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The large influx of data from high-throughput genomic and proteomic technologies has encouraged the researchers to seek
approaches for understanding the structure of gene regulatory networks and proteomic networks. This work reviews some of the
most important statistical methods used for modeling of gene regulatory networks (GRNs) and protein-protein interaction (PPI)
networks. The paper focuses on the recent advances in the statistical graphical modeling techniques, state-space representation
models, and information theoretic methods that were proposed for inferring the topology of GRNs. It appears that the problem
of inferring the structure of PPI networks is quite different from that of GRNs. Clustering and probabilistic graphical modeling
techniques are of prime importance in the statistical inference of PPI networks, and some of the recent approaches using these
techniques are also reviewed in this paper. Performance evaluation criteria for the approaches used for modeling GRNs and PPI
networks are also discussed.

1. Introduction

Postgenomic era is marked by the availability of a deluge
of genomic data and has, thus, enabled the researchers to
look towards new dimensions for understanding the complex
biological processes governing the life of a living organism
[1–5]. The various life sustaining functions are performed
via a collaborative effort involving DNA, RNA, and proteins.
Genes and proteins interact with themselves and each other
and orchestrate the successful completion of a multitude of
important tasks. Understanding how they work together to
form a cellular network in a living organism is extremely
important in the field of molecular biology. Two important
problems in this considerably nascent field of computational
biology are the inference of gene regulatory networks and
the inference of protein-protein interaction networks. This
paper first looks at how the genes and proteins interact with

themselves and then discusses the inference of an integrative
cellular network of genes and proteins combined.

Gene regulation is one of the many fascinating processes
taking place in a living organism whereby the expression and
repression of genes are controlled in a systematic manner.
With the help of the enzyme RNA polymerase, DNA tran-
scribes into mRNA which may or may not translate into
proteins. It is found that in certain special cases mRNA is
reverse-transcribed to DNA. The processes of transcription
and translation are schematically represented in Figure 1,
where the interactions in black show the most general
framework and the interactions depicted in red occur less
frequently. Transcription factors (TFs), which are a class of
proteins, play the significant role of binding onto the DNA
and thereby regulate their transcription. Since the genes may
be coding for TFs and/or other proteins, a complex network
of genes and proteins is formed.The level of activity of a gene
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Figure 1: Central dogma of molecular biology.

is measured in terms of the amount of resulting functional
product, and is referred to as gene expression. The recent
high-throughput genomic technologies are able to measure
the gene expression values and have provided large-scale
data sets, which can be used to obtain insights into how the
gene networks are organized and operated. One of the most
encountered representations of gene regulatory networks is
in terms of a graph, where the genes are depicted by its nodes
and the edges represent the interactions between them.

The gene regulatory network (GRN) inference problem
consists in understanding the underlying system model [6–
10]. Simply stated, given the gene expression data, the acti-
vation or repression actions by a set of genes on the other
genes need to be identified.There are several issues associated
with this problem, including the choice of models that
capture the gene interactions sufficiently well, followed by
robust and reliable inference algorithms that can be used to
derive decisive conclusions about the network. The inferred
networks vary in their sophistication depending on the extent
and accuracy of the prior knowledge available and the type of
models used in the process. It is also important that the gene
networks thus inferred should possess the highly desirable
quality of reproducibility in order to have a high degree of
confidence in them. A sufficiently accurate picture of gene
interactions could pave the way for significant breakthroughs
in finding cures for various genetic diseases including cancer.

Protein-protein interactions (PPIs) are of enormous sig-
nificance for theworkings of a cell. Insights into themolecular
mechanism can be obtained by finding the protein interac-
tions with a high degree of accuracy [11, 12]. The protein
interaction networks not only consist of the binary interac-
tions, rather, in order to carry out various tasks, proteins work
together with cohorts to form protein complexes. It should be
emphasized that a particular proteinmay be a part of different
protein complexes, and hence the inference problem is much
more complicated. The existing high-throughput proteomic
data sets enable the inference of protein-protein interactions.
However, it is found that the protein-protein interactions
obtained by using different methods may not be equivalent,
indicating that a large number of false positives and negatives
are present in the data. Similar to the representation of gene
regulatory networks, protein-protein interaction networks
will also be modeled in terms of graphs, where the proteins
denote the nodes and the edges signifywhether an interaction
is present between the adjacent nodes.

Many statistical methods have been applied extensively
to solve various bioinformatics problems in the last decade.
There are several papers that provide excellent review of
various statistical and computational techniques for inferring
genomic and proteomic networks [2, 12]. However, it is
important to understand the fundamental similarities and
differences that characterize the two inference problems.This
paper provides an overview of the most recent statistical
methods proposed for the inference of GRNs and PPI net-
works. For gene network inference, three large classes of
modeling and inferencing techniques will be presented,
namely, probabilistic graphical modeling approaches, infor-
mation theoretic methods, and state-space representation
models. Clustering and probabilistic graphical modeling
methods which comprise the largest class of statistical meth-
ods using PPI data are reviewed for the protein-protein
interaction networks. Through a concise review of these
contemporary algorithms, our goal is to provide the reader
with a sufficiently rich understanding of the current state-of-
the-art techniques used in the field of genomic and proteomic
network inference.

The rest of this paper is organized as follows. Section 2
describes some of the data sets available for the inference
of genomic and proteomic networks. Section 3 reviews the
recent statistical methods employed to infer gene regulatory
networks. Protein-protein network inferencing techniques
are reviewed in Section 4. The methods for obtaining an
integrated network with gene network and protein-protein
as subnetworks are given in Section 5. The inferred network
evaluation is discussed in Section 6. Finally, conclusions are
drawn in Section 7.

2. Available Biological Data

The postgenomic era is distinguished by the availability of
huge amount of biological data sets which are quite heteroge-
nous in nature and difficult to analyze [3]. It is expected that
these data sets can aid in obtaining useful knowledge about
the underlying interactions in gene-gene and protein-protein
networks.This section reviews some of themain types of data
used for the inference of genomic and proteomic networks,
including, gene expression data, protein-protein interaction
data, and ChIP-chip data.

2.1. Gene Expression Data. Of all the available datasets, gene
expression data is the most widely used for gene regulatory
network inference. Gene expression is the process that results
in functional transcripts, for example, RNA or proteins, while
utilizing the information coded on the genes. The level of
gene expression is an important indicator of how active a
gene is and is measured in the form of gene expression
data. Similarity in the gene expression profiles of two genes
advocates some level of correlation between them. In this
paper, the gene expression data is denoted by means of a
random variable x(𝑡), where 𝑡 stands for the time index.

2.1.1. cDNA-Microarray Data. One way of generating cDNA-
microarray data is via theDNAmicroarray technology, which
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Figure 2: Expression estimation in RNA-Seq.

is by far themost popular method employed for this purpose.
The number of data samples is in general much smaller
than the number of genes. A main drawback associated with
cDNA-microarray data is the noise in the observed gene
expressions. Although the gene expression values should be
continuous, the inability tomeasure them accurately suggests
the use of discretized values.

2.1.2. RNA-Seq Data. The recent advancement of sequencing
technologies has provided the ability to acquiremore accurate
gene expression levels [13]. RNA-Seq is a novel technology for
mapping and quantifying transcriptomes, and it is expected
to replace all the contemporary methods because of its
superiority in terms of time, complexity, and accuracy. The
gene expression estimation in RNA-Seq begins with the
reverse transcription of RNA sample into cDNA samples,
which undergo high-throughput sequencing, resulting in
short sequence reads. These reads are then mapped to the
reference genome using a variety of available alignment tools.
The gene expression levels are estimated using the mapped
reads, and several algorithms have been proposed in the
recent literature to find efficient and more accurate estimates
of the gene expression levels. This process is summarized in
Figure 2. The gene expression data obtained in this manner
has been found to be much more reproducible and less noisy
as compared to the cDNA microarrays. The next subsection
describes the data used for PPI network inference.

2.2. Protein-Protein Interaction Data. Large-scale PPI data
have been produced in recent years by high-throughput
technologies like yeast two-hybrid and tandem affinity purifi-
cation, which provide stable and transient interactions, and
mass spectrometry, which indicates the protein complexes
[11, 12]. These data sets, in addition to being incomplete
also consist of false positives, and, therefore, the interactions
found in various data sets may not agree with each other.
Owing to this disagreement, it is imperative to make use
of statistical methods to infer the PPI networks by finding
reliable and reproducible interactions and predict the inter-
actions not found yet in the currently available data.

2.3. ChIP-Chip Data. ChIP-chip data, which is an abbre-
viation of chromatin immunoprecipitation and microarray
(chip), investigates the interactions between DNA and pro-
teins.This data provides information about the DNA-binding

proteins. Since some of the genes encode for transcription
factors (TFs) which in turn regulate some other genes and/or
proteins, this information comes in hand for the inference
of gene networks [10] and the integrated network. However,
generating the ChIP-chip data for large genome would be
technically and financially difficult.

2.4. Other Data Sets. Apart from the data sets described
above, gene deletion and perturbation data are worth men-
tioning here. Perturbation data set is generated by performing
an initial perturbation and then letting the system to react
to it [14]. The gene expression values at the following time
instants and at steady-state are measured, thereby obtaining
the response of the genes to the specific perturbation which
could be the increase or decrease of the expression level of all
or certain genes. Gene deletion dataset, as the name indicates,
involves deleting a gene and measuring the resulting expres-
sion level of other genes. This data may effectively uncover
simple direct relationships [14].

3. Modeling and Inferring Gene
Regulatory Networks

Gene regulatory networks capture the interactions present
among the genes. Accurate and reliable estimation of gene
networks is significantly crucial and can reap far-reaching
benefits in the field of medicinal biology, for example, in
terms of developing personalized medicines. The following
subsections review the main statistical methods used for
inference of gene regulatory networks. First, the important
class of probabilistic graphical models is presented.

3.1. Probabilistic Graphical Modeling Techniques. Probabilis-
tic graphical models have emerged as a useful tool for reverse
engineering gene regulatory networks. A gene network is
represented by a graph G = (𝑉, 𝐸), where 𝑉 represents
the set of vertices (genes), and 𝐸 denotes the set of edges
connecting the vertices.The vertices of the graph aremodeled
as random variables and the edges signify the interaction
between them. The expression value of gene 𝑖 is denoted by
𝑋

𝑖
, and the total number of genes in the network is denoted

by 𝑁. The following subsections briefly describe some of the
robust and popular graphical modeling techniques for gene
network inference.

3.1.1. Bayesian Networks. Bayesian networks model the gene
regulatory networks as directed acyclic graphs (DAGs). To
simplify the inference process, the probability distribution
of DAG-networks is generally factored in terms of the
conditional distributions of each random variable given its
parents:

𝑃 (X) =

𝑁

∏
𝑖=1

𝑃 (𝑋
𝑖
| 𝑃𝑎 (𝑋

𝑖
)) , (1)

where 𝑃𝑎(𝑋
𝑖
) denotes the parent of node 𝑋

𝑖
. The gene

regulatory network is inferred by using the Bayesian net-
work learning techniques. This is done by maximizing the
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probability 𝑃(G | D), where D denotes the available gene
expression data. Several scoring metrics have been proposed
to obtain the best graph structure [15]. The network, thus,
obtained is unique to the extent of equivalence class; that is,
the independence relationships are uniquely identified.

The gene expression data available to date consist of very
few data points, while the number of genes is substantially
larger, rendering the system to be underdetermined. As an
alternative to finding the complete networks, scientists have
proposed looking at certain important features, for example,
Markov relations and order relations. If a gene𝑋 is present in
the minimal network blanketing the gene 𝑌, then a Markov
relation is said to be established. A relationship between two
genes is referred to as an ordered relation if a particular
gene 𝑋 appears to be a parent of another gene 𝑌 in all the
equivalent networks. By aggregating this information, it is
possible to infer the underlying regulatory structure robustly
and reliably. The network structure inferred in this manner
looks at the static interactions only. In order to cater for the
dynamic interactions inherent in gene networks, dynamic
Bayesian networks (DBNs) have been used [16, 17].

3.1.2. Qualitative Probabilistic Networks. A novel method of
modeling gene networks is via the usage of qualitative prob-
abilistic networks (QPNs), which represent the qualitative
analog of the DBNs [18]. The structural and independence
properties of QPNs are the same as those of Bayesian net-
works. However, instead of being concerned about the local
conditional probabilities of the random variables, the former
class of models looks at how the changes in probabilities
of the random variables affect the probabilities of their
immediate parents. This change is measured in qualitative
terms instead of quantitative values, that is, whether the
probabilities increase, decrease, or stay the same as shown in
Figure 3.

Two important properties of QPNs are the qualitative
influences and the qualitative synergies. A positive influence
denoted by 𝐼

+(𝑋, 𝑌) indicates the greater possibility of 𝑌

having a higher value when that of 𝑋 is high and vice versa,
irrespective of all other variables; that is,

𝐼
+
(𝑋, 𝑌) iff 𝑃 (𝑦 | 𝑥,𝑊) > 𝑃 (𝑦 | −𝑥) . (2)

In the case of three variables, QPNs look at the synergies.
A positive additive synergy, denoted by 𝑆+({𝑋, 𝑌}, 𝑍), exists
when the combined effect of the parent nodes is greater on
the child node than their individual effects given by

𝑆
+
({𝑋, 𝑌} , 𝑍) iff 𝑃 (𝑧 | 𝑥, 𝑦,𝑊) + 𝑃 (𝑧 | −𝑥, −𝑦,𝑊)

> 𝑃 (𝑧 | 𝑥, −𝑦,𝑊) + 𝑃 (𝑧 | −𝑥, 𝑦,𝑊) .

(3)

QPNs, thus, provide more insight into the gene networks
by indicating whether a particular gene is a promoter or an
inhibitor.

3.1.3. Graphical Gaussian Models. Graphical Gaussian mod-
els, also known as covariance selection or concentration

𝑋

𝑌

𝑍

𝑈

𝑋
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𝑍

𝑈

+

+ −

Figure 3: Qualitative probabilistic network (red) for a Bayesian
network (blue).

graph models, provide a simple and effective way of charac-
terizing the gene interactions [19, 20]. This method relies on
assessing the conditional dependencies among genes in terms
of partial correlation coefficients among the gene expressions
and results in an undirected network. A covariance matrix
is estimated using the available gene expression data sets.
Suppose that X ∈ R𝑛×𝑛 denotes the gene expression data
matrix, where the rows correspond to observations and
the columns correspond to genes, then an estimate of the
covariance matrix is obtained by

Ŵ =
1

𝑁 − 1
X𝑇X. (4)

Assuming invertibility of Ŵ, the partial correlations can be
determined as

�̂�
𝑖𝑗
= −

�̂�
𝑖𝑗

√�̂�
𝑖𝑖
�̂�

𝑗𝑗

, (5)

where �̂�
𝑖𝑗
denotes the partial correlation between genes 𝑖 and

𝑗.

3.1.4. Graphical LASSO Algorithm. A major drawback of the
covariance-matrix-estimation-based methods is their unre-
liability due to the small number of data samples. Making
use of the fact that gene networks are inherently sparse, it is
possible to obtain the dependencies between genes by means
of a penalized linear regression approach [20]. The graphical
Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm solves the network inference problem efficiently by
maximizing the following penalized likelihood function:

2

𝑛
𝑙 (W) = log (det (W)) − trace (ŴW) − 𝜌‖W‖1, (6)
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Figure 4: State-Space model.

where 𝜌 controls the sparsity of the network, notation || ⋅ ||
1

represents the 𝑙
1
-norm, andW denotes the covariancematrix.

This minimization can be carried out by using block gradient
descent methods, the details of which can be found in [20]
and the references therein.

3.2. State-Space Representation Models. One of the earliest
and widely used methods of modeling gene networks is by
employing the state-space representation models [21]. As
opposed to other classes, all the methods belonging to this
classmodel the dynamic evolution of the gene network.These
models generally consist of two sets of equations, the first set
of equations representing the evolution of the hidden state
variables denoted by z(𝑡), and the second set of equations
relating the hidden state variables with the observed gene
expression data, denoted by x(𝑡) as depicted in Figure 4. The
functions 𝑔(⋅) and ℎ(⋅) describe the evolution of hidden and
observed variables, respectively. Next, in this section we will
describe variousmodels for gene network inference using the
state-space representation model.

3.2.1. Linear State-SpaceModel. The simplest model for state-
space equations is the linearGaussianmodel given by [21, 22]:

z (𝑡) = Az (𝑡 − 1) + V (𝑡) ,

x (𝑡) = Cz (𝑡) + w (𝑡) ,
(7)

where A is a matrix representing the regulatory relations
between the genes, and 𝑡 stands for the discrete time points.
Difference equations are used in place of differential equa-
tions because discrete observations are available in the gene
expression data. The noise components V(𝑡) and w(𝑡) repre-
sent the system and the measurement noise, respectively, and
are assumed to beGaussian.Thenoisemodels the uncertainty
present in the estimated gene expression data. The matrix C
is generally considered to be an identity matrix. Inference in
gene networks modeled by the state-space representation (7)
can be performed using standard Kalman filter updates. The
simplicity of the state-space model avoids overfitting of the
network, and therefore, it provides reliable results.

3.2.2. Nonlinear Models. While it is useful to represent
gene networks by simple models to ease the computational
complexity, it is also imperative to incorporate nonlinear
effects into the system equations, since the genes are known
to interact nonlinearly [23]. A particular function that is
frequently used to capture the nonlinear effects is the sigmoid

squash function defined below in (9) [24]. The nonlinear
state-space representation model capturing the gene interac-
tions is described by the following system of equations:

z (𝑡) = Az (𝑡 − 1) + B𝑓 (z (𝑡 − 1) ,𝜇) + I
0
+ V (𝑡) , (8)

where the 𝑗th entry of vector function 𝑓(⋅) is given by the
sigmoid squash function:

𝑓
𝑗
(𝑧

𝑗
, 𝜇

𝑗
) =

1

1 + 𝑒−𝜇𝑗𝑧𝑗
, (9)

where 𝜇 is a parameter to be identified. Matrix A represents
the linear relationships between the genes, while matrix B
characterizes the nonlinear interactions. The problem, thus,
boils down to the estimation of the following unknowns in
the system:

𝜃 = [A,B,𝜇, I
0
] , (10)

where I
0
models the constant bias. One way of solving these

equations is by using the extended Kalman filter (EKF) [24],
which is a popular algorithm for solving nonlinear state-
space equations. EKF algorithm provides the solution by
approximating the nonlinear system by its first-order linear
approximation. Other variants of Kalman filter algorithm like
the cubature Kalman filter (CKF), unscented Kalman filter
(UKF), and particle filter algorithmare also used to solve such
inference problems [25].

However, for many studies, the considered nonlinear
model is comprised of a large number of unknowns and in
order to estimate these unknown variables with considerable
accuracy, data sets consisting of a large number of samples
are required.The availability of smaller data sets represents an
insurmountable obstacle in the reliable estimation of a large
number of unknowns. This problem can be partially avoided
by simplifying themodel to include only nonlinear terms, and
thus reducing the number of unknown parameters to the bare
minimum [25] and by approximating 𝜇 to be one.The system
of equations corresponding to such a parsimonious scenario
is then given by

z (𝑡) = B𝑓 (z (𝑡 − 1)) + V (𝑡) , (11)

where 𝑓 is the function defined previously.

3.2.3. Models with Sparsity Constraints. A crucial feature for
many gene networks is their inherent sparsity; that is, all
genes in the network are connected to a few other genes
only. Therefore, matrices A and B depicting the regulatory
relations between the genes are expected to contain only very
few nonzero values as compared to the size of these matrices.
Therefore, one may apply shrinkage-based methods like
LASSO [25, 26] for parameter estimation and parsimonious
model selection. One of the ways for inferring models with
sparsity constraints is to perform dual estimation, which
involves estimating the states and the parameters one by one.
The hidden states can be estimated using the particle filter
algorithm, and once all the estimates for the hidden states are
obtained, they can be stacked together to form a matrix and
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thus the following system of equations is obtained to perform
the parameter estimation:

[
[
[
[

[

𝑧
𝑛1

𝑧
𝑛2

...
𝑧
𝑛𝐼

]
]
]
]

]

=

[
[
[
[
[

[

𝑓 (𝑧
0,1

) . . . 𝑓 (𝑧
0,𝑁

)

𝑓 (𝑧
1,1

) . . .
...

...
. . .

𝑓 (𝑧
𝐼−1,1

) 𝑓 (𝑧
𝐼−1,𝑁

)

]
]
]
]
]

]

[
[
[
[

[

𝑏
𝑛1

𝑏
𝑛2

...
𝑏
𝑛𝑁

]
]
]
]

]

+

[
[
[
[

[

V
𝑛1

V
𝑛2

...
V
𝑛𝐼

]
]
]
]

]

,

(12)

which can be expressed compactly in vector/matrix-form
representation as

z
𝑛
= Φb

𝑛
+ V

𝑛
. (13)

LASSO operates on this system of equations and produces a
parameter vector b

𝑛
by minimizing the criterion [27]:

min
b𝑛

1

2

z𝑛 −Φb
𝑛


2

2
+ 𝜌

b𝑛

1. (14)

The parameter estimates obtained using LASSO-based algo-
rithms appear to bemore reliable than the estimates provided
by other approaches [25].

3.2.4. State-Space Models for Time-Delayed Dependencies.
The state-space models discussed so far do not consider
time delays whereas it has been found that time-delayed
interactions are present in gene networks [28] due to the time
required for the processes of transcription and translation to
take place. One of the ways to model this phenomenon is by
adopting the following state-space model:

z (𝑡) = Az (𝑡 − 1) + Bu (𝑡 − 𝜏) + V (𝑡) ,

x (𝑡) = Cz (𝑡) + w (𝑡) .
(15)

In this state-space model, the input is considered to be the
expression profile of a regulator such as a transcription factor.
Here,A stands for the𝑁×𝑁 state transitionmatrix, while𝑁×

𝑝 matrix B captures the effect of 𝑝 regulators on the system.
The value of the time delay 𝜏 is obtained by finding the best
fit over a range of possible values using Akaike’s information
criterion (AIC) in order to avoid overfitting the network.

3.3. Information Theoretic Methods. Information theoretic
methods have provided some of the most robust and reliable
algorithms for gene network inference and form the basis of a
standard in this field [29–31]. A particular advantage associ-
ated with these methods is their ability to work with minimal
assumptions about the underlying network.This is in contrast
with the probabilistic graphical modeling techniques as well
as the state-space models, both of which have their own set
of assumptions. As highlighted previously, aMarkov network
provides an undirected network, while Bayesian networks are
not able to incorporate cycles or feedback loops. State-space
models apart from the linear Gaussian model make critical
assumptions on the model structure. These drawbacks are
not present in the case of information theoretic methods.The
following discussion presents the main information theoretic
approaches for inferring gene regulatory networks.

3.3.1. Finding the Correlation between Genes. Two of themost
fundamental concepts in information theory are mutual
information and entropy. Mutual information between two
random variables𝑋 and 𝑌 is defined as [32]

𝐼 (𝑋; 𝑌) = ∑
𝑥,𝑦

[𝑝 (𝑥, 𝑦) log
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
]

= 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) ,

(16)

where 𝐻 denotes the entropy or the uncertainty present in a
random variable, and it is given by

𝐻(𝑋) = −∑
𝑥

𝑝 (𝑥) log𝑝 (𝑥) . (17)

Mutual information measures the correlation between two
random variables. In the context of gene network inference,
a higher mutual information between two genes indicates
a higher dependency, and therefore, a possible interaction
between them. Some of the most important and robust algo-
rithms for gene network inference make use of the mutual
information for finding the interacting genes [29, 30].

3.3.2. Identifying Indirect Interactions between Genes. If the
mutual information between two genes is greater than a cer-
tain threshold, it indicates some correlation between them.
However, this information alone is not sufficient to decide
whether the genes are connected directly or indirectly via
an intermediate gene. The data processing inequality (DPI)
provides some insight to assesswhether such a scenario holds.
In case of three genes forming a Markov chain as shown in
Figure 5, DPI can be expressed as

𝐼 (𝑋; 𝑌) ≤ min [𝐼 (𝑋; 𝑍) , 𝐼 (𝑌; 𝑍)] . (18)

Using this inequality, it is found that the interaction with the
least mutual information is an indirect one. This method is
employed in ARACNE [29], which has become a standard
algorithm for gene network inference. However, DPI fails to
hold in situations where one of the three genes is a parent
gene to the other two genes. Conditional mutual information
has been proposed to be used in such cases [30]. Conditional
mutual information is defined as

𝐼 (𝑋; 𝑌 | 𝑍) = ∑
𝑋,𝑌,𝑍

[𝑝 (𝑥, 𝑦, 𝑧) log
𝑝 (𝑥, 𝑦 | 𝑧)

𝑝 (𝑥 | 𝑧) ⋅ 𝑝 (𝑦 | 𝑧)
]

= 𝐻 (𝑋,𝑍) + 𝐻 (𝑌, 𝑍) − 𝐻 (𝑍) − 𝐻 (𝑋, 𝑌, 𝑍) .

(19)

If 𝐼(𝑋; 𝑌 | 𝑍) is much less than 𝐼(𝑋; 𝑌), it implies that 𝑍 is
a parent of the genes 𝑋 and 𝑌 as shown in Figure 5. In case
the two quantities are almost equal, it means that the gene 𝑍
does not have any influence on the other two genes.Therefore,
by employing the idea of conditional mutual information,
indirect interactions in the case of common cause can be
sifted.
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𝑋

𝑌

𝑍 𝑋

𝑌

𝑍

𝑋

𝑌

𝑍

Figure 5: Markov chain (blue) and common cause (red).

3.3.3. Finding the Directed Networks. Calculating the mutual
information using static data does not provide any infor-
mation about the directed relationships. On the other hand,
using time series data may indicate the directionality of
interactions as well [33]. Mutual information for time series
data can be expressed as

𝐼 (𝑋
𝑡+1

; 𝑌
𝑡
) = ∑

𝑥𝑡+1,𝑦𝑡

[𝑝 (𝑥
𝑡+1

, 𝑦
𝑡
) log

𝑝 (𝑥
𝑡+1

, 𝑦
𝑡
)

𝑝 (𝑥
𝑡+1

) 𝑝 (𝑦
𝑡
)
] .

(20)

If a high value is obtained for 𝐼(𝑋
𝑡+1

; 𝑌
𝑡
), it signifies a

directed relationship from gene 𝑌 to 𝑋. While using these
methods, the determination of the significance threshold is
of considerable importance and can be estimated based on
the prior knowledge about the network.

The information theoretic quantities discussed so far are
symmetric (or bidirectional) and do not provide any infor-
mation about the directionality by themselves. Some new
metrics have been proposed recently to infer asymmetric or
one-directional relationships such as the 𝜙-mixing coefficient
defined as [34]:

𝜙 (𝑌 | 𝑋) = max
𝑆⊆𝐴,𝑇⊆𝐵

|Pr {𝑌 ∈ 𝑇 | 𝑋 ∈ 𝑆} − Pr {𝑌 ∈ 𝑇}| .

(21)

In other words, this coefficient provides a measure of inde-
pendence or difference between two genes𝑋 and 𝑌. DPI also
holds true for the 𝜙-mixing metric, and therefore, it can be
used to identify the indirect interactions as in the case of
mutual information.

3.3.4. Time-Delayed Dependencies. Another way of finding
directed relationships is by detecting the time-delayed depen-
dencies by using time series data. The time instants at which
the mutual information goes above or drops below the
thresholds 𝜏up and 𝜏down, respectively, are noted [35]. These
instants are called the initial change of expression (IcE) times
and are defined as

IcE (𝑥
𝑎
) = arg min

𝑗

{
𝑥𝑗

𝑎

𝑥0

𝑎

≥ 𝜏up or
𝑥𝑗

𝑎

𝑥0

𝑎

≤ 𝜏down} . (22)

It can be seen that a gene 𝑥
𝑎
can be a regulator for gene 𝑥

𝑏
if

and only if (iff) IcE(𝑥
𝑎
) < IcE(𝑥

𝑏
). The mutual information

in this case is given by

𝐼
𝑘
(𝑥

𝑎
; 𝑥

𝑏
) = ∑

𝑖=1

[𝑝 (𝑥
𝑖

𝑎
, 𝑥

𝑖+𝑘

𝑏
) log

𝑝 (𝑥𝑖

𝑎
, 𝑥𝑖+𝑘

𝑏
)

𝑝 (𝑥𝑖

𝑎
) 𝑝 (𝑥𝑖+𝑘

𝑏
)
] , (23)

where the delay is denoted by 𝑘. The next step consists
in finding the maximum of the mutual information values
calculated for all the time delays; that is,

𝐼 (𝑥
𝑎
, 𝑥

𝑏
) = max

𝑘

{𝐼
𝑘
(𝑥

𝑎
, 𝑥

(𝑘)

𝑏
)}

for 𝑘 = 1, 2, . . . ,while IcE (𝑥
𝑎
) ≤ IcE (𝑥

𝑏
) .

(24)

If the value of the maximum mutual information is greater
than a prespecified threshold, it is concluded that a directed
relationship exists from 𝑥

𝑎
to 𝑥

𝑏
. The calculation of threshold

is very important in all the information theoretic methods
which is selected on the basis of the predetermined 𝑃-
value [29]. This helps to obtain networks with the required
significance value.

3.3.5. Model Selection. An important and necessary step in
the implementation of the above-mentioned algorithms is
the model selection. A network formed by using mutual
information alone will result in an overfitted structure, and
therefore, model selection becomes imperative. Minimum
description length (MDL) principlewas proposed as a general
approach for model selection. MDL states that the network
with the shortest coding length should be selected. For a
network with a large number of nodes, the coding length will
be large and vice versa. MDL principle provides a trade-off
and aids in selecting only the significant interactions between
the genes. MDL was applied in various ways in finding the
coding length of the network and the probability densities
associated with it [33]. Another way of using this principle is
in conjunction with the maximum likelihood (ML) principle
which results in a more general algorithm [36]. Further
details on this algorithm can be found in [36].Thus, it appears
that the tools of information theory are quite powerful in
modeling and inferring gene regulatory networks.

4. Inferring the Protein-Protein
Interaction Networks

Having examined the gene network inference problem, this
section describes the statistical methods that are used to find
reliable and complete protein-protein interaction networks.
As opposed to gene networks which aremostly inferred using
the expression data or the likes of it, inference of PPI networks
can be carried out in various ways such as phylogenetic
profiling and identification of structural patterns. This paper
focuses only on the methods that employ PPI data to make
inference. The given data in this scenario are the protein-
protein interactions. However, such data sets consist of a
large number of false positives and negatives and are far from
being complete and homogeneous. Therefore, only a small



8 Advances in Bioinformatics

overlap is found between the PPI data sets obtained from
various sources. However, it is observed that the interactions
predicted by more than one method are more reliable [37].
One of the challenges is the large number of interactions indi-
cated by the PPI data as opposed to the considerably fewer
interactions assumed to be present in reality. Therefore, the
problem in this scenario is to find more reliable interactions
and predict the yet unknown interactions. In addition, the
protein interactions can be of different types ranging from
stable ones to transient ones [37].

It is to be noted that as opposed to the gene networks,
a lot of work can still be done for protein-protein network
inference using the probabilistic methods. In a living organ-
ism, several proteins work together to carry out various tasks
forming a protein complex. Most of the PPI data consists of
binary interactions only and it is very rare to find interactions
between more than two proteins simultaneously. Hence,
identification of protein complexes is of prime importance to
gain a better understanding of the cellular network.

Detecting protein complexes is a fundamental area of
study of protein networks [38], for which various clustering
methods were applied. One of the various ways of identifying
the protein complexes include graph segmentation, where
the graph is clustered into subgraphs using cost-based search
algorithms. Another approach is broadly categorized as
conservation across species [38], where alignment tools are
used to find the complexes that are common in multiple data
sets coming from different species. In what follows, some of
the recently proposed probabilistic graphical-modeling- and
clustering-based methods are described.

4.1. Markov Networks. The available PPI data look mostly at
the binary interactions, and interactions of three or more
genes are hard to find. However, it is important to look at
the interacting proteins holistically. Markov networks are
probabilistic graphical modeling techniques which result
in undirected graphs. Suppose X = {𝑋

1
, . . . , 𝑋

𝑁
} is a

vector of random variables modeling the proteins.Their joint
distribution is captured in terms of the potentials 𝜓

𝑐
∈ Ψ.

The random variables X
𝑐
that are connected to each other

are called the scope for the particular potential 𝜓
𝑐
. The joint

probability distribution is then given by

𝑃 (X = x) = 1

𝑍
∏
𝑐∈𝐶

𝑒
𝜓𝑐(x𝑐), (25)

where 𝑍 is the normalizing constant also called the parti-
tion function. In this way, a compact representation of the
probability distribution is obtained. The network structure
is learned by using the independence properties of Markov
networks using the available PPI data. The details of this
method can be found in [37].

4.2. Bayesian Networks. Another way of modeling PPI net-
works is by means of Bayesian networks (BNs) [39], which
represent a probabilistic graphical modeling technique. The
inference algorithm is based on finding the conditional
probability densities 𝑃(𝑋

𝑖
| 𝐶), where 𝐶 denotes the class

variable, and 𝑋
𝑖
denotes the 𝑖th node in the network. A

particular strength of BNs is their ability to estimate model
parameters even in the presence of incomplete data, which is
often the case with the PPI networks. This fact makes BN a
perfectly suited method for modeling protein networks. One
way of estimating themodel parameters is via the Expectation
Maximization (EM) algorithm [39]. The joint probability
distribution is expressed as

𝑃 (𝐶,𝑋
1
, . . . , 𝑋

𝑁
) = 𝑃 (𝐶)∏

𝑖

𝑃 (𝑋
𝑖
| 𝐶) . (26)

Assuming all the random variables to be independent of each
other, the posterior density is given by

𝑃 (𝐶 | 𝑋
1
, . . . , 𝑋

𝑁
) = 𝑃 (𝐶)∏

𝑖

𝑃 (𝑋
𝑖
| 𝐶)

𝑃 (𝑋
𝑖
)

. (27)

Once the model parameters are known, prediction can be
made about random variables for which the data may not
be available. Therefore, this algorithm provides a suitable
method for finding protein complexes.

4.3. Graphical Clustering Methods. One of the ways of graph
clustering is based on supervised learning [12, 38]. The
subgraphs aremodeled using Bayesian networks, and the fea-
tures consist of topological patterns of graphs and biological
properties. Rather than assuming the widely used cliqueness
property, which considers all the nodes to be connected
with each other, the algorithm looks for the properties that
are inferred from already known complexes. Two important
features are the label 𝐶 indicating whether a subgraph is
a complex and the number of nodes 𝑁. The other feature
descriptors including degree statistics, graph density, and
degree correlation statistics are indicated by 𝑋

1
, . . . , 𝑋

𝑚
and

are considered independent given 𝐶 and 𝑁. The number of
nodes in and off itself is an important feature. Its importance
can be seen from the fact that a larger number of nodes in
a subgraph indicate a lesser probability of it being a clique.
All the subgraphs are assigned scores by making use of
these properties. One way of finding how probable it is for
a subgraph to be a protein complex is to perform simple
hypothesis testing by calculating the following conditional
probability [12, 38]:

𝐿 = log
𝑝 (𝑐

1
| 𝑥

1
, . . . , 𝑥

𝑚
)

𝑝 (𝑐
0
| 𝑥

1
, . . . , 𝑥

𝑚
)

= log
𝑝 (𝑛 | 𝑐

1
)∏

𝑚

𝑘=1
𝑝 (𝑥

𝑘
| 𝑛, 𝑐

1
)

𝑝 (𝑛 | 𝑐
0
)∏

𝑚

𝑘=1
𝑝 (𝑥

𝑘
| 𝑛, 𝑐

0
)
,

(28)

where the posterior probabilities are calculated via Bayes rule
as
𝑝 (𝑐

𝑖
| 𝑛, 𝑥

1
, . . . , 𝑥

𝑚
)

=
𝑝 (𝑛, 𝑥

1
, . . . , 𝑥

𝑚
| 𝑐

𝑖
= 1) 𝑝 (𝑐

𝑖
= 1)

𝑝 (𝑛, 𝑥
1
, . . . , 𝑥

𝑚
)

=
𝑝 (𝑥

1
, . . . , 𝑥

𝑚
| 𝑛, 𝑐

𝑖
= 1) 𝑝 (𝑛 | 𝑐

𝑖
= 1) 𝑝 (𝑐

𝑖
= 1)

𝑝 (𝑛, 𝑥
1
, . . . , 𝑥

𝑚
)

.

(29)
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These probability densities can be calculated usingmaximum
likelihood methods. By comparing the obtained score to
a predetermined threshold, some of the subgraphs can be
labeled to be complexes. This algorithm takes the weighted
matrix of PPI data as input, where the weights are assigned
using the likelihood of any particular interaction. Several
other graphical-clustering-based methods are surveyed in
[12].

4.4. Matrix Factorization Methods for Clustering. Nonnega-
tive matrix factorization (NMF) is a method widely used in
problems of clustering. Application of this technique has been
proposed recently in [40], where an ensemble of nonnegative
factored matrices obtained using protein-protein interaction
data are combined together to perform soft clustering. The
importance of this step lies in the fact that a particular object
may belong tomultiple classes. Hence, the various algorithms
reported in the literature performing hard clustering may not
be of much benefit in such scenarios. This ensemble NMF
method is observed to classify the proteins in accordance
with the functions they perform and also identify themultiple
groups they belong to.

The algorithm produces 𝜏 base clusterings by factorizing
the symmetric data matrix 𝑆 of protein interactions in the
following manner [40]:

min
V>0


S − VVT

2

𝐹
, (30)

where || ⋅ ||
𝐹
denotes the Frobenius norm. The factors V

produced in thismanner are not unique. Let 𝑘
𝑖
be the number

of clusters in the 𝑖th base cluster, each with a different value
in order to promote diversity. Once the ensemble of factored
matrices is available, the next step is to construct the graph
by combining the information present in them. Parameter
𝑙 = 𝑘

1
+ ⋅ ⋅ ⋅ + 𝑘

𝜏
gives the total number of basis vectors which

are denoted byV = {V
1
, . . . , V

𝑙
}. Each vector denotes a node on

the graph, and the edge weight is calculated using the Pearson
correlation for a pair of vector (V

𝑖
, V

𝑗
) given by

cor (V
𝑖
, V

𝑗
) =

1

2
(

(V
𝑖
− V

𝑖
)
𝑇
(V

𝑗
− V

𝑗
)

V𝑖 − V
𝑖
)
2 ⋅


V
𝑗
− V

𝑗

2

+ 1) . (31)

Having looked at the GRNs and PPI network inference
problems individually, we now proceed to review the recent
advancements in the joint modeling of the two networks.

5. An Integrated Cellular Network

The advances in reverse engineering of GRNs and PPI
networks have paved the way for joint estimation of GRNs
and PPI networks [41]. This is a step towards the inference of
an integrated network consisting of genes, proteins, and tran-
scription factors, indicating interactions among themselves
and each other. Figure 6 shows the schematic of an integrated
cellular network. In this section, we review two important
ways of estimating a joint network.

G1

TF1 TF2 TF3

G2

G3

G4

P1P2

P3

P4

Figure 6: An integrated cellular network.

5.1. Probabilistic Graphical Models for Joint Inference. Ref-
erence [41] proposed an interesting method for estimating
GRNs and PPI networks simultaneously. Suppose that the
gene expression is denoted by x and PPI data is represented by
y. The algorithm provides an undirected protein network 𝐺

𝑝

and a directed gene network 𝐺
𝑟
, modeled using Markov and

Bayesian networks, respectively, by maximizing their joint
distribution; that is,

𝑃 (𝐺
𝑟
, 𝐺

𝑝
| 𝑋, 𝑌) ∝ 𝑃 (𝐺

𝑟
, 𝐺

𝑝
, 𝑋, 𝑌)

= 𝑃 (𝑋 | 𝐺
𝑟
) 𝑃 (𝑌 | 𝐺

𝑝
) 𝑃 (𝐺

𝑟
, 𝐺

𝑝
) ,

(32)

where 𝑃(𝑋 | 𝐺
𝑟
, 𝐺

𝑝
) = 𝑃(𝑋 | 𝐺

𝑟
) and 𝑃(𝑌 | 𝐺𝑟, 𝐺

𝑝
) =

𝑃(𝑌 | 𝐺
𝑝
). The inference on Markov and Bayesian networks

is performed in the samemanner as explained in the previous
sections.The two subnetworks are estimated iteratively till the
algorithm converges. Further details on this algorithm can be
found in [41].

5.2. Joint Estimation Using State-Space Model. State-space
model can also be used to obtain an integrated network
of gene and protein-protein interactions [42, 43]. A novel
approach employing nonlinear model is proposed in [43],
where the system parameters are estimated using constrained
leastsquares. The gene expression is assumed to follow a
dynamic model given by

𝑥
𝑖 (𝑡 + 1) = 𝑥

𝑖 (𝑡) +

𝑁

∑
𝑗=1

𝑎
𝑖𝑗
𝑠
𝑖 (𝑡) − 𝜆

𝑖
𝑧
𝑖 (𝑡) + 𝑘

𝑖
+ 𝑤

𝑖 (𝑡) , (33)

where

𝑠
𝑗 (𝑡) = 𝑓

𝑖
(𝑦

𝑗 (𝑡)) =
1

1 + exp {− (𝑦
𝑗 (𝑡) − 𝜇

𝑗
) /𝜎

𝑗
}
, (34)



10 Advances in Bioinformatics

and 𝑦
𝑗
denotes the protein activity profile of 𝑗th transcription

factor, and its mean and standard deviations are represented
by 𝜇

𝑗
and 𝜎

𝑗
, respectively. The magnitude of 𝑎

𝑖𝑗
indicates

the strength of relationship between the 𝑗th TF and 𝑖th
gene, and the sign suggests whether it is an excitatory or
inhibitory relationship. The model in (33) suggests that the
gene expression level at 𝑡th time instant depends upon the
gene expression level at the previous time instant as well
as the protein activity level. The degradation effect of gene
expression is modeled by 𝜆

𝑖
, 𝑘

𝑖
is a constant representing

the basal level, and 𝑤
𝑖
(𝑡) is the Gaussian noise modeling the

uncertainties in the model and the errors in the data.
The protein activity level follows the following dynamic

model:

𝑦
𝑛 (𝑡 + 1) = 𝑦

𝑛 (𝑡) +

𝑀

∑
𝑚=1

𝑏
𝑛𝑚

𝑦
𝑛 (𝑡) 𝑦𝑚 (𝑡)

+ 𝛼
𝑛
𝑥
𝑛 (𝑡) − 𝛽

𝑛
𝑦
𝑛 (𝑡) + ℎ

𝑛
+ 𝜈

𝑛 (𝑡) ,

(35)

where 𝑏
𝑖𝑗
gives the relationship between the proteins, 𝛼

𝑛

indicates the translation effect of mRNA to protein, and 𝜈
𝑛
(𝑡)

is the Gaussian noise. The unknown parameters for both the
models are given by

𝜃
𝑖
= [𝑎𝑖1 ⋅ ⋅ ⋅ 𝑎

𝑖𝑁
𝜆
𝑖
𝑘
𝑖]

𝑇
,

𝜙
𝑛
= [𝑏𝑛1 ⋅ ⋅ ⋅ 𝑏

𝑛𝑀
𝛼
𝑛

𝛽
𝑛

ℎ
𝑛]

𝑇

(36)

and are estimated by solving a constrained least squares
problem [43]. Once the individual subnetworks are obtained,
they are merged together to form one cellular network with
the TFs connecting them together.

The problem of inferring an integrated network is in
relatively initial stages, and several avenues of research are
still open. Moreover, comparison studies are needed so as to
determine the merits and demerits of the different methods
in use.

6. Performance Evaluation

The inference accuracy can be assessed using the knowledge
of a gold-standard network or the true network. In order
to benchmark the algorithms, the correctly identified edges
or true positives (TPs) need to be calculated. In addition,
the number of false positives (FPs), or the edges incorrectly
indicated to be present, and false negatives (FNs) which is
the missed detection should also be counted [10]. With these
values in hand, true positive rate or recall; that is, TPR =

TP/(TP+FN), false positive rate; that is, FPR = FP/(FP+TN),
and positive predictive value; that is, PPV = TP/(TP + FP),
also called the precision, can be calculated. These quantities
enable us to view the performance graphically by the area
under the ROC curve which plots FPR versus the TPR.These
criteria are most widely used as the fidelity criterion for gene
network inference algorithms.

While it is possible to identify the gene regulatory
relationships experimentally, it would not only be techni-
cally prohibitive but also proved to be very costly. For this

reason, several in silico and in vivo networks have been
generated to assist in benchmarking the network inference
algorithms. Foremost among these are theDREAM (dialogue
on reverse engineering assessment and methods) [44] and
IRMA (in vivo reverse engineering andmodeling assessment)
[45] datasets. Reference [10] provides a unified survey of
some of the important algorithms in gene network inference
algorithms using these datasets.

7. Discussions and Conclusions

This paper reviews the main statistical methods used for
inference of gene and protein-protein networks. PPI network
inference can be carried out in a wide variety of ways by
exploiting phylogenetics information and sequencing data.
This paper focused only on those inference methods that
employ PPI data.

For the inference of gene regulatory networks, the prob-
lem can be simply stated as follows: given the gene expres-
sion data, find the interactions between the genes. Three
major classes of statistical methods were reviewed in this
paper: probabilistic graphical models, state-space models,
and information theoretic methods. For all these methods,
modeling as well as inferencing techniques was discussed.
It is observed that much progress has been made in the
field of GRN inference. However, almost all of the proposed
network inference methods in the literature work with only
the popular gene expression data sets. An interesting part
of future work could be integrating different data sets and
biological knowledge available to come up with better and
more robust algorithms.

Comparing the three broad classes of statistical methods
reviewed in the paper, it is found that the information
theoretic methods have advantages over the other methods
in terms of minimal modeling assumptions and, therefore,
are capable of modeling more general networks. Graphical
modeling techniques assume the network to be acyclic in case
of Bayesian network modeling and provide an undirected
graph when using Markov networks. The state-space non-
linear models work with nonlinear functions which may not
be the true representative of the underlying network, thereby
resulting in less robust algorithms.

In case of PPI network prediction, the most popular sta-
tistical method is clustering. In addition, probabilistic graph-
ical modeling techniques are also used. However, several
important avenues of research are still open. Since theMarkov
networks and Bayesian networks are able to model PPI
networks efficiently, other probabilistic graphical techniques
such as factor graphs could potentially be used for solving
this inference problem. Clustering methods are more suited
to the PPI network inference problem as the main emphasis
is on the identification of protein complexes. It is found that
certain important and popular modeling techniques may fail
to model PPI networks [46]. Also, clustering methods based
on mutual information could be used [47].

Several statisticalmethods have been proposed to infer an
integrated network of transcription regulation and protein-
protein interaction. A state-space model for integrated
network inference involves parameter estimation which
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indicates the strength of the inhibitory and excitatory reg-
ulations. As the cellular networks are known to be sparse,
employing sparsity-constrained least squares for parameter
estimation as proposed in [25] is expected to result in more
robust inference algorithms.

Recent years have shown tremendous and rapid progress
in the field of cellular network modeling. With the amount
and types of data sets increasing, algorithms combining
multiple datasets are necessary for future.
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