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Abstract: Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million
new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies
have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as
cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and
inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which
involved database search, virtual screening, and design of new potential leucine aminopeptidase
inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered
through Lipinski’s “rule of five,” and 25 081 of them were then subjected to molecular docking. Next,
three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for
the selected group of compounds with the best binding score results. The developed model, calculated
by leave-one-out method, showed acceptable predictive and descriptive capability as represented by
standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have
an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness
and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion,
and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were
potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro
and in vivo studies.

Keywords: leucine aminopeptidase inhibitor; 3,4-dihydroisoquinoline; molecular docking;
structure-based drug design; 3D-QSAR; drug-likeness

1. Introduction

Cancer incidence and mortality are rapidly increasing, and cancer is presently the most important
barrier to increase life expectancy worldwide. According to the World Cancer Report published by
the World Health Organization in 2020, cancer is the first or second cause of premature death (i.e.,
in the age group of 30–69 years) in 134 of 183 countries, and it ranks third or fourth in additional
45 countries [1]. The most commonly diagnosed types of cancer in both genders are lung cancer, female
breast cancer, colorectal cancer, prostate cancer, stomach cancer, and liver cancer. Lung cancer remains
the leading cause of cancer incidence and mortality globally [2].

Many studies have shown that overexpression of the metalloenzyme leucine aminopeptidase
(LAP) plays a role in the proliferation, migration, and invasion of tumor cells and in angiogenesis [3,4].
Leucine aminopeptidase 3 (LAP 3) was reported to be involved in the histological grade, lymph node
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metastasis, angiogenesis, proliferation, malignant development, and prognosis of endometrial cancer,
ovarian cancer, esophageal cancer, liver cancer, and glioma [3–7].

Activities of various aminopeptidases, including alanyl, arginyl, cystinyl, glutamyl, aspartyl, and
pyroglutamyl aminopeptidase, in breast cancer tissues was studied by Martinez et al. [8]. The activity of
alanyl, arginyl, and cystinyl aminopeptidases was observed to be increased in breast cancer. Oxytocin
inhibits the proliferation of human breast cancer cell lines and thus may play a role in preventing cancer.
Both cystinyl and leucine aminopeptidases cleave oxytocin and may be involved in the development
of breast cancer [8].

The process of introducing a novel drug in the market requires a huge investment in time and
money. It was estimated that approximately 2.6 billion dollars are required to develop and introduce a
drug in the market, and the cost has increased almost 150% in the last decade. However, the failure
rate has also increased to nearly 90% [9]. Various computer-aided drug discovery (CADD) techniques
are available that enable the development of new chemical entities. Structure-based drug design
(SBDD) and the knowledge of 3D-structural data of targets enable the visualization of the binding
process of ligands to targets and to predict the key binding pocket sites and affinity of ligands to their
target macromolecules. Three-dimensional quantitative structure-activity relationship (3D-QSAR)
analysis based on the nature of molecular interaction can provide affluence information about the
exact molecular characteristics essential for biological activity and serve as a significant predictive tool
predominantly for designing pharmaceuticals [10]. QSAR allows the quantification of the relationship
between the structure of the ligand and its biological activity. It also helps in the optimization of the
groups that modulate drug potency and the rationalization of drug components which leads to better
activities; it can also be used as a screening tool [11].

The determination of the architecture of the active site of the macromolecule can provide clear
information about the protein-ligand interaction phenomenon, post-docking dynamics, hydrogen
bond formation, and free energies of the complex [12].

Bovine lens leucine aminopeptidase (blLAP) is a well-characterized M17 aminopeptidase with
binuclear metal center containing two essential metal ions to selectively remove leucine residues from
short peptides [13]. Its crystal structure is well defined (Protein Data Bank, PDB code: 1LAN), and
it is often used in several theoretical studies. As observed by Drinkwater et al., the term “leucine
aminopeptidase” encompasses a range of protein families, including M17 (hexameric with binuclear
metal center), M1 (monomeric with a single metal center), and occasionally M18 (monomeric with a
binuclear metal center) and M28 aminopeptidases (monomeric with a binuclear metal center), and
enzymes that release not only leucine from peptides but also other amino acids such as cysteine,
glycine, arginine, lysine, or proline [13].

In the previous studies, we discovered that a group of 3,4-dihydroisoquinoline (Figure 1b)
derivatives exhibit LAP inhibitory activity [14]. We also proved that one of the studied compounds,
diethyl 6,8-dibenzyloxy-3,4,-dihydroisoquinoline-3,3-dicarboxylate (Figure 1a), exhibited significant
activity against microsomal LAP (IC50 = 16.5 µM) and promising antiproliferative activity on human
cancer cell lines, including human promyelocytic leukemia cell line HL-60, human breast cancer cell
line MCF-7, Burkitt’s lymphoma cell line Raji, camptothecin resistant CEM/C2 human T-cell leukemia
cell line with mutated catalytic site of topoisomerase 1 and its parental cell line CCRF/CEM, LoVo colon
cancer cell line, LoVo/Dx-variant cell line resistant to doxorubicin with multidrug cross-resistance,
prostate cancer cell lines LNCaP and PC3, and urinary bladder cancer cell line HCV29T. Moreover,
diethyl 6,8-dibenzyloxy-3,4,-dihydroisoquinoline-3,3-dicarboxylate showed a high selectivity index
towards the studied cancer cell lines versus normal mammalian cells and exhibited a promising safety
profile in toxicological studies. In molecular docking studies, the discovered compound exhibited
hydrophobic and H-bonding interactions with amino acids residues essential for LAP inhibitory
activity. Moreover, the compound’s influence on cell cycle and cell death was determined and the
studies confirmed the role of diethyl 6,8-dibenzyloxy-3,4,-dihydroisoquinoline-3,3-dicarboxylate in the
inhibition of cell cycle G1/S transition.
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Figure 1. (a) chemical structure of diethyl 6,8-dibenzyloxy-3,4-dihydroisoquinoline-3,3-dicarboxylate
and (b) chemical structure of the 3,4-dihydroisoquinoline scaffold.

Our findings regarding the activity of diethyl 6,8-dibenzyloxy-3,4,-dihydroisoquinoline-3,3-
dicarboxylate were consistent with those of other authors such as Bermejo et al. [15]. These authors
discovered isoquinolines with antitumor activity that target the G1 phase of the cell cycle. As G1 phase
of the cell cycle is an important period and its malfunction is critical for tumorigenesis and tumor
progression, the agents with the ability to arrest cells in the G1 phase can be highly promising new
therapeutic agents against human cancers.

Several studies have reported phosphonic acid analogues of leucine as inhibitors of both cytosolic
and microsomal aminopeptidases [16,17] and phosphonate and phosphonamidate inhibitors as
excellent inhibitors of zinc metallopeptidases. Therefore, we performed theoretical studies, including
3D-QSAR on phosphonic/phosphinic acid-containing isoquinoline derivatives [18]. Our previous
research provided essential information on the structural characteristics of the inhibitors and gave new
insight into the discovery of LAP inhibitors.

Considering the unique characteristics of diethyl 6,8-dibenzyloxy-3,4-dihydroisoquinoline-3,3-
dicarboxylate and other 3,4-dihydroisoquinoline derivatives, we selected them as perfect candidates for
further in silico studies. Here, modern drug discovery techniques were applied, such as database search,
virtual screening (VS), ligand growing experiment, molecular docking, 3D-QSAR, and absorption,
distribution, metabolism, excretion, and toxicity (ADMET), to develop novel potential LAP inhibitors.

2. Results and Discussion

2.1. Database Search and Library Establishment

Different compound databases such as ZINC [19], PubChem [20], and DrugBank [21] were
searched for dihydroisoquinoline analogues. Then, by using Lipinski’s “rule of five” [22,23], molecules
with less reasonable physicochemical parameters were discarded, leading to the selection of candidates
with good drug-like properties: molecular weight (MW) <500 Da, number of hydrogen bond donors
<5, number of hydrogen bond acceptors <10, log10 partition coefficient (logP) <5, and no more than
one violation of the abovementioned criteria. A virtual library of approximately 11 585 compounds
extracted from ZINC and 13 011 compounds extracted from PubChem was established. DrugBank
database did not show any significant hits.

2.2. Ligand Growing Experiment

Independent from database search, the design of LAP inhibitors using the ligand growing
experiment was performed. The ligand growing experiment started from a starter ligand, diethyl
6,8-dibenzyloxy-3,4-dihydroisoquinoline-3,3-dicarboxylate, which was then grown against a reference
molecule, bestatin, using Spark 10.5.6 [24,25] by mapping a different region of the same active site.
The fragment growing experiment with Spark identified viable replacements for the selected portion
of a reference compound by using a series of fragment databases. In this experiment, molecular field
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technology was used, which condensed the molecular fields to a set of points around a molecule,
termed as field points.

Each of four starter’s substituents, namely R1, R2, R3, and R4 (Figure 2), was selected for
replacement, and a library containing 500 new derivatives was generated each time. Only one
substituent (e.g., R1) was replaced each time, and the other substituents (e.g., R2, R3, and R4) remained
unchanged. Finally, 2000 derivatives were obtained, which were filtered through Lipinski’s “rule of
five” [22,23]. After filtration, a group of 485 compounds with no violation of Lipinski’s “rule of five”
was chosen for further studies.

Figure 2. Chemical structure of the starter ligand, diethyl 6,8-dibenzyloxy-3,4-dihydroiso- quinoline-
3,3-dicarboxylate, with selected substituents for replacement.

2.3. Molecular Docking

Virtual molecular docking is a computer-aided technique used for inexpensive and rapid
identification of small compounds that bind to specific targets [26]. Virtual docking involves the docking
of large libraries of compounds in the binding site of particular targets, thus potential ligands with
potential binding affinity against the target can be selected for biological testing. Because the virtual
docking method plays a key role in the identification of new compounds for the inhibition of protein
targets, this method was used to identify novel LAP inhibitors. In this study, molecular docking was
performed using ICM-Pro 3.8-5 software (Molsoft LLC, San Diego, USA) [27,28]. The filtered compounds
from the established virtual library, including 11,585 compounds from ZINC, 13,011 compounds from
PubChem, and 485 compounds from Spark, were docked into the binding site of 3D crystal structure
of blLAP in complex with l-leucinal (PDB code: 1LAN) [29,30]. The protein structure of blLAP was
precisely described previously [16–18,29,30]. All the generated binding poses were manually inspected
to ensure correct positioning within the binding pocket with respect to the interactions of the ligand
moieties with the amino acid residues relevant to the inhibitory activity [31]. Residues such as Lys250,
Lys262, Met270, Asn330, Ala333, Asp273, Arg336, Thr359, Leu360, Gly362, Ile421, Ala451, and Met454
play an important role in the interactions of LAP with inhibitors [32]. These residues were used as a
filter to discard the incorrect poses derived from the docking. Moreover, the compounds were ranked
by a docking score. Scoring function was implemented to predict the biological activity by examining
the interactions between the compound and potential target [18].

Docking of compounds from the ZINC library to 1LAN resulted in the selection of top
100 compounds with the best score; after duplicate deletion, only 68 compounds were chosen
for further studies. The docking scores for the selected poses of the best compounds in the ZINC library
were in the range of −25.18 to −51.09. Docking of compounds from the PubChem library resulted in
the selection of 100 compounds with docking scores in the range from −28.07 to −51.72.

All the compounds occupied the binding pocket of LAP and showed hydrogen bonds and
hydrophobic interactions, which are typical for the inhibitory activity interactions with amino acid
residues and zinc ions (Zn488, Zn489) in the active site (Figure 3).
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Figure 3. Interactions of the selected compounds with the best binding score values with amino
acid residues and zinc ions in the leucine aminopeptidase (LAP) binding pocket. (a) 4-hydroxy-1-
methyl-5-nitroso-6-{[1-(propan-2-yl)-3,4-dihydroisoquinolin-7-yl]amino}pyrimidin-2(1H)-one (score
value of −51; ZINC database); (b) 4-hydroxy-5-[(6-hydroxy-3,4-dihydroisoquinolin-7-yl)oxy]-5-
oxopentanoic acid (score value of −43.8; ZINC database); (c) 1,3-dioxo-4-(ethoxymethylene)-3,4-
dihydroisoquinoline-2(1H)-carboxylic acid (score value of −51.72, PubChem); and (d) 1,4-dihydro-1-
cyclopropyl-4-oxo-6-hydroxy-7-[3,4-dihydroisoquinoline-2(1H)-yl]-8-methylquinoline-3-carboxylic
acid (score value of −42.93, PubChem).

Compounds from Spark were also docked into the LAP active site, and the top 100 compounds
with the best score in the range of −22.33 to −38.66 were then selected for 3D-QSAR using Forge
software. The docking analysis indicated that the compound with the best docking score (−38.66)
({[6,8-(dibenzyloxy)-3-(ethoxycarbonyl)-3,4-dihydroisoquinolin-3-yl]oxy}acetic acid), shown in Figure 4,
is placed in a similar way in the binding pocket of 1LAN as the starter ligand was docked in our
previous studies [14,18].

Figure 4. (a) interactions of LAP active site residues with the compound {[6,8-(dibenzyloxy)-3-
(ethoxycarbonyl)-3,4-dihydroisoquinolin-3-yl]oxy}acetic acid with the best docking score (–38.66). (b)
interactions of LAP active site residues with the compound {[6,8-(dibenzyloxy)-3-(ethoxycarbonyl)-
3,4-dihydroisoquinolin-3-yl]oxy}acetic acid in comparison to docking pose of diethyl 6,8-dibenzyloxy-
3,4,-dihydroisoquinoline-3,3-dicarboxylate (shown in cyan).
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2.4. VS with Lead Finder

Subsequently, the top 268 highest ranked compounds (68 compounds from ZINC, 100 compounds
from PubChem, 100 compounds from Spark) were subjected to docking using Lead Finder (LF) [33,34]
and the predicted binding poses were compared with the relevant results obtained from ICM.
The docking software LF has three specialized scoring functions designed to rank the predicted ligand
poses, estimate the binding energy of the docked ligand poses, and rank compounds in VS experiments.
The LF rank score values were in the range of −4.78 to −18.36 for all studied compounds (including
rank score values between −7.71 and −16.39, −9.59 and −18.36, and −4.78 and −15.97 for compounds
from ZINC, PubChem, and SPARK, respectively). The results of compounds’ docking with LF revealed
that some ligands bound to LAP better than that found when docked with ICM. Docking using LF
resulted in some cases of improved pose of the ligands in the binding pocket in comparison to ligand
pose adopted after ICM docking. The ligands were bind similarly to l-leucinal in l-leucinal-blLAP
complex (PDB code: 1LAN) (Figure 5).

Figure 5. Compounds after docking with Lead Finder are placed similarly to the pose of leucine in the
binding site of leucine aminopeptidase; leucine (cyan) is shown.

2.5. 3D-QSAR

First, the 3D molecular structures of the dataset containing the selected 100 compounds from
PubChem, 68 compounds from ZINC, and 100 compounds from SPARK were aligned to our previously
published 3D-QSAR model for the LAN protein [18], and the compounds were then evaluated, using
Forge software (10.6.0, Cresset®, Litlington, Cambridgeshire, UK) [25,35]. The leave-many-out (LMO)
cross-validation was performed, by leaving out 20% of the molecules at each step for the same set
of training and test set compounds as used in leave-one-out (LOO) cross-validation. The values
of the LOO parameters, cross-validation correlation coefficient (q2), non-cross-validated correlation
coefficient (r2), number of components (N), and predicted root mean square error (RMSEpred) were
0.717, 0.997, 4, and 0.661 respectively. The respective analogues values of the LMO parameters q2, r2,
N, and RMSEpred were 0.680, 0.997, 4, and 0.703, respectively. Similar values of parameters in both
LOO and LMO cross-validation methods indicated the stability of the 3D-QSAR model. Statistical
validation is a very important process for robust QSAR model development. The value of r2 should be
>0.7 and the value of q2 should be >0.5 in the QSAR model for high predictive accuracy. This also
confirmed that a reliable QSAR model was obtained in the present study.

In the entire library of 264 derivatives (after duplicates removal), the model provided excellent
and good description for 35 and 51 compounds, respectively. This implies that most of the features
of the evaluated molecules were well described by the training set of the 3D-QSAR model, and the
predicted activity could be considered reliable. Other values, described as “bad” or “poor”, indicate
that the molecule has field points that are not specified by the equation, resulting in unreliable predicted
activities. The chemical structures and score values of all the compounds with excellent description
by the model are presented in Supplementary Materials Table S1. The compounds with excellent
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description by the 3D-QSAR were predicted to possess pIC50 (pIC50 = −log (IC50)) activity between
3.8 and 5.7. A linear regression plot of experimental versus calculated pIC50 values is presented in
Supplementary Materials Figure S4.

From 35 compounds with the excellent description by the 3D-QSAR model, 9 hit compounds
were selected, which, in addition had the best ICM docking score values, below −32. The score value
below −32 is regarded as a good indicator in compound selection by using ICM software [27,28].
After docking using LF and visual inspection, an improvement in ligand binding to LAP protein was
observed but score values were not good indicators for ligand selection in that case. Thus, we decided
to select ligands based on ICM docking score and results from 3D-QSAR. The chemical structures,
pIC50 and ICM and LF score values of compounds one to nine are presented in Table 1. Schematic
diagram of the underlying workflow of the LAP inhibitors drug discovery is shown in Figure 6.

Figure 6. Schematic representation of the used workflow.
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Table 1. Chemical structures and calculated pIC50 values of the selected compounds.

Compound’s
number/ID Chemical Name Chemical Structure pIC50 ICM Score LF Score

1/
PUBCHEM
101710591

1,3-dioxo-4-
(ethoxymethylene)-3,4-
dihydroisoquinoline-
2(1H)-carboxylic acid

4.8 −51.73 −12.63

2/
ZINC

238690488

(E)-3-(3,4-
dihydroisoquinolin-

1-yl)acrylic acid
4.6 −40.09 −10.63

3/
ZINC

1243196903

5-(1-isopropyl-3,4-
dihydroisoquinolin-7-

yl)-2-methylbenzoic acid
4.3 −35.99 −10.23

4/
PUBCHEM

67293279

6-bromo-1-oxo-3,4-
dihydroisoquinoline-

2-carboxylic acid
4.9 −35.37 −12.97

5/
PUBCHEM

82579683

3-methyl-1-oxo-
2-(oxolan-2-ylmethyl)-

3,4-dihydroisoquinoline-
4-carboxylic acid

4.5 −34.91 −10.80

6/
PUBCHEM
135927986

(3S)-6,7-dihydroxy-
3,4-dihydroisoquinoline-

3-carboxylic acid
4.8 −33.99 −11.39

7/
ZINC

1206051829

2,3-difluoro-5-
(1-isopropyl-3,4-

dihydroisoquinolin-
7-yl)benzoic acid

4.6 −33.92 −11.06

8/
ZINC

1243180093

3-(1-isopropyl-3,4-
dihydroisoquinolin-7-yl)-

5-methylbenzoic acid
4.5 −32.84 −12.23

9/
ZINC

34115917

(3S)-1-amino-3,4-
dihydroisoquinoline-

3-carboxylic acid
4.4 −32.12 −10.73

2.6. In Silico Drug-Likeness, Bioavailability, and Toxicology Prediction

Drug-likeness studies measure the probability of a molecule to act as an oral drug in terms of its
bioavailability [36,37]. As the interaction of an inhibitor with an enzyme cannot ensure its suitability
as a drug, to further strengthen the results of 3D-QSAR and docking studies, we also performed in
silico absorption, distribution, metabolism, and excretion (ADME) studies by using the SwissADME
web tool [36]. The prediction of these properties is very essential in the drug design process and poor
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ADMET properties often account for the failure of approximately 60% of new chemical entities in
clinical trials. Hence, SwissADME is a very valuable and reliable tool. In silico techniques for the
prediction of ADMET properties are more attractive than conventional experimental assays because of
the large numbers of compounds (both real and designed) that can be tested and because of significant
time and cost reduction.

The oral bioavailability of compounds one to nine is shown in bioavailability radar plots
(Figure 7). Compounds three, five, seven, and eight were predicted to be orally bioavailable. The other
compounds (one, two, four, six, and nine) showed one off-shoot relative to unsaturation (INSATU),
which implies that they could have suboptimal physicochemical properties for their oral bioavailability.
Gastrointestinal (GI) absorption and blood-brain barrier (BBB) penetration which are relative to the
absorption and distribution parameters are graphically presented in Figure 8. All the compounds were
predicted to be passively absorbed by the GI tract. Compounds two to five and seven to nine showed
BBB permeation, whereas the other compounds did not. None of the compounds were expected to be
effluated from the central nervous system (CNS) by P-glycoprotein.

Figure 7. Radar plots of compounds 1–9. The pink area is a suitable physicochemical space for oral
bioavailability. Lipophilicity (LIPO): −0.7 < XLOGP3 < 5.0; SIZE: 150 g/mol < MW < 500 g/mol; polarity
(POLAR): 20 Å2 < topological polar surface area (TPSA) < 130 Å2; and insolubility (INSOLU): 0 <

LogS < 6; INSATU (insaturation): 0.25 < fraction of carbons in sp3 hybridization < 1; FLEX (flexibility):
0 < number of rotatable bonds < 9. The radar plots were obtained using the SwissADME web tool [36].
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Figure 8. BOILED-Egg plot of compounds 1–9 with excellent description of the three-dimensional
quantitative structure-activity relationship (3D-QSAR) model and the best ICM score values. Points
located in the BOILED-Egg yolk (yellow) represent molecules predicted to passively permeate through
the blood-brain barrier (BBB), whereas points in the egg white are predicted to be passively absorbed
by the gastrointestinal tract (HIA). Blue dots (PGP+) indicate the molecules expected to be effluated
from the central nervous system (CNS) by P-glycoprotein, whereas the red ones (PGP-) indicate the
molecules predicted not to be effluated from the CNS by P-glycoprotein.

Metabolism plays an important role in the bioavailability of the drugs and drug–drug interactions.
Cytochrome P-450 enzymes (CYPs) constitute the most significant class of enzymes for drug-likeness
assessment. These enzymes are the site of the majority of drug–drug interactions. Ten human CYPs
from seven subfamilies, namely CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6,
CYP2E1, CYP3A4, and CYP3A5 are responsible for the metabolism of most drugs [38]. Most of
the compounds were found to be substrates of CYP1A2, except compounds one, five, six, and nine.
Compounds seven and eight were substrates of CYP2C19. Compounds three and eight were substrates
of CYP2C9 and CYP2D6. None of the compounds were found to be the substrate of CYP3A4 (Table 2).

Skin permeability coefficient (Kp) was also predicted for the selected compounds. The Kp values
were in the range of –5.19 to –7.27. The more negative the log Kp (with Kp in cm/s), the less skin permeant
is the molecule [36,37]. The bioavailability score value of 0.56 (56%) for most of the compounds and
0.55 (55%) for molecule nine indicates the probability of their bioavailability, and it is based on total
charge of compound, topological polar surface area (TPSA), and violation of Lipinski filter (Table 2).

Pan-assay interference compounds (PAINS) and Brenk filters were implemented to provide
information regarding potentially problematic fragments (toxic, metabolically unstable, or possessing
properties responsible for poor pharmacokinetics), in the chemical structures of compounds one to
nine. Both filters showed alerts for compound six, while Brenk also showed alerts for compounds one
and two [36] (Table 2).

Lead-likeness of the studied compounds was also calculated. Leads are molecules, which are
subjected to chemical modifications, that will most likely increase size and lipophilicity. Thus, leads
should be smaller and less hydrophobic than drug-like molecules [36]. Teague et al. [39] suggested that
molecules with MW in the range of 100 to 350 Da and calculated logP in the range of 1 to 3 are greatly
superior to those considered drug-like. In our study, compounds one, four, and five were shown to be
lead-like (Table 2).
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Table 2. Pharmacokinetic and medicinal chemistry parameters of compounds 1–9.

Pharmacokinetic Parameters
Compounds

1 2 3 4 5 6 7 8 9

GI Absorption a high high high high high high high high high

BBB b Barrier Permeation no yes yes yes yes no yes yes no

PGP c Substrate no no no no no no no no no
CYP d 1A2 Inhibitor no yes yes yes no no yes yes no

CYP d 2C19 Inhibitor no no no no no no yes yes no

CYP d 2C9 Inhibitor no no yes no no no no yes no

CYP d 2D6 Inhibitor no no yes no no no no yes no
CYP d 3A4 Inhibitor no no no no no no no no no

Log Kp (Skin Permeation e) −6.57 −6.53 −5.19 −6.16 −7.01 −7.27 −5.44 −5.19 −7.08
Leadlikeness yes no no yes yes no no no no

Bioavailability Score 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.55

PAINSBrenk
0 0 0 0 0 1 0 0 0
3 1 0 0 0 1 0 0 0

a Gastrointestinal absorption; b Blood-brain barrier penetration; c P-glycoprotein substrate; d Cytochrome P450;
e cm/s.

In addition to Lipinski′s “rule of five” [22,23], another four drug-likeness rules namely Ghose [40],
Veber [41], Egan [42], and Muegge [43] were contemporarily satisfied for all the selected compounds.

The results of SwissADME calculations provide useful information about the selected compounds.
Considering their GI absorption, metabolism through CYPs, and drug-likeness, all of them could be
excellent candidates for further studies and manipulations. Moreover, the calculations results showed
that compound one was predicted not only to be not metabolized by CYPs, not permeate through BBB
and be passively absorbed by GI tract, but also it had superior properties than other compounds in
context to its lead-likeness.

Predicted toxicity of compounds one to nine was calculated in admetSAR online tool [44,45].
The results of toxicity prediction are presented in Table 3. None of the compounds exhibited
carcinogenicity and eye corrosion. Compounds three, five, seven, eight, and nine were predicted to not
cause eye irritation. All of them, besides compound five, did not cause Ames mutagenesis. Compound
five and six were determined to not be hepatotoxic. Most of the compounds belong to class III of acute
oral toxicity, which means that according to US EPA classification, their LD50 values are greater than
500 mg/kg but less than 5000 mg/kg. Compounds two and nine belonged to category II of acute oral
toxicity and their LD50 values are possibly greater than 50 mg/kg but less than 500 mg/kg.

Table 3. Toxicity prediction for compounds 1–9.

Compounds 1 2 3 4 5 6 7 8 9

Carcinogenicity −(0.73) −(0.83) −(0.89) −(0.84) −(0.81) −(0.76) −(0.86) −(0.89) −(0.87)
Eye corrosion −(0.98) −(0.95) −(0.98) −(0.98) −(0.99) −(0.99) −(0.98) −(0.98) −(0.99)
Eye irritation +(0.85) +(0.94) −(0.96) +(0.85) −(0.96) +(0.86) −(0.98) −(0.92) −(0.79)

Ames mutagenesis −(0.61) −(0.82) −(0.65) −(0.74) +(0.51) −(0.75) −(0.63) −(0.74) −(0.66)
Hepatotoxicity +(0.63) +(0.73) +(0.83) +(0.55) −(0.55) −(0.53) +(0.83) +(0.80) +(0.53)

Acute oral toxicity III
(0.63)

II
(0.42)

III
(0.51)

III
(0.60)

III
(0.73)

III
(0.41)

III
(0.53)

III
(0.53)

II
(0.37)

“+” means toxic; “−“means nontoxic. The numbers in brackets indicate the probability.

These results provide essential information regarding toxicological profile of compounds one
to nine and may be useful in selecting of route of administration and preferred dosage form.
However, different values of probability indicated that these studies are preliminary and should
be confirmed experimentally.
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3. Materials and Methods

3.1. Database Search and Library Establishment

Different compound databases were searched for the availability of dihydroisoquinoline
analogues. For this study, ZINC [19], PubChem [20], and DrugBank [21] were considered.
The ZINC database substructure search of 3,4-dihydroisoquinoline reported 12,286 compounds
(from 200,000,000 substances). After the removal of duplicates, 12,260 compounds were selected. Then,
these compounds were filtered with parameters based on Lipinski’s “rule of five” [22,23], and finally a
group of 11,585 compounds was obtained. The PubChem database (containing 102,628,457 compounds)
provided 21,769 compounds and after consideration of Lipinski’s “rule of five”, 13,579 compounds
were identified. A comparison of the obtained ZINC and PubChem sets of compounds revealed
600 duplicates, which were removed from the PubChem database, and after comparison with the ZINC
database, only 13,011 were taken for further study. DrugBank database (including 13 491 compounds)
did not reveal any significant hits. Finally, approximately 11,585 compounds from ZINC and
13,011 compounds from PubChem were considered for molecular docking and further in silico studies.

3.2. Ligand Growing Experiment

For the ligand growing experiment, Spark 10.5.6 software (Cresset®, Litlington, Cambridgeshire,
UK) was used [24,25]. As a starter molecule, diethyl 6,8-dibenzyloxy-3,4,-dihydroisoquinoline-
3,3-dicarboxylate in its bioactive conformation was chosen. Bestatin was loaded as a reference
molecule to guide the ligand growth. The starter and reference molecules were pre-aligned in 3D.
The score weight was set at 20% for the starter molecule, and at 80% for the reference molecule.
A low score weight prevents large movements of the new molecule relative to the starter molecule.
We then imported a protein, LAP (PDB code: 1LAN) to use it as an “excluded volume” around
the starter molecule. During the Spark search, the excluded volume was checked to assess whether
the replacement fragments clash with it. Four regions of the starter molecule were selected to be
replaced (Figure 2). Each portion of the starter molecule was selected to be removed and replaced by
the fragment from the databases. Ligand growing calculation method was used. Spark used three
databases: ChEMBL_common (from literature reports) with 58,924 fragments and Commercial Very
Common and Common (from commercially available compounds) with 20,561 and 42,778 fragments,
respectively. Spark then searched these databases for any fragment with the correct number of
connection points that geometrically match the broken bonds in the target. Matches were considered
on the basis of both angle and distance. Fragments with the correct angles and distances between the
connection points were merged into the target molecule to form the “product”. The latter was scored
against the starter structure for electrostatic and shape similarity.

3.3. Molecular Docking

The crystal structure of blLAP complexed with l-leucinal (PDB code: 1LAN) was used for docking
performed with ICM-Pro software (Molsoft LLC, San Diego, USA) [27–29]. All water molecules and
co-crystallized ligands were removed from the PDB structure. Ligands were docked using a regular
rigid receptor-flexible ligand docking approach that uses five potential energy maps. The maps were
generated in a rectangular box with 0.5 Å grid spacing centered at the ligand binding site. Each
molecule was first subjected to a conformational analysis outside of the protein pocket and a stack of
low energy conformations is collected and used as starting geometries for grid docking. Ligand binding
modes were scored according to the quality of the complex, and a user-defined number of the top
scoring poses was re-ranked using the full ICM scoring function. The predicted score was calculated
as the weighted sum of ligand-target van der Waals interactions and internal force field energy of the
ligand, free energy changes due to conformational energy loss upon ligand binding, hydrogen bonding
interactions, hydrogen bond donor-acceptor desolvation energy, solvation electrostatic energy upon
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ligand binding, hydrophobic free energy gain, and a size correction term proportional to the number
of ligand atoms.

3.4. VS with Lead Finder

The full-atom model of LAP used in the current study was prepared from the PDB structure by
adding hydrogen atoms and assigning ionization states of the amino acids with the Model Builder
(build_model) program of the Lead Finder software package v 1.1.13 (BioMolTech®, Toronto, Ontario,
Canada) [33,34]. VS of ligands to the prepared model of 1LAN and binding energy calculations were
performed with Lead Finder v. 1.1.13 software using its default configuration parameters. The energy
grid box for ligand docking was set at the geometrical center of the reference ligand to span 6 Å in each
direction. Lead Finder assumes that the protein and ligand structures are rigid; however, it analyzes
possible conformations of ligand structures by rotating functional groups along each freely rotatable
bond (FRB). For each ligand pose Lead Finder determines values of the free energy of binding, the VS
score, and, if applicable, the pose ranking score by using its three built-in scoring functions.

3.5. 3D-QSAR

All the optimized structures were imported into Forge software (10.6.0, Cresset®, Litlington,
Cambridgeshire, UK) [35] for the evaluation of the dataset in the field-based 3D-QSAR model that was
previously published [18]. All the molecules were aligned with the training set of the 3D-QSAR model.
The negative, positive, shape, and hydrophobic field points of each molecule were generated using the
extended electron distribution (XED) force field in Forge. Partial least squares (PLS) regression analysis
was used to confirm the predictive ability of the field-based 3D-QSAR model. Statistical parameters,
such as non-cross-validated correlation coefficient (r2), cross-validated correlation coefficient (q2), and
RMSEpred were calculated. The maximum number of components (N) was fixed to 20, while the
maximum distance for sample point was set to 1Å. The LOO and LMO cross-validation methods were
used. The parameters used in the conformation search, alignment, and model building are reported in
Supplementary Materials Figures S1–S3.

3.6. In Silico Drug-Likeness, Bioavailability, and Toxicology Prediction

The SwissADME web tool was used to evaluate compounds’ ADME [36]. It was accessed at
http://www.swissadme.ch. Two dimensional (2D) chemical structures of the selected compounds
were drawn and transferred as a list of molecules, defined by canonical simplified molecular input
line entry specification (SMILES). All descriptors and molecular parameters were computed through
the OpenBabel API (version 2.3.0, 2012). The pharmacokinetics section proposed one linear method
for skin permeation, which relied on the quantitative structure-property relationship (QSPR) model
developed by Potts and Guy that links the decimal logarithm of Kp with MW and logP [36,37].
Multiple linear regression was used to predict Kp. The prediction for passive human GI absorption
(HIA) and BBB penetration consisted of the readout of the BOILED-Egg model, an intuitive graphical
classification model.

Lipinski’s “rule of five” (Pfizer) [22,23], Ghose (Amgen) [40], Veber (GSK) [41], Egan
(Pharmacia) [42], and Muegge (Bayer) [43] rules were used for drug-likeness pre-screening studies.

For prediction of toxicological profile of selected compounds, we used admetSAR (version 2.0)
online tool. It can be accessed at http://lmmd.ecust.edu.cn/admetsar2 [44,45]. Models used in the study
were described in detail on the mentioned source file.

4. Conclusions

The cumulative risk of cancer incidence indicates that 1 in 8 men and 1 in 10 women will develop
cancer in their lifetime [2]. When coupled with the estimated cost of US $1.16 trillion per year for
cancer treatment and care, this clearly makes cancer a public health priority [1]. Despite significant
progress in anti-cancer therapies, some cancers continue to have poor prognosis, which necessitates the

http://www.swissadme.ch
http://lmmd.ecust.edu.cn/admetsar2
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development of new chemical entities. Considering that the process of introducing a new drug in the
market is very difficult and time and money consuming, pharmaceutical companies and researchers
pay much attention to computer-aided drug discovery techniques in various stages of drug discovery
and development to minimize the failure rate [9]. Despite some disadvantages of in silico drug design
methods such as inaccuracy of scoring functions for the evaluation of target-ligand binding free energy,
difficulty of considering target flexibility in docking, or high false positive rate of VS [8,46], these
methods have already helped to successfully introduce in market drug molecules, such as imatinib
and other tyrosine kinase inhibitors [47], which have revolutionized leukemia treatment and enabled
to treat cancer as a chronic disease like diabetes [48].

In the present study, the screening of new potential LAP inhibitors with a scaffold based on
3,4-dihydroisoquinoline from two databases: ZINC and PubChem as well as drug design using
Spark software was performed. Through a statistical/computational filtration approach based on
2D descriptors, docking calculations, and 3D-QSAR statistical models, several and potentially active
3,4-dihydroisoquinoline derivatives were obtained. Finally, nine selected compounds with good
drug-like, ADME pharmacokinetics parameters and toxicological profile were provided. Especially,
compound one occurred to be a valuable starting point for the design of new synthetic derivatives with
improved activity. The next steps will include the chemical synthesis of selected compounds, in vitro
studies to experimentally confirm their inhibitory activity towards LAP and antiproliferative activity on
cancer cell lines. In conclusion, these studies indicated that compounds with 3,4-dihydroisoquinoline
moiety have potential to inhibit LAP and further studies on this topic are needed.

Supplementary Materials: The following are available online, Figure S1: Forge’s parameters used for the
conformation hunt, Figure S2: Forge’s parameters used for the alignment, Figure S3: Forge’s parameters used
for building a model, Figure S4: Linear regression plot of experimental versus calculated pIC50 values used in
3D-QSAR model, Table S1: Chemical structures, pIC50, ICM and LF score values for the compounds with an
excellent description by the model.
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