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Human exposure to nitrogen dioxide (NO2), an air pollutant of increasing interest in

biology, results in several toxic effects to human health and also to the air microbiota.

The aim of this study was to investigate the bacterial response to gaseous NO2. Two

Pseudomonas fluorescens strains, namely the airborne strain MFAF76a and the clinical

strain MFN1032 were exposed to 0.1, 5, or 45 ppm concentrations of NO2, and

their effects on bacteria were evaluated in terms of motility, biofilm formation, antibiotic

resistance, as well as expression of several chosen target genes. While 0.1 and 5 ppm

of NO2did not lead to any detectable modification in the studied phenotypes of the two

bacteria, several alterations were observed when the bacteria were exposed to 45 ppm

of gaseous NO2. We thus chose to focus on this high concentration. NO2-exposed

P. fluorescens strains showed reduced swimming motility, and decreased swarming in

case of the strain MFN1032. Biofilm formed by NO2-treated airborne strain MFAF76a

showed increased maximum thickness compared to non-treated cells, while NO2 had

no apparent effect on the clinical MFN1032 biofilm structure. It is well known that

biofilm and motility are inversely regulated by intracellular c-di-GMP level. The c-di-GMP

level was however not affected in response to NO2 treatment. Finally, NO2-exposed P.

fluorescens strains were found to bemore resistant to ciprofloxacin and chloramphenicol.

Accordingly, the resistance nodulation cell division (RND) MexEF-OprN efflux pump

encoding genes were highly upregulated in the two P. fluorescens strains. Noticeably,

similar phenotypes had been previously observed following a NO treatment. Interestingly,

an hmp-homolog gene in P. fluorescens strains MFAF76a and MFN1032 encodes a

NO dioxygenase that is involved in NO detoxification into nitrites. Its expression was

upregulated in response to NO2, suggesting a possible common pathway between NO

and NO2 detoxification. Taken together, our study provides evidences for the bacterial

response to NO2 toxicity.
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INTRODUCTION

Most world-wide cities have serious air-quality problems, which
have attracted attention in the past decade. One of the most
common source of air pollution is engine emissions, which
include, among other toxic molecules, the nitrogen oxides (NOx;
reviewed in Sher, 1998; Skalska et al., 2010). The general term
NOx includes nitric oxide (NO) and nitrogen dioxide (NO2).
NO in turn is able to damage bacterial cells interacting with
bacterial proteins (McLean et al., 2010; Laver et al., 2013) and
DNA (Tamir et al., 1996; Burney et al., 1999) either directly,
or via formation of reactive nitrogen species (RNS), causing
alterations in bacterial metabolism, among which respiration,
and homeostasis. As a result, bacteria have developed specific
NO detoxification pathways and defense mechanisms (Cruz-
Ramos et al., 2002; Flatley et al., 2005; Spiro, 2007). In order
to counteract the NO-mediated respiratory arrest (Husain et al.,
2008), the detoxification processes are completed in several
bacteria by metabolism reprogramming (Auger et al., 2011;
Auger and Appanna, 2015). NO was furthermore identified as
a signaling molecule, which promotes the biofilm dispersion
in various bacterial strains, including Pseudomonas aeruginosa
(Barraud et al., 2009; Cutruzzola and Frankenberg-Dinkel, 2015)
and P. putida (Liu et al., 2012). This molecule is also known
to modulate bacterial antibiotic sensitivity, protecting bacteria
from a wide range of antibacterial agents (Gusarov et al.,
2009; McCollister et al., 2011; van Sorge et al., 2013), such as
vancomycin and daptomycin (van Sorge et al., 2013). Contrary
to NO, NO2 has a low solubility in water (Augusto et al., 2002).
Thence NO2 in aqueous media concerned a few reports in the
microbiological context. However, in natural environments NO
is unstable and quickly oxidized to form NO2 (Skalska et al.,
2010), considered as a major air pollutant. Its atmospheric level is
ruled by European environmental commission andWorldHealth
Organization (INERIS, 2011; Reduction of pollutant emissions
from light vehicles, 2015; WHO |Ambient (outdoor) air quality
health, 2015). NO2 toxicity to human health is well documented
and is known to increase cardiovascular diseases (Chaloulakou
et al., 2008), or to aggravate respiratory symptoms especially in
children (Pershagen et al., 1995; Chauhan et al., 1998). On the
opposite, the stress promoted by NO2 was poorly evaluated on
bacteria.

It is increasingly evident that the air is a biotic environment,
containing bacteria as one of the major compounds of primary
atmosphere aerosol particles (Burrows et al., 2009b; Després
et al., 2012). Mean airborne bacterial concentrations can
indeed be greater than 1 104 cells m−3 (Bauer et al., 2002;
Burrows et al., 2009a). Although unstable, the air microbiota
is frequently constituted with members of Pseudomonas genus
(Fang et al., 2007; Pearce et al., 2010; Després et al., 2012;
Dybwad et al., 2012; Šantl-Temkiv et al., 2015). Among these
highly versatile elements, the P. fluorescens strains are widely
adaptable and distributed (Bodilis et al., 2004) in all major
natural environments, including water (Bodilis et al., 2004),
soil (Varivarn et al., 2013) and clouds (Ahern et al., 2007).
Several P. fluorescens strains were also found to promote
humans acute infections and were reported in clinical samples

of immuno-compromised patients (Chapalain et al., 2008; Scales
et al., 2014). All these properties make P. fluorescens a goodmodel
for further investigations of airborne bacteria.

We have investigated in previous studies the microbiota
(bacteria, yeasts and fungi) of Rouen harbor terminal (France)
(Morin et al., 2013). Thus, several P. fluorescens strains
were isolated. Among them, the airborne P. fluorescens strain
MFAF76a was characterized as a virulent strain, particularly
its exoproducts against human epithelial pulmonary cells
(Duclairoir Poc et al., 2014). The aim of this study is to investigate
the physiological response of airborne P. fluorescens MFAF76a
to NO2 as a marker of air pollution in terms of motility, biofilm
formation and antibiotic resistance. This response was compared
to that of the clinical strain P. fluorescensMFN1032 isolated from
the sputum of a pneumonia-suffering patient (Chapalain et al.,
2008). The parameters of bacterial NO2 exposure were adapted to
mimic real-life air conditions. Thus, the two strains were exposed
to gaseous NO2 at three concentrations: 0.1 ppm as an annual
guideline value (WHO |Air quality guidelines - global update,
2005) 5 ppm as the threshold causing reversible effects on human
health, and 45 ppm as a high NO2 concentration provoking
irreversible effects (INERIS, 2011).

MATERIAL AND METHODS

Strains and Growth Conditions
Cyan Fluorescent Protein (CFP)-labeled P. fluorescensMFN1032
and MFAF76a were used in this study. The strains and plasmids
are listed in Table S1. The 729-bp cfpopt gene, encoding the
CFP, was extracted from pTetONCFPopt plasmid (Sastalla et al.,
2009) using PstI and Xmal enzymes (NEB, Ipswich, USA). Then
CFP cassette was separated by 1% agarose gel electrophoresis
and purified with QIAquick Gel Extraction Kit (Qiagen, Hilden,
Allemagne). The pPSV35 vector (Rietsch et al., 2005) was
digested using PstI and Xmal and purified using QIAquick PCR
Purification Kit (Qiagen, Hilden, Allemagne). The CFP cassette
was then cloned into the PstI and Xmal sites of the pPSV35
vector. The resulting pCFP vector was introduced into One
Shot R© TOP10 Chemically Competent E. coli (LMSM collection)
by heat shock. After antibiotic selection of the clones (gentamycin
15µg/mL), the transformation was confirmed by confocal laser
scanning microscope (CLSM 710, ZEISS). The obtained plasmid
was then extracted from E. coli using QIAprep Spin Miniprep Kit
(Qiagen, Hilden, Allemagne) and introduced into P. fluorescens
strains by electroporation. The transformants were selected in
LB containing 15µg/mL of gentamycin and fluorescence was
assayed using CLSM.

Bacteria were grown at 28◦C under limited agitation
(180 rpm) in DMB (Davis Medium Broth) minimal medium
with 2.16 g/L glucose as carbon source (Duclairoir-Poc et al.,
2011). Overnight cultures were diluted (A580 = 0.08) in fresh
DMB and grown to the end of exponential phase (A580 =

2, 13 × 108 CFU/mL). Bacterial cultures at the end of
exponential growth phase (about 3 × 107 bacteria per filter)
were transferred on cellulose nitrate membrane filter (0.45µm,
pore size 0.2µm, diameter 47mm, Sartorius Biolab Products,
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Gottingen, Germany) and grown on DMB agar plates at 28◦C
for 4 h to obtain a single layer’s bacterial population. After 4 h
of incubation, the cellulose membranes containing bacteria were
placed on agar one-well dishes (size 127.8 × 85.5mm, Thermo
Scientific Nunc, Roshester, USA), which were directly transferred
into the gas delivery device (Figure 1).

Exposition to Nitrogen Dioxide
In order to mimic the atmospheric conditions, bacterial NO2

exposure was achieved in gas phase for 2 h, according to
Ghaffari et al. (2005). The gas delivery device consisted of
two sterile cylindrical Plexiglas exposure chambers (one for the
NO2 exposure, the second one for the control—exposure to
synthetic air). The exposure chambers were deposed in a drying
oven at 28◦C (Figure 1). The NO2, N2, and O2 obtained from
Air Liquide GMP Europe (Mitry-Mory, France) were mixed
together using digital mass flow regulators (Alicat Scientific, Inc.,
Tucson, USA) in order to get pre-calculated concentrations of
NO2 and maintain the O2/N2 ratio at 2/8 (v/v). The resulting
gas mixture and the synthetic air were routed independently
to each of the exposure chamber at a constant flow rate of 2
L/min, allowing parallel treatment of bacteria originating from
the same bacterial culture. After passing through the exposure
chamber, the NO2 concentrations were monitored by AC32M
nitrogen oxides analyzer (Environnement S.A, Poissy, France)
and safely vented to a chemical hood. Temperature and relative
humidity data were monitored to control reliable steady-state
environmental conditions inside the exposure chambers. Three
concentrations of NO2 (0.1 ppm; 5 ppm and 45 ppm) were used
in this study. After exposure, bacteria were diluted to A580 = 2 in
sterile saline solution and used for the subsequent experiments.

Antibiotic Sensitivity Assays
After NO2 exposure, bacterial sensitivity to ciprofloxacin,
chloramphenicol, tobramycin and kanamycin (Sigma-Aldrich,
St. Quentin Fallavier, France) was assayed. The minimum
inhibitory concentration (MIC) was determined by the broth
microdilution method achieved in DMB. Briefly, NO2-exposed
bacteria were diluted to A580= 0.08 and added to a 96-well
test plate (NuncTM, Roskilde, Denmark) containing different
concentrations of antibiotics in triplicate. The test plates were
incubated at 28◦C for 24 h. Synthetic air- exposed bacteria
were used as control. MIC was defined as the lowest antibiotic
concentration that inhibited bacteria growth as determined by
turbidimetry at A580.

Growth inhibition assays were achieved as previously
described (van Sorge et al., 2013). Exposed bacteria were
diluted in DMB supplemented by the indicated antibiotics in
subinhibitory concentrations (the last antibiotic concentrations
allowing bacterial growth). Bacteria were added to Bioscreen
Honeycomb plates (Oy Growth Curves Ab Ltd., Helsinki,
Finland) in a total volume of 200µL of DMB (A580 = 0.08).
Growth was measured every 15min (A580) for 24 h. The NO2

effect on the bacterial antibiotic sensitivity was calculated as
the percentage of bacterial growth with antibiotics after NO2

exposure on the bacterial growth with antibiotics after exposure

to synthetic air, using the following formula: 100×A580 NO2

exposed bacteria/A580 synthetic air exposed bacteria (%).

Motility Assays
Swimming and swarmingmotility assays were performed on agar
plates using DMB containing 0.2% (wt/vol) and 0.5% (wt/vol)
agar, respectively, as previously described (Déziel et al., 2001).
Briefly, 5µL of NO2 or synthetic air- exposed bacteria were
spotted on the surface of agar plates. The resultant diameters of
swim and swarm zones were measured after 24 h of incubation at
28◦C. Motilities were assayed in three independent experiments
with three replicates for each experimental condition.

Biofilm Monitoring By Confocal Laser
Scanning Microscopy
NO2 or synthetic air- exposed bacteria were diluted in sterile
saline solution to A580= 1 to avoid bacterial multiplication, and
added to glass-bottom dishes (SensoPlateTM, VWR, Fontenay-
sous-Bois, France). After 2 h of incubation at 28◦C, planktonic
bacteria were removed and bacterial adhesion on glass-
bottom dishes was observed using a confocal laser scanning
microscope (CLSM 710, ZEISS) with an immersion objective
63×. After addition of DMB, the samples were incubated at
28◦C for 24 h. Biofilms were rinsed with saline solution and
observed using CLSM. All biofilm assays were performed in
three independent experiments with two replicates for each
experimental condition. The biofilm thickness and related
biomass (bacterial volume,µm3/µm2) were estimated from 6
fields on 3 independent experiments using COMSTAT software
(Heydorn et al., 2000).

Gene Sequences Identification
The non-annotated genome drafts of MFN1032 and MFAF76a
were used to identify the corresponding nucleotide sequences
(data not shown). Homologous sequences search in P. fluorescens
annotated genomes was performed using pseudomonas genome
database (http://pseudomonas.com/). The conserved nucleotide
sequences were identified in P. fluorescens MFN1032 and
MFAF76a using Blast+ (Stand-alone) software (v. 2.2.30, NCBI)
according to Altschul et al. (1997), and are listed in Table S2.

Extraction and Quantification of Bis-(3′,
5′)-Cyclic Dimeric Guanosine
Monophosphate (c-di-GMP)
Extraction and quantification of intracellular c-di-GMP level
were performed in NO2 or synthetic air- exposed bacteria as
previously described (Spangler et al., 2010; Strehmel et al., 2015).
Identification and quantification of c-di-GMP was performed
using three specific mass transitions from molecule ion m/z 691
to the product ions: m/z 152, m/z 135, and m/z 540. The external
calibration was carried out at c-di-GMP concentrations ranging
from 10 ng to 200 ng in 500µL H2O using the internal standard
cXMP (50 ng). The resulting concentrations of c-di-GMP were
normalized against total protein contents of respective cultures,
which was determined by the bicinchoninic acid assay (Smith
et al., 1985). All experiments were performed in three replicates
for each experimental condition.
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FIGURE 1 | Schematic representation of NO2 gas delivery system. Bacterial NO2 exposure was done in gas phase for 2 h. Two exposure chambers (one

for the NO2 exposure, the second one for the control—synthetic air exposure) were used. The gases, including NO2, N2 and O2 were mixed together to obtain

pre-calculated concentrations of NO2 and maintain the O2/N2 ratio at 2/8 (v/v). NO2 concentrations, temperature and relative humidity were controlled.

Quantitative RT-PCR
Total RNA was prepared by the hot acid-phenol method
(Bouffartigues et al., 2012) from NO2-exposed and not bacteria.
Residual DNAs were eliminated by acid phenol treatment. The
absence of DNA was confirmed by showing that PCR reactions
failed without prior cDNA synthesis. RNAs were nonspecifically
converted to single stranded cDNAs using the High Capacity
cDNA Archive Kit (Applied Biosystems). Synthesis of cDNAs
and real time PCR, allowing the quantification of mRNAs of
interest were performed as previously described (Gicquel et al.,
2013) using primers listed in Table S3.

Statistical Analysis
All experiments were carried out several times. To assess the
significance of differences between the obtained data, Mann-
Whitney test or pairwise strain comparisons (t-test) were applied
and quantified the significance as (∗) for p < 0.05, (∗∗) for
p < 0.01 and (∗∗∗) for p < 0.001.

RESULTS AND DISCUSSION

NO2 is one of the most common air pollutants, but its effects
on the air microbiota is poorly studied. In order to assess the
bacterial response to NO2, airborne P. fluorescens MFAF76a and
clinical control MFN1032 strains were exposed to gaseous NO2

(as shown Figure 1) at 0.1, 5, or 45 ppm concentrations, and
their effects on bacteria were evaluated in terms of motility,
biofilm formation, antibiotic resistance, as well as expression
of several chosen target genes. While 0.1 and 5 ppm of NO2

did not lead to any significant modification of the studied

parameters in both the bacteria (data not shown), several
alterations were observed when the bacteria were exposed to
45 ppm of gaseous NO2. We thus chose to focus on this
concentration.

NO2-Mediated Modifications of Bacterial
Biofilm
In order to test the NO2 effect on P. fluorescens biofilm,
both airborne MFAF76a and clinical MFN1032 were exposed
to gaseous NO2 and synthetic air and grown for 4 h in
static conditions. In the control condition, the airborne strain
MFAF76a produced only a poorly structured biofilm with low
biomass and thickness (Figure 2A). To the best of the authors’
knowledge this is the first time that the biofilm of airborne P.
fluorescens strain was investigated. On the opposite, the clinical
strain MFN1032 was able to form a structured mushroom-like
biofilm, with about 2 and 3 fold more biomass and thickness than
the airborne strain MFAF76a, respectively (Figure 2B, control).
These data are consistent with previous studies showing that
clinical strains can strongly adhere and form structured biofilms
(Rossignol et al., 2008; Ma et al., 2009). After NO2 exposition,the
airborne strain MFAF76a produced biofilms with about 3 fold
increase of the maximal thickness, while the biomass was
similar (Figure 2A), when compared to synthetic air treatment.
These data suggest that NO2 led to induce biofilm formation
in this strain. Accordingly, similar NO concentrations were
previously found to promote an increase of biofilm formation
in P. aeruginosa (Barraud et al., 2006), suggesting a common
effect between NO and NO2 treatment. On the other hand, NO2
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FIGURE 2 | NO2 effect on P. fluorescens biofilm and intracellular c-di-GMP level. (A) Airborne MFAF76a and (B) clinical MFN1032 P. fluorescens strains were

exposed in triplicate to 45 ppm of NO2. Biofilm formation was analyzed in static conditions after 24 h development using confocal laser scanning microscope. The

biofilm biomass and the maximum thickness were estimated from 6 fields on 3 independent experiments using COMSTAT software. Intracellular c-di-GMP

concentrations (C) were measured in triplicate by LC-MS/MS for control ( ) and 45 ppm of NO2 treated ( ) MFAF76a and MFN1032. Obtained results are presented

as average values ± SEM. Statistical significance was calculated by the non-parametric Mann-Whitney-Test. n.s., non-significant.

exposure of the clinical strain MFN1032 led to a 1.7 fold increase
in biofilm production in terms of biomass, while the maximal
thickness was unchanged (Figure 2B). Taken together these
data suggest that the NO2-mediated biofilm modifications are
strain-dependent. Since we have shown previously that airborne
MFAF76a expresses a virulence activity toward A549 epithelial
pulmonary cells (Duclairoir Poc et al., 2014), these data suggest
that elevated concentrations of NO2 increases biofilm formation
in potentially virulent airborne strain and may represent a
sanitary risk.

Since biofilm formation is related to increased c-di-GMP
production (Ha and O’Toole, 2015), we next quantified the c-
di-GMP levels after NO2 or synthetic air exposure. As shown
in Figure 2C, both NO2-exposed P. fluorescens strains did
not exhibit statistically significant variations of intracellular
c-di-GMP concentrations. This was quite surprising since
observed in our study NO2 mediated biofilm induction. NO-
mediated reduction of the intracellular c-di-GMP level leading to
dispersion of P. aeruginosa biofilms has been related to increase

phosphodiesterases (PDEs) activity, and as a consequence to
promote the switch between the biofilm and the planktonic ways
of life (Petrova and Sauer, 2012; Roy et al., 2012; Li et al.,
2013; Petrova et al., 2014). In this bacterium, the following
PDEs, including DipA, MucR, NdbA and BdlA, are enzymes
that are involved in c-di-GMP catabolism (Petrova and Sauer,
2012; Roy et al., 2012). The mRNA levels of dipA, mucR, ndbA
and bdlA genes (KT186437, KT186445, KT186444 and KT186436
respectively, Table S2) were quantified by qRT-PCR experiments,
in the two strains, that were both previously exposed to NO2

or synthetic air. For the two strains, NO2 exposure did not
lead to any modification in gene expression (data not shown).
Altogether, these data suggest that (i) NO2 may have an effect
on the structure or on the biomass of the biofilm, in case
of the studied airborne or clinical strains, respectively, (ii)
these phenotypes would not be related to variations of the
intracellular c-di-GMP levels, and (iii) NO and gaseous NO2 may
have a common and concentration-dependent effect on biofilm
formation.
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NO2 Reduced Bacterial Motility
Since biofilm structure and production were not implemented by
c-di-GMP level in our conditions, we next assayed the effects of
NO2 on bacterial motility, since appendices like flagella and type
IV pili are also involved in the first step of biofilm formation, i.e.,
adhesion (Caiazza et al., 2007; Guttenplan and Kearns, 2013).

Swimming concerns motility in a liquid medium, mediated
by production and activity of flagella. As shown on Figure 3A,
gaseous NO2 exposition significantly decreased the swimming
motility of both strains, suggesting an impairment of the
flagellum production and/or activity.

Swarming is a complex motility that has been related to
functional flagella, type IV pili and production of biosurfactants
like cyclolipopeptides (Duclairoir-Poc et al., 2011) for some P.
fluorescens strains, or rhamnolipids for P. aeruginosa strains
(Caiazza et al., 2005). The airborne strain MFAF76a was
unable to swarm in tested experimental conditions. On the
opposite, MFN1032 is a swarmer clinical strain (Rossignol et al.,
2008). As shown in Figure 3B, exposition to NO2 but not to
synthetic air led to fully inhibit the swarming motility of this
strain.

Taken together, our data show that gaseous NO2 treatment
results in a decreased motility in both of the studied strains.
This decrease in motility could be a consequence of a lower
production of the required appendices. Alternatively it could
also be due to lower appendices activity, suggesting that they
could increase the attachment of the bacterium on the glass slide.
This phenotype would then be consistent with the increase in
biofilm maximal thickness in case of the airborne strain, and
biomass in case of the clinical strain. However, to date, the switch
between motility and biofilm had frequently been associated
to variations in the c-di-GMP level (Ha and O’Toole, 2015),
but, herein, the gaseous NO2-mediated differences in terms of
biofilm structure could not be related to any c-di-GMP level
variations.

Effect of NO2 on MexEF-OprN Efflux Pump
Expression and Antibiotic Resistance
To further characterize the effects of gaseous NO2 on bacterial
physiology, we next assayed antibiotic resistance. Since NO, a
member of RNS, was found to induce the expression of mexEF-
oprN genes (Fetar et al., 2011) and modulate bacterial resistance
to fluoroquinolones, chloramphenicol and aminoglycosides
(Gusarov et al., 2009; McCollister et al., 2011; van Sorge et al.,
2013), we investigated the effect of gaseous NO2 on these
phenotypes.

In order to study the effect of NO2 on MexEF-OprN
efflux pump, the transcription levels of mexE, mexF and oprN
genes (KT070324, KT070321 and KT070325 for MFAF76a;
KT070323, KT070322 and KT186432 forMFN1032, respectively)
were compared using qRT-PCR in two P. fluorescens strains
exposed or not to 45 ppm of NO2. In airborne and clinical
strains, the mexE mRNA level was increased by almost 14-
and 100-fold respectively; that of mexF almost 3.5- and 47-
fold respectively and that of oprN almost 4.6- and 73-fold
respectively (Figure 4). These data show that NO2 promoted

TABLE 1 | NO2 exposure increases Pseudomonas fluorescens antibiotic

resistance.

Strain NO2 concentration Ciprofloxacin Chloramphenicol

(ppm) MIC (µg/mL) MIC (µg/mL)

MFAF76a 0 6.25 50

45 12.5 >100

MFN1032 0 3.125 150

45 6.25 200

mexEF-oprN expression, potentially causing modifications in P.
fluorescens antibiotic resistance. We next tested the functionality
of this pump. Since the MexEF-OprN RND efflux pump is
involved in fluoroquinolone resistance, we next assayed bacterial
sensitivity against ciprofloxacin by evaluating their MICs. As
shown in Table 1, both the P. fluorescens strains were more
resistant to this antibiotic after exposure to NO2 than to
synthetic air. Chloramphenicol is a nitroaromatic antimicrobial
that is a substrate for MexEF-OprN (Köhler et al., 1997; Sobel
et al., 2005). Accordingly, NO2-exposed P. fluorescens strains
MFAF76a and MFN1032 were about 2 fold more resistant
to this antibiotic than synthetic air-treated bacteria (Table 1).
Taken together, these data suggest a possible higher activity
of this efflux pump in response to NO2 exposure. We next
followed the growth of the NO2-exposed P. fluorescens strains
in DMB medium containing ciprofloxacin or chloramphenicol
at the higher antibiotic concentration leading to bacterial growth
(Figure 5). Data were standardized with the control, the synthetic
air treated cells growth. While ciprofloxacin had no effect on
NO2-exposed bacteria, chloramphenicol at a concentration of 25
and 100µg/mL for strain MFAF76a and MFN1032, respectively,
led to an increase in growth for the two NO2-exposed
P. fluorescens strains (Figure 5). Remarkably, the statistically
significant increase of bacterial growth was maintained from
2 to 10 h, suggesting a possible NO2 protective effect that
would be conserved for 8 h after exposure. Taken together, our
data show that NO2 induced mexEF-oprN gene expression,
and consequently increased the resistance to ciprofloxacin and
chloramphenicol.

MexEF-OprN-overproducing mutants with enhanced
fluoroquinolone resistance often increase bacterial susceptibility
to aminoglycosides apparently owing to impairment of the
MexXY system (Sobel et al., 2005; Morita et al., 2015). The
effect of NO2 on tobramycin and kanamycin sensitivity was
then assayed by performing MICs. As shown in Table 2, NO2

treatment led to reduce the MICs of the two tested antibiotics,
suggesting that NO2 increases P. fluorescens sensitivity to
aminoglycosides. Tobramycin and kanamycin, at subinhibitory
concentration of 1.55 and 3.1µg/mL respectively, were found to
decrease the growth of NO2-exposed bacteria (Figure 6). This
effect was observed only from 6 to 10 h of growth for MFN1032
and from 6 to 18 h of growth forMFAF76a, highlighting the time-
limited NO2 effect on bacterial antibiotic sensitivity. Altogether,
our data show that NO2 increases P. fluorescens sensitivity to
tobramycin and kanamycin, accordingly its homolog NO is
also found to increase P. aeruginosa sensitivity to tobramycin
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FIGURE 3 | NO2 decreases P. fluorescens motility. Airborne MFAF76a and clinical MFN1032 P. fluorescens strains were exposed in triplicate to 45 ppm of

NO2( ). Swimming (A) and swarming (B) motilities were assayed on DMB-swim/swarm plates after 24 h incubation. The motile bacterial movement was evaluated in

three independent experiments with three replicates. The data were compared with control exposed to synthetic air ( ). Obtained results are presented as average

values ± SEM. Statistical significance was calculated by the non-parametric Mann-Whitney-Test p < 0.05 (*) and < 0.001 (***).

FIGURE 4 | NO2 effect on MexEF-OprN and MexXY efflux pump gene

transcription. The nucleotide sequences of the mexEF-, oprN- and

mexXY-homolog genes were obtained using the non-annotated genome

drafts of airborne MFAF76a ( ) and clinical MFN1032 ( ) P. fluorescens. The

GenBank accession numbers of nucleotide sequences are listed in Table S2.

Quantification of mRNA level was assayed using qRT-PCR on RNAs extracted

from NO2- and synthetic air- exposed P. fluorescens. The PCR reactions were

performed in triplicate and the standard deviations were lower than 0.15 Ct.

Statistical analysis used pairwise strain comparisons (t-test) p < 0.01 (**) and

< 0.001 (***). Dotted line shows the gene expression in synthetic air- exposed

control.

(Barraud et al., 2006). Noticeably, this phenotype is consistent
with previously published data supporting decreasing resistance
to aminoglycosides of MexEF-OprN-overproducing mutant
(Sobel et al., 2005; Morita et al., 2015). Since this phenotype
is often associated with the impairment of the MexXY-OprM
efflux pump, we next assayed the effect of NO2 on the expression
of the mexXY genes. As shown in Figure 4, NO2 treatment

had an opposite effect on mexXY gene expression. While NO2

increased the expression of mexXY in the airborne strain
MFAF76a, it drastically reduced production of mexXY mRNA
in the clinical strain MFN1032. While this latter phenotype is
often described in the literature (Sobel et al., 2003) as leading
to increased aminoglycoside susceptibility, the overproduction
of the two RND efflux pumps MexEF-OprN and MexXY-OprM
is remarkable and found in very few strains, among which the
multiresistant strain PA7 (Morita et al., 2015). Nevertheless, the
increased expression of mexXY in the airborne strain cannot be
related to the increased susceptibility to aminoglycosides, which
we observed. Taken together, our data indicate that the NO2

effect on bacterial aminoglycoside resistance is complex and
strain-dependent, and the up- or down- production of mexXY
cannot account solely to explain the increased susceptibility to
aminoglycosides of the two studied strains. Another hypothesis
may arise related to the effects of NO2 on membrane properties.
Indeed, the NO2 effect on P. fluorescens membrane was recently
investigated, demonstrating the NO2-mediated modifications
in both the membrane glycerophospholipids composition
(i.e., ratio zwitterionic/anionic glycerophospholipids) and in
the membrane electron-accepting properties (Kondakova,
personal communication). It is thus conceivable that these
membrane modifications would alter bacterial membrane
permeability, facilitating the aminoglycoside entry into the
bacterial cell.

NO2-Mediated Gene Expression in P.

fluorescens
Remarkably, we have shown herein a link between gaseous NO2

and soluble NO treatment. Indeed, NO is found to induce
the expression of mexEF-oprN genes (Fetar et al., 2011) and
modulates bacterial resistance to several antibiotics (Gusarov
et al., 2009; McCollister et al., 2011; van Sorge et al., 2013).
Since NO2 and NO are related chemical toxic compounds, and
since NO detoxification pathways have been deeply investigated,
the NO2 effects on several chosen target genes were tested.
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FIGURE 5 | NO2 protects Pseudomonas fluorescens from

chloramphenicol toxicity. After 2 h exposure to 45 ppm of NO2, growth of

airborne MFAF76a (A) and clinical MFN1032 (B) P. fluorescens with

ciprofloxacin ( ) and chloramphenicol ( ) was assayed. Growth curves were

performed with ciprofloxacin (3.125µg/mL for MFAF76a and 1.156µg/mL for

MFN1032) and chloramphenicol (25 and 100µg/mL respectively), and A580
was recorded at the indicated time points. The control sample was bacteria

exposed to synthetic air, and grown in presence of antibiotics in indicated

concentrations. The data are shown as percentages of growth relative to

synthetic air-exposed control. Pooled data from three independent

experiments in duplicate ± SEM are reported. Statistical significance was

calculated by the non-parametric Mann-Whitney-Test p < 0.05 (*); n.s.,

non-significant. Dotted line shows the control (100%).

The most well-studied pathway for NO detoxification is based
on flavohemoglobin (FlavoHb) (Hmp for E. coli and Fhp for
P. aeruginosa), which acts as an NO dioxygenase to transform
NO to NO−

3 (Figure 7A) (Corker and Poole, 2003; Arai et al.,
2005). After exposure to 45 ppm of NO2, the hmp mRNA levels
were increased almost 25- and 23-fold in MFAF76a and in
MFN1032 (respectively KR818822 and KR818823 in Table S2 and
Figure 8), indicating that NO2 induces hmp expression in both
P. fluorescens and suggesting a possible involvement of Hmp in
NO2 detoxification. The NO2 effect on the Hmp synthesis was
observed in other studies, where, to activate the Hmp-dependent
detoxification pathway, NO2 was proposed to be reduced to NO
(Poole et al., 1996). In Pseudomonas spp., NO2 reduction can be
performed by nitrite reductase (NIR) enzymes (Figures 7B,C),
including the well-studied respiratory cytochrome cd1 nitrite
reductase (Figure 7B) of the denitrification pathway (Arai et al.,
2005; Shiro, 2012). According to the genome draft analysis

TABLE 2 | NO2 decreases Pseudomonas fluorescens resistance to

aminoglycosides.

Strain NO2 concentration Kanamycin MIC Tobramycin MIC

(ppm) (µg/mL) (µg/mL)

MFAF76a 0 8.3 6.2

45 6.2 3.1

MFN1032 0 20.0 12.5

45 16.7 8.3

FIGURE 6 | NO2 exposure affects Pseudomonas fluorescens growth

with aminoglycosides. After 2 h exposure to 45 ppm of NO2, growth of

airborne MFAF76a (A) and clinical MFN1032 (B) in presence of tobramycin

(1.55µg/mL; ) and kanamycin (3.1µg/mL; ) was tested. A580 was

recorded at indicated time points. The control sample was bacteria exposed to

synthetic air, and grown in presence of antibiotics in indicated concentrations.

The data are presented as percentages of growth relative to air-exposed

control. Pooled data from three independent experiments in duplicate ± SEM

are reported. Statistical significance was calculated by the non-parametric

Mann-Whitney-Test p < 0.05 (*), < 0.01 (**); n.s. non-significant. Dotted line

shows the control (100%).

(data not shown), both MFAF76a and MFN1032, like the
majority of P. fluorescens strains (Redondo-Nieto et al., 2013), do
not possess denitrifying genes, but harbor the genes encoding for
the assimilatory nitrite reductase NirBD (Figure 7C). The latter is
part of the Nas assimilatory pathway (from nitrate assimilation),
where nitrate is reduced to nitrite, which is then reduced to
ammonia (Jeter et al., 1984; Moreno-Vivián et al., 1999). In order
to test the NO2 effect on the expression of nirBD operon, the
nirB mRNA level (Pfl76a_nirB -KT186428 - and Pfl1032_nirB -
KT070320 -, Table S2) was compared in the NO2-exposed or
non-exposed P. fluorescens strains. In both strains, the mRNA
level of nirB was not modified compared to the control condition
(data not shown), indicating the absence of NO2 effect on the
expression of genes coding for assimilatory NIR. To the best of
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FIGURE 7 | Scheme of Hmp-mediated NO detoxification and NO2

reduction pathways in Pseudomonas spp. (A) Flavohemoglobin (Hmp) is

involved in NO detoxification acting as an NO dioxygenase to transform NO to

NO−
3 . The NO2 reduction is performed by nitrite reductase enzymes, including

the respiratory cytochrome cd1 nitrite reductase, NIR (B) and the assimilatory

nitrite reductase NirBD (C). The respiratory NIR is involved in NO−
2 reduction to

NO in anaerobic conditions. NirBD takes a part of the nitrate assimilatory

pathway, and reduces nitrite to ammonia.

FIGURE 8 | Transcription of hmp is increased in response to NO2

exposure. The nucleotide sequences of the hmp-homolog gene in P.

fluorescens strains were obtained using the non-annotated genome drafts of

airborne P. fluorescens MFAF76a ( ) and clinical MFN1032 ( ). The GenBank

accession numbers of hmp nucleotide sequences are listed in Table S2.

Quantification of mRNA level was assayed using qRT-PCR on RNAs extracted

from NO−
2 and synthetic air-exposed P. fluorescens. The PCR reactions were

performed in triplicate and the standard deviations were lower than 0.15 Ct.

Statistical analysis used pairwise strain comparisons (t-test) p < 0.01 (**).

Dotted line shows the gene expression in air-exposed control.

our knowledge, the involvement of Nas pathway in NO/NO2

detoxification was not demonstrated. Given the presence of
ammonium in DMB medium (Duclairoir-Poc et al., 2011), we
think that the production of supplementary ammonium through
the nitrite reduction is not appropriate. However, in order to
better understand the mechanism of the NO2 detoxification,
the Hmp-, Nir- and Nas-mediated mechanisms should be
investigated in more details.

In this study, the response of airborne P. fluorescensMFAF76a
to gaseous NO2, as a marker of air pollution, was for the first
time investigated and compared to the response of the clinical
P. fluorescens MFN1032 strain. We show that NO2 leads to
increased biofilm formation through a c-di-GMP independent

mechanism, reduced motility, as well as increasing ciprofloxacin,
chloramphenicol resistance and aminoglycosides susceptibility.
The question is now to understand how the NO2 leads to the
observed phenotypes. NO2 has some similarities with it relative
NO. NO2, like NO, induced the expression ofmexEF-oprN genes,
encoding the RND efflux pumpMexEF-OprN. Its overexpression
could, among others, be involved in the observed increase of P.
fluorescens resistance to ciprofloxacin and chloramphenicol. NO2

induces also bacterial biofilm formation by strain-dependent
mode, without c-di-GMP production variation. Thus, the
high P. fluorescens adaptability to many environments, and a
possible NO2 propensity to increase some bacterial antibiotic
resistance and biofilm formation may diminish the effectiveness
of antibiotic therapies in highly polluted area. In addition,
we show the NO2-mediated upregulation of the hmp-homolog
gene in P. fluorescens, suggesting a possible common pathway
between NO and NO2 detoxification. Taken together, our data
show that gaseous NO2 can be perceived by airborne bacteria,
leading to physiological modifications that may be relevant
for human health (biofilm formation, antibiotic resistance).
In the context of the worrying increase of atmospheric NO2

concentrations (Bernagaud et al., 2014), these findings are
of ecological relevance, especially because of the high NO2

concentrations, found in the close vicinity of any vehicle.
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