noise statistics. Many blind deblurring algorithms can be
used effectively when no information about the source or sta-

tus of the distortion (blurring and noise) is known. They uti-
lize the local information or Fourier spectrum of an image
intensively and achieve the goal of deblurring by iterations.
Obviously, Perona-Malik type of PDE-based image deblur-
ring algorithms are time-dependent, nonlinear, blind filters.
Wang et al. proposed an efficient blind deblurring algorithm
for spiral computed tomography (CT) images [74]. While
wavelet transform is a linear algorithm in nature [75], its ap-
plication to image processing can be made nonlinear by ap-
propriately incorporating image information into the selec-
tion of truncation parameters [76–79]. Recently, some time-
independent total-variation (TV-) based regularization func-
tionals have attracted much attention because of their ability
of recovering image edges during deblurring, see Rudin et al.
[14], Li and Santosa [80], Dobson and Vogel [81], and Chan
et al. [82]. These methods are often formulated in terms of
Euler-Lagrange equations and are associated with ill-posed
inverse problems. Ideally, TV-based methods should work as
blind algorithms. Nevertheless, the main difficulty associated
with TV methods, as indicated by many researchers, is the
determination of the unknown regularization parameter(s),
which balances the fidelity and smoothness of a TV solution.
Consequently, these methods are most efficient when some a
priori knowledge about the image is given.

A common used degradation process is often presented
in terms of a blur operation and additive noise

I0 = RI + η, (41)

where η stands for a white additive Gaussian noise and where
R is a linear operator representing the blur (usually a convo-
lution). Given degradation version of image I0, the restora-
tion problem is then to obtain I knowing (41). In this study,
we will concern ourselves only with two aspects of image
restoration which are deblurring and denoising.

We also make use of the sharpening property of the back-
ward diffusion to restore a blurry image. The effect of noise
amplification (an inherent byproduct of backward diffusion
process) will be minimized by terminating the diffusion pro-
cess in a limited time or by choosing an appropriate diffusion
coefficient. We consider the anisotropic diffusion equations,

∂I

∂t
= A

(|Gσ ∗∇I|, t
)∇2I ,

I|t=0 = I0,

∂nI|x∈∂Ω = 0,

(42)

as a model. Here n is a unit vector, outward normal to the
boundary ∂Ω. The diffusion coefficient A is a function of
the smoothed gradient magnitude s = Gσ ∗ ∇I evaluated
at t = 0. We further create the LSEK analogy of (42), which
is given by (40) with B = C = 0. Here, we design a smoothed
gradient-magnitude-dependent diffusion coefficient for de-
blurring:

A(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
√

1 + (s/ε)2
− 0.18
√

1 + (s/k)2
, s ≥ 2,

1
√

1 + (2/ε)2
− 0.18
√

1 + (2/k)2
, otherwise,

(43)
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Figure 7: Diffusion coefficient A(s) plotted as a function of the
smoothed gradient magnitude.

where ε is a small strictly positive real number for avoiding
zero denominator and k is a threshold parameter like that in
the Peronal-Malik model. Here k can be a constant thresh-
old or be adjusted locally by gradient. In the latter case, the
parameter k varies gradually with the image, and edge sharp-
ening is accomplished by different thresholds in different lo-
cations. As an illustration we present in Figure 7 a plot of the
suggested diffusion coefficient A with k = 80. It is seen that
the diffusion coefficient considered in this work is strictly
increasing and negative. Negative diffusion coefficient is for
edge sharpening and increasing tendency ensures less back-
ward diffusion for large gradient magnitudes.

We use the parrot image for our demonstration. The
blurry parrot image is obtained by convolving the initial par-
rot image with a Gaussian kernel (σ = 2). As for another
Gaussian kernel used for the calculation of the smoothed
gradient Gσ ∗ ∇I of original image, we set σ = 3. We stop
the diffusion process at time t = 1.0. Figure 8 shows the re-
sults of deblurring. For a more clear observation, we zoomed
Figure 8 out near one parrot’s head and the zoomed images
are shown in Figure 9. We found that edges at different lo-
cations have been improved. For example, the edges near
parrot’s beak and those around the eye are well sharpened.
Figure 10 shows the deblurring process for a building. The
blurring and deblurring processes are similar to those de-
scribed in the parrot image. In this case, we are interested in
the features that characterize the architecture, such as edges
and lines.

In fact, one can interpret the above deblurring process as
an adaptive resolution of the linear diffusion equation which
is conceptually different from the conventional nonlinear dif-
fusion filtering in which the nonlinearity is spatial.

3.2. Image denoising

Noise is one of the most common sources of image degra-
dation [83]. It is often referred to as the rapid changes over
spatial extension in image intensities or color plan. Either
imaging acquisition process or naturally occurring phenom-
ena can lead to noise contamination. Typically, noise is as-
sumed to be additive and satisfies a mathematical model,
such as the Poisson, or the Gaussian, or Laplacian. Some

noise is multiplicative, for example, the speckle noise. The
image denoising problem refers to the process of recovering
an image contaminated by noise [84] and is one of the most
elementary operations in image processing.

The earlier algorithms include (linear) spatial filtering
approach [73] and frequency cut-off filters in the Fourier do-
main, which are first motivated by the primitive ideas from
signal processing. These filters reduce the noise by remov-
ing the high-frequency components. However, they also blur
images. Stochastic modeling [70–72] originated from esti-
mation theory has also been introduced for noise remov-
ing. In the past two decades, a number of new techniques
have been introduced to improve the quality of image de-
noising. Statistical approaches such as maximum-likelihood
estimation and adaptive (Wiener) filters are developed. Local
adaptive filters are combined with impulse removal filters in
the transform domain to remove not only white and mixed
noise, but also their mixtures [85]. Wavelet theory [75] has
been used for denoising by many researchers [78, 86–91].
The essential idea in wavelet schemes is to decompose the
noisy image into a number of frequency bands, and re-
move the noise in appropriate frequency bands. Wavelet
approaches usually perform well with a viable strategy to
discriminate noise from image in each wavelet subdomain.
PDE-based denoising methods were proposed to preserve
image edges during the process of noise reduction as briefly
reviewed in the introduction.

If impressive results are the main reasons for using non-
linear diffusion filtering in image processing, poor efficien-
cy is the main reason for less widely spread application
of nonlinear diffusion filtering in industrial codes. Finite-
difference schemes are extensively used to discretize nonlin-
ear anisotropic diffusion equations and they make the whole
filtering procedure quite time consuming. We resolve this
problem by using the LSEK. The efficiency of the proposed
LSEK for diffusion equations has been already validated in
Section 2. In the present work, we explore the performance
of the LSEK image denoising. We take two different LSEK
approaches.

In our first denoising approach, we choose a time-
independent diffusion coefficient of the Gaussian suggested
by Perona and Malik:

d
(|∇u|) = exp

[
− |∇u|

2

2σ2

]
, (44)

where the variance σ is based on a local statistical estimate
of (8). By using this variance, no additional kernel smooth-
ing is needed. The success of this approach has been fully
demonstrated in [20]. In this study, we used the proposed
evolution-operator-based single-step method to obtain a fast
denoising process. A Gaussian noise contaminated Lena im-
age has been used to test the performance. It is found that
the PSNR of the noisy Lena image is 21.03 db. After de-
noising, the quality of the Lena image has been improved
and the resulting PSNR is 29.81 db. Both noisy and denoised
Lena images were presented in Figure 11. We also examine
our scheme for an MRI image of brain. An improvement of
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(a) (b) (c)

Figure 8: Deblurring process of the parrot image: (a) original parrot image; (b) Gaussian blurred image; (c) parrot image after deblurring.

(a) (b) (c)

Figure 9: Zoomed parrot images for deblurring process: (a) original; (b) blurred; (c) processed.

(a) (b)

Figure 10: Deblurring process of the Columbia image: (a) Gaussian blurred image; (b) Columbia image after deblurring.

6.30 db in the PSNR is obtained for this medical image, see
Figure 12.

In the second approach, we use (40) directly for image
denoising in a single step. From (29) and (28), it is seen that
the diffusion coefficient At

t′ =
∫ t
t′ A(τ)dτ controls the local

diffusion. Therefore, one can tailor At
t′ for a given purpose.

In this work, we propose the following gradient-dependent

At
0:

At
0(s, t) = 10

β

{
tan−1 [s(ε + βt)

]− tan−1(εs)
}

, (45)

where s = |Gσ ∗ ∇I| is the smoothed gradient magnitude,
β and ε are two parameters controlling the tendency of At

0.
We fix β = 16 and vary ε between 0 and 0.1. Figure 13 shows
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(a) (b)

Figure 11: Denoising process for the Lena image: (a) noisy Lena image with PSNR = 21.03; (b) restored Lena image with PSNR = 29.81.

(a) (b)

Figure 12: Denoising process for the brain image: (a) noisy brain image with PSNR = 18.79; (b) restored brain image with PSNR = 25.18.

the change of At
0 with sets of ε = 0, 0.002, 0.01, and 0.1 at the

time t = 100. Obviously, ε = 0 almost corresponds to the
linear diffusion process. Therefore, we set ε to be larger than
zero in order to preserve edges of images. In our test, we take
ε = 0.01. With β and ε fixed, we plot the relation between At

0

and the time t in Figure 14. One can observe that At
0 basically

does not change any more as the time t is large enough. This
implies that the denoising process is stable with respect to the
stopping time. Thus, the stopping time can be chosen to be
quite large without worrying about possible oversmoothing.

We classify At
0 by equally dividing the values of At

0 into
Nc = 20 groups. We therefore generate 20 sets of LSEK coef-
ficients accordingly. We still use the last two noisy images for
our denoising demonstration, see Figure 15. The PSNR for
the restored Lena image is 29.41 db and that for the restored

brain image is 25.22 db. It is can be seen that the performance
of this denoising procedure with a time-dependent diffusion
coefficient is almost the same as that of the time-independent
one. As for the stopping time, we can set it to be 5, 10, or a
larger number, it is not very sensitive.

Obviously, more efficient diffusion coefficients can be de-
signed to remove blur and noise from images, but they are
beyond the scope of the present work. What we want to con-
vey to the reader is just an efficient single-step procedure for
image deblurring and denoising.

3.3. Image edge detection

Edges characterize object boundaries and are therefore cru-
cial for image segmentation and registration, and for the
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Figure 13: At
0 plotted as a function of the smoothed gradient mag-

nitude with ε = 0, 0.002, 0.01, 0.1 (from top to bottom); β = 16;
t = 100.
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Figure 14: At
0 plotted as a function of the smoothed gradient mag-

nitude at the times t = 0.001, t = 0.01, t = 0.1, and t = 100 (from
bottom to top); β = 16; ε = 0.01.

identification of objects in scenes. In recent years, consid-
erable research has been carried out in the development
and application of efficient algorithms for the detection of
the image edges. A well-known approach in the edge detec-
tion is to associate edges with zero crossing of second-order
derivative. The resulting operator in use is called Laplacian
of Gaussian (LoG) operator [92]. An alternative approach is
the method of curve fitting [93, 94], in which an approxi-
mated function is built based on the least-square method.
Therefore, a derivative on the fitting curve yields the approx-
imate differentiation for each pixel directly. Compared with
the finite-difference method, curve fitting approach results in
better performance in a noisy environment. They are, how-
ever, computationally more expensive. Recently, Canny [95]
has formulated edge detection as an optimization problem
and defined an optimal filter which can be efficiently approx-
imated by the first derivative of the Gaussian function. With

(a)

(b)

Figure 15: Time-dependent denoising process: (a) restored Lena
image with PSNR = 29.41. (b) restored brain image with PSNR =
25.22.

a recursive procedure [96], the Canny detector provided an
efficient way for image noise filtering and edge detection.
Other edges detection methods include differentiation-based
methods that use the logarithmic image processing (LIP)
models [97], contrast-based methods [98], and relaxation la-
beling techniques [99]. In fact, these delicate techniques can
achieve better performance in one way or another for com-
mon tasks. However, for images with large amount of texture,
these traditional edge detection techniques are no longer re-
liable because of severe edge distortion. The latter is due to
the wrong prediction of high-frequency edge components by
low-accuracy methods. Most recently, Wei and Jia [35] pro-
posed a novel synchronization-based realistic edge detection
scheme that has demonstrated a success in detecting edges
of high-texture images. In this scheme, the residual of syn-
chronization, defined by the difference in the synchroniza-
tion of two dynamic systems, gives rise to image edges as
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Table 3: CPU-time comparison between the forward Euler scheme
and the LSEK. Running the linear diffusion equation with A = 1 to
time t = 20.

Scheme τ CPU time(s) Rel. l2 error

Forward Euler 0.2 5.01 0.78%

2nd-order Runge-Kutta 0.2 11.2 0.76%

LSEK 20 0.88 0.15%

if obtained by a highpass filter. However, solving two dy-
namic systems makes it computationally expensive. In this
work, we propose a simplified version of this synchroniza-
tion scheme.

The essential idea of this new edge detector is quite
simple. A smoothed version (SV) of the original image I
is obtained by modifying the forward nonlinear diffusion
operator (42). In such a nonlinear operator, the diffusion co-
efficient at image edges is significantly large, with contrast to
the original use of nonlinear diffusion operators. As a result,
image values near the edges are effectively suppressed. This
smoothing operation, from the point of view of image pro-
cessing, is a lowpass filter. Whereas, image edge detection
should be a highpass filtering process. Therefore, edge detec-
tion version (EDV) denoted by IEDV(x, y) is then expressed as
the difference between the original image and the smoothed
image:

IEDV(x, y) = C1I(x, y)− C2ISV(x, y). (46)

It is noted that image edges are effectively emphasized in
IEDV(x, y) due to the edge suppressive nonlinear diffusion
operator. Here C1 and C2 are two constants, either 1 or −1.
We emphasize that the sign of C1 and C2 must be the same.
If the edge of the object has a white color on a black back-
ground, we take C1 = C2 = 1. On the contrary, if the edge
of the object has a black color on a white background, we
choose C1 = C2 = −1. For instance, the tiger image is com-
posed of the black object (a tiger) on the white background,
C1 and C2 are, therefore, set to be−1. While the pinecone im-
age is composed of the white object on the black background,
we take C1 = C2 = 1.

Computational cost is very low in the present approach
since only a single step is needed in running the nonlin-
ear diffusion equation with our LSEK, see Table 3. Never-
theless, one can further speed up the edge detection by us-
ing a linear diffusion operator, for example, running the for-
ward diffusion (42) till t = 3 by our LSEK, with a constant
diffusion coefficient A = 1. In order to assess the compu-
tational complexity of the LSEK method, we compared in
Table 4 the number of basic operations for four different
methods in a single time step. These methods include the
adaptive resolution scheme [41], the Perona-Malik nonlinear
diffusion equation [9] resolved by the conventional explicit
scheme, the AOS scheme [18] without the step of regular-
ization, the LSEK for a linear diffusion process. Table 4 pro-
vides a quantitative analysis of computational complexity for
these schemes. Multiplication or division and the addition or
subtraction are calculated separately, as given in [18, 41]. In

Table 4, N denotes the number of pixels to treat, m is the di-
mension of the problem considered, and W is the half of the
computational bandwidth. Note that the first two methods
require multiple time steps, while the last two methods can
be integrated in a single time step. However, the reliability
of the implicit AOS scheme for a large time step needs to be
validated.

We next discuss an efficient edge extraction scheme. As
it is well known, thresholding is one of the most common
approaches. Usually, thresholding may be viewed as an oper-
ation that tests a function T of the form

T = T
[
x, y, p(x, y), IEDV(x, y)

]
, (47)

where p(x, y) denotes some local property of the point. For-
tunately, experience has shown that the threshold T is con-
nected to the estimated variance which is a measure of con-
trast. The choice of variance can be

σ2 = 1
2L + 1

1
2K + 1

i+K∑

i′=i−K

j+L∑

j′= j−L

(
IEDV(i′, j′)− IEDVi, j

)2
,

(48)

where σ2 denotes the local variance. Here, IEDVi, j represents
local average and is defined as

IEDVi, j =
1

2L + 1
1

2K + 1

i+K∑

i′=i−K

j+L∑

j′= j−L
IEDV(i′, j′), (49)

where K and L are the support of subimage in x- and y-
directions.

The edge detector is susceptible to streaking if it uses
only a single threshold. Streaking is the breaking up of an
edge contour caused by fluctuation around the value of the
threshold. Therefore, a more effective threshold scheme uses
two thresholds Thigh and Tlow with Thigh ≈ 2Tlow. In this
case, streaking occurs only when it fluctuates above the high
threshold and below the low threshold. Therefore, the prob-
ability of streaking is greatly reduced. The probability of iso-
lated false edge points is also reduced because the strength of
such points must be above the high threshold. We note that if
the threshold Tlow is too small, there will be some false edges.
Similarly, if Thigh is too large, some portion of real contour
may be missing. In our scheme, the ratio of the variance of
IEDV to that of original image is used to determine Tlow, from
which Thigh can be fixed, that is,

Tlow
.= σEDI

σI
σEDI,

Thigh ≈ 2Tlow,
(50)

where σEDI and σI represent the variance of the edge detec-
tion image and that of the original image, respectively. In ad-
dition, nonmaximum suppression is performed to thin the
edges in the process of edge extraction. For more detailed de-
scription, the reader is referred to [95].

To demonstrate the capabilities of the edge detector de-
scribed above, we carry out experiments on various syn-
thetic and real images, and compare the results with the out-
put of four other detectors: Sobel detector, Prewitt detector,
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Table 4: Main operations for one step of the m-dimensional Perona-Malik, AOS, λ-resolution, and the LSEK. (M/D: multiplications and
divisions; A/S: additions and subtractions; N : the number of pixels; m: the dimensions of the problem considered; W : the half of the compu-
tational bandwidth.)

Scheme Operation Calculate |∇I|2 c(|∇I|) Diffusion step Total

P-M
M/D 2mN N (2m + 2)N (4m + 3)N

A/S (2m− 1)N — 6mN (8m− 1)N

AOS
M/D 2mN — 6mN 8mN

A/S (2m− 1)N — 6mN (8m− 1)N

λ-resolution
M/D 2mN N 6Π (2m + 7)N

A/S (2m− 1)N — (2m + 2)N (4m + 1)N

LSEK
M/D — — (2W + 1)mN (2W + 1)mN

A/S — — (2W + 1)mN (2W + 1)mN

Canny detector, and anisotropic diffusion scheme (Perona-
Malik model).

A variety of images are employed for the edge detection.
We first consider the Barbara image, which is a challenging
test. Figures 16(a), 16(b), 16(c), 16(d), 16(e), and 16(f) show
the Barbara image and edges of the Barbara image detected
by the Sobel detector, the Prewitt detector, the Canny detec-
tor, the anisotropic diffusion scheme, and the present LSEK
edge detection method. It is seen that the present LSEK edge
detection method is the best. Facial edges are accurately ex-
tracted and image texture is clearly detected. However, none
of the other four detectors gives correct edge response to the
textured part of the image. The regularity of the thin lines in
the original image has been entirely distorted.

We next consider a few standard texture images (baboon,
tiger, Goldhill, bridge, boats, and pinecone), see Figure 17.
In general, the processing of texture images is a difficult
task for most existing edge detection methods because the
involvement of high-frequency components. For example,
most existing methods are not able to distinguish baboon’s
bristles from the background. Moreover, it is a challenge to
fully detect the thin ropes on the boats by many other exist-
ing methods. Similar fine texture, such as that in the grass
and trees can be found in other four images. The ability of
resolving such details is crucial to edge detection and pat-
tern recognition. It is seen from Figure 18 that the proposed
LSEK does an excellent job in the edge detection of these
high-texture images. The detected image edges provide even
clearer features than the original images do. For example, the
pattern on the house roof and window in Goldhill image is
not very clear in the original images. This feature is visible
from the detected edges.

Having validated the proposed method for the edge de-
tection of texture images, we finally apply it to a group of
medical images as shown in Figure 19. The edge detection
of X-ray images can be difficult because of small gradient in
image resulted from small variation in X-ray attenuation, see
Lung01, Lung02, and Lung04. Large amount of vessels can
lead to high-texture images as shown in Lung03. Figure 20
indicates that the proposed method is able to reveal a variety
of features in these images.

Based on the above discussion, it is evident that the
present LSEK edge detection method is one of the best edge

detectors in performance. Moreover, the present method
requires only a single-time-step operation. It is these two
advantages, high efficiency and excellent performance, that
qualify the proposed LSEK edge detection method as one of
the best approaches for image edge detection.

3.4. Digital image enhancement

In general, image enhancement is a process designed to in-
crease the usefulness of the image. When images are en-
hanced for human viewers, the objective is to improve per-
ceptual aspects, including image quality, intelligibility, or vi-
sual appearance. One important class of image enhancement
is to modify the contrast and/or dynamic range of the image.
Another class of image enhancement is to reduce the degra-
dation of the image. In this work, we focus on the former
class of issues, that is, to improve the contrast of mammo-
grams.

A large number of investigations have been made to en-
hance mammography feature while reducing noise. Gordon
and Rangayyan [100] used an adaptive neighborhood image
processing technique to enhance the contrast of features rele-
vant to mammography. However, this method enhanced the
contrast of mammography features as well as noise. Dhawan
et al. [101–103] developed an adaptive neighborhood-based
image processing technique following Gordon’s work. They
utilized low-level analysis and knowledge in desired feature
design to improve the contrast of specific features.

Filtering as an oldest technique has also been extensively
used in medical imaging. For example, Tahoces et al. [104]
developed a method for the enhancement of chest and breast
radiographies by an automatic spatial filtering. In their work,
a linear combination of an original image and two smoothed
images were used. The process was completed by a nonlinear
contrast stretching.

The difference image is a commonly used enhancement
technique and is the basis of most existing computer-aided
diagnosis systems. The difference image is usually obtained
by subtracting a suppressed image from the original one to
remove the background [105].

As we have discussed in the last subsection, the edge
of an image is obtained based on the difference between
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Edges of the Barbara image detected by different edge detectors: (a) the original Barbara image; (b) edges detected by the Sobel
detector; (c) edges detected by the Prewitt detector; (d) edges detected by the Canny detector; (e) edges detected by the anisotropic diffusion
scheme; (f) edges detected by the LSEK-based edge detector.

the original and the smoothed images. A similar idea is
extended to image enhancement by increasing the contrast
of the image. Specifically, the enhanced version (EV) of the
image is produced by adding edge-detected version (EDV)

to the original version:

IEV(x, y) = I(x, y) + IEDV(x, y)

= I(x, y) + C3
[
I(x, y)− ISV(x, y)

]
,

(51)
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(a) (b)

(c) (d)

(e) (f)

Figure 17: High-texture images: (a) baboon; (b) tiger; (c) Goldhill; (d) bridge; (e) boats; (f) pinecone.

in which the parameter C3 is used to further increase the
contrast between neighboring edges. There are a couple of
criteria constraining the choice of the parameter C3. On one
hand, C3 must be larger than or equal to 1. On the other
hand, if C3 is too large, the results may exceed the maximum
and minimum values in the original version. Thus, we give

another expression of the enhanced version as

IEV(x, y) = C4I(x, y) + C3
[
I(x, y)− ISV(x, y)

]

= C5I(x, y)− C3ISV(x, y),
(52)

where the parameter C5 is used to control the maxima in
scale-space and C3 is a magnification parameter. Basically, C5
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(a) (b)

(c) (d)

(e) (f)

Figure 18: The edges of high-texture images: (a) baboon; (b) tiger; (c) Goldhill; (d) bridge; (e) boats; (f) pinecone.

is an element of (1, 2) and C3 is an element of (1, 2). In the
above equation, the smoothed version of the image is still
produced by solving the linear forward diffusion equation
(42) which can be rapidly accomplished by the LSEK. The
diffusion coefficient is also fixed to be A = 1 and the whole
diffusion process is terminated at time t = 10.

We first consider four mammography images collected
from the FTP site ftp://peipa.essex.ac.uk/ipa/pix/mias. The
original images from the FTP site all have the size of 1024 ×
1024 pixels. However, the images used in our study are
cropped to the useful portion, as shown in Figure 21. The
above image enhancement scheme employs two important

ftp://peipa.essex.ac.uk/ipa/pix/mias
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Lungs and abdomen CT images: (a) Lung01; (b) Lung02; (c) Lung03; (d) Lung04; (e) Abdomen01; (f) Abdomen02.

parameters C5 and C3, which are set to 1.95 and 1.05, respec-
tively. Figure 22 shows good results for almost all test images,
that is, abnormalities on all mammography images can be
seen more clearly in the enhanced images than in their origi-
nal ones.

We next consider four CT images of a mouse as shown
in Figure 23. The same parameters used in the last exam-
ple are utilized for these images. Results shown in Figure 24
indicate that the proposed method is very efficient for medi-
cal image enhancement. Nevertheless, it is worth mentioning

that more attractive image enhancement results may be ob-
tained if one chooses the diffusion equation coefficient adap-
tively.

4. CONCLUSION

Partial-differential-equation- (PDE-) based approaches have
great potential for the processing of images and multidi-
mensional data because they can be made to be systematic
and automatic for large-scale high-dimensional image data.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: The edges of lungs and abdomen CT images: (a) Lung01; (b) Lung02; (c) Lung03; (d) Lung04; (e) Abdomen01; (f) Abdomen02.

Nevertheless, research in this direction is often hindered by
problems in parameter optimization and extra computing
time. The present work proposes an evolution-operator-
based single-time-step method for image and multidimen-
sional data processing. By utilizing a local spectral evolution
kernel (LSEK) that analytically integrates a class PDEs, we
show that a number of image processing operations, such as
image deblurring, denoising, edge detection, and enhance-
ment, can be effectively carried out in a single step of time

integration. Filter properties of the LSEK are studied by
using the Fourier analysis. Local information about the im-
age function and its gradient is analyzed and incorporated in
the time evolution of the anisotropic-type equation. In im-
age denoising, a local-variance-based method is employed
and is compared to the regularization type of approaches.
Automatic exit schemes are proposed to stop image evolu-
tion in the denoising. We have achieved about 8 dB in the
peak signal-to-noise improvement. In image edge detection,



22 International Journal of Biomedical Imaging

(a) (b)

(c) (d)

Figure 21: The mammographs used for image enhancement: (a) mdb001; (b) mdb002; (c) mdb161, (d) mdb170.

(a) (b)

(c) (d)

Figure 22: Enhanced images: (a) mdb001; (b) mdb002; (c) mdb161; (d) mdb170.
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(a) (b)

(c) (d)

Figure 23: The CT images of mouse used for image enhancement: (a) CT001; (b) CT002; (c) CT003; (d) CT004.

(a) (b)

(c) (d)

Figure 24: Enhanced images: (a) CT001; (b) CT002; (c) CT003; (d) CT004.
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the proposed method utilized a simplified version of the pre-
vious coupled PDE algorithm. The present method is com-
pared with a number of standard approaches, including So-
bel, Prewitt, Canny detectors, and anisotropic diffusion op-
erators. High-texture images and X-ray lung images are em-
ployed to demonstrate the proposed method. It is found that
the proposed scheme provides some of the best performances
for the edge detection of high-texture images, which is a chal-
lenge to other existing methods. Image enhancement is car-
ried out by the combination of the image edges and the orig-
inal image. Significant enhancement is achieved due to reli-
able image textures.
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[11] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selective
smoothing and edge detection by nonlinear diffusion,” SIAM
Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193,
1992.

[12] S. Kichenassamy, “The Perona-Malik paradox,” SIAM Journal
on Applied Mathematics, vol. 57, no. 5, pp. 1328–1342, 1997.

[13] M. Nitzberg and T. Shiota, “Nonlinear image filtering with
edge and corner enhancement,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 14, no. 8, pp. 826–833,
1992.

[14] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total varia-
tion based noise removal algorithms,” Physica D: Nonlinear
Phenomena, vol. 60, no. 1–4, pp. 259–268, 1992.

[15] J. Shah, “A common framework for curve evolution, seg-
mentation and anisotropic diffusion,” in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’96), pp. 136–142, San Francisco, Calif,
USA, June 1996.

[16] S. Teboul, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Vari-
ational approach for edge-preserving regularization using
coupled PDEs,” IEEE Transactions on Image Processing, vol. 7,
no. 3, pp. 387–397, 1998.

[17] F. Torkamani-Azar and K. E. Tait, “Image recovery using the
anisotropic diffusion equation,” IEEE Transactions on Image
Processing, vol. 5, no. 11, pp. 1573–1578, 1996.

[18] J. Weickert, B. M. T. H. Romeny, and M. A. Viergever, “Effi-
cient and reliable schemes for nonlinear diffusion filtering,”
IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 398–
410, 1998.

[19] Y.-L. You, W. Xu, A. Tannenbaum, and M. Kaveh, “Behav-
ioral analysis of anisotropic diffusion in image processing,”
IEEE Transactions on Image Processing, vol. 5, no. 11, pp.
1539–1553, 1996.

[20] G. W. Wei, “Generalized Perona-Malik equation for image
restoration,” IEEE Signal Processing Letters, vol. 6, no. 7, pp.
165–167, 1999.

[21] P. V. Blomgren and T. F. Chan, “Color TV: total varia-
tion methods for restoration of vector-valued images,” IEEE
Transactions on Image Processing, vol. 7, no. 3, pp. 304–309,
1998.

[22] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active con-
tours,” International Journal of Computer Vision, vol. 22,
no. 1, pp. 61–79, 1997.

[23] S. Osher and L. I. Rudin, “Feature-oriented image enhance-
ment using shock filters,” SIAM Journal on Numerical Analy-
sis, vol. 27, no. 4, pp. 919–940, 1990.

[24] S. Osher and L. I. Rudin, “Shocks and other nonlinear fil-
tering applied to image processing,” in Applications of Digital
Image Processing XIV, vol. 1567 of Proceedings of SPIE, pp.
414–431, San Diego, Calif, USA, July 1991.

[25] G. Sapiro and D. L. Ringach, “Anisotropic diffusion of mul-
tivalued images with applications to color filtering,” IEEE
Transactions on Image Processing, vol. 5, no. 11, pp. 1582–
1586, 1996.

[26] G. Sapiro, “From active contours to anisotropic diffusion:
connections between basic PDE’s in image processing,” in
Proceedings of IEEE International Conference on Image Pro-
cessing (ICIP ’96), vol. 1, pp. 477–480, Lausanne, Switzerland,
September 1996.

[27] T. F. Chan, A. Marquina, and P. Mulet, “High-order total
variation-based image restoration,” SIAM Journal on Scien-
tific Computing, vol. 22, no. 2, pp. 503–516, 2000.

[28] Y.-L. You and M. Kaveh, “Fourth-order partial differential
equations for noise removal,” IEEE Transactions on Image
Processing, vol. 9, no. 10, pp. 1723–1730, 2000.

[29] A. L. Bertozzi and J. B. Greer, “Low-curvature image sim-
plifiers: global regularity of smooth solutions and Lapla-
cian limiting schemes,” Communications on Pure and Applied
Mathematics, vol. 57, no. 6, pp. 764–790, 2004.

[30] J. B. Greer and A. L. Bertozzi, “Traveling wave solutions of
fourth order PDEs for image processing,” SIAM Journal on
Mathematical Analysis, vol. 36, no. 1, pp. 38–68, 2004.

[31] J. B. Greer and A. L. Bertozzi, “H-1 solutions of a class
of fourth order nonlinear equations for image processing,”



Yuhui Sun et al. 25

Discrete and Continuous Dynamical Systems, vol. 10, no. 1-2,
pp. 349–366, 2004.

[32] M. Lysaker, A. Lundervold, and X.-C. Tai, “Noise removal
using fourth-order partial differential equation with appli-
cations to medical magnetic resonance images in space and
time,” IEEE Transactions on Image Processing, vol. 12, no. 12,
pp. 1579–1590, 2003.

[33] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Image sharpening by
flows based on triple well potentials,” Journal of Mathematical
Imaging and Vision, vol. 20, no. 1-2, pp. 121–131, 2004.

[34] T. P. Witelski and M. Bowen, “ADI schemes for higher-order
nonlinear diffusion equations,” Applied Numerical Mathe-
matics, vol. 45, no. 2-3, pp. 331–351, 2003.

[35] G. W. Wei and Y. Q. Jia, “Synchronization-based image edge
detection,” Europhysics Letters, vol. 59, no. 6, pp. 814–819,
2002.

[36] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Image enhance-
ment segmentation and denoising by time dependent non-
linear diffusion processes,” in Proceedings of IEEE Interna-
tional Conference on Image Processing (ICIP ’01), vol. 3, pp.
134–137, Thessaloniki, Greece, October 2001.

[37] R. Deriche, “Fast algorithms for low-level vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 1, pp. 78–87, 1990.

[38] T. Lindeberg, “Scale-space for discrete signals,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 3, pp. 234–254, 1990.

[39] M. Nielsen, L. Florack, and R. Deriche, “Regularization,
scale-space, and edge detection filters,” Journal of Mathemat-
ical Imaging and Vision, vol. 7, no. 4, pp. 291–307, 1997.

[40] D. Zhao and B. Li, “A new implementation of discrete mul-
tiscale filtering,” in Proceedings of IEEE International Confer-
ence on Image Processing (ICIP ’96), vol. 1, pp. 383–385, Lau-
sanne, Switzerland, September 1996.

[41] B. Tremblais and B. Augereau, “A fast multi-scale edge detec-
tion algorithm,” Pattern Recognition Letters, vol. 25, no. 6, pp.
603–618, 2004.
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