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Abstract

Many malignancies show increased expression of the EGF receptor family member ErbB3 

(HER3). ErbB3 binds beta-1 (HRGβ1), and forms a heterodimer with other ErbB family members, 

such as ErbB2 (HER2) or EGFR (HER1), enhancing phosphorylation of specific C terminal 

tyrosine residues and activation of downstream signaling pathways. ErbB3 contains six YXXM 

motifs that bind the p85 subunit of PI3-kinase. Previous studies demonstrated that overexpression 

of ErbB3 in mammary tumor cells can significantly enhance chemotaxis to HRGβ1 and overall 

metastatic potential. We tested the hypothesis that ErbB3-mediated PI3-kinase signaling is critical 

for heregulin-induced motility, and therefore crucial for ErbB3-mediated invasion, intravasation 

and metastasis. The tyrosines in the six YXXM motifs on the ErbB3 C-terminus were replaced 

with phenylalanine. In contrast to overexpression of the wild-type ErbB3, overexpression of the 

mutant ErbB3 did not enhance chemotaxis towards HRGβ1 in vitro or in vivo. We also observed 

reduced tumor cell motility in the primary tumor by multiphoton microscopy, as well as a 

dramatically reduced ability of these cells to cross the endothelium and intravasate into the 

circulation. Moreover, while mutation of the ErbB3 C-terminus had no effect on tumor growth, it 

had a dramatic effect on spontaneous metastatic potential. Treatment with the PI3-kinase inhibitor 

PIK-75 similarly inhibited motility and invasion in vitro and in vivo. Our results indicate that 

stimulation of the early metastatic steps of motility and invasion by ErbB3 requires activation of 

the PI3-kinase pathway by the ErbB3 receptor.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Jeffrey E. Segall, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10801. Phone: 
718-678-1109; Fax: 718-678-1019; jeffrey.segall@einstein.yu.edu. 

CONFLICT OF INTEREST The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2012 October 11.

Published in final edited form as:
Oncogene. 2012 February 9; 31(6): 706–715. doi:10.1038/onc.2011.275.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


Keywords

ErbB3; breast cancer; metastasis; in vivo invasion; intravasation; PI3-Kinase

INTRODUCTION

The epidermal growth factor receptor (EGFR) family has been a major target of anticancer 

therapy development (Di Cosimo and Baselga, 2010). Its members can contribute to a wide 

range of cell phenomena including proliferation, apoptosis, survival, invasion, and 

differentiation in both normal and neoplastic cells. Members of this family include the 

epidermal growth factor receptor (EGFR or ErbB1), ErbB2 (Her2/neu), ErbB3 and ErbB4 

(Burgess, 2008). ErbB1 and ErbB2 have been most thoroughly studied, with a number of 

different inhibitors developed in hopes of identifying a treatment that will improve patient 

survival. However, the functions of ErbB1 and ErbB2 can be dependent upon ErbB3 

expression through heterodimerization, and this dependency has repercussions for how 

tumors may respond to inhibitor treatment (Baselga and Swain, 2009). In NSCLCs that are 

driven by activating EGFR mutations, high ErbB3 expression is an indicator for gefitinib 

sensitivity (Engelman et al., 2005; Fujimoto et al., 2005), suggesting that ErbB1/ErbB3 

heterodimers may be critical oncogenic units in these tumors. Indeed the development of 

resistance to EGFR inhibitors in NSCLCs can occur through restoration of ErbB3 activation 

by upregulation of c-Met (Engelman et al., 2007). In breast cancer, the ErbB2/ErbB3 

heterodimer can also form a potent oncogenic unit (Amin et al.; Holbro et al., 2003). In 

mouse models where ErbB2 overexpression in the mammary gland drives tumor formation, 

ErbB3 expression and phosphorylation are upregulated (Schade et al., 2007; Siegel et al., 

1999). Increased ErbB3 expression correlates with higher hazard ratios for reduced survival 

of breast cancer patients (Chiu et al.; Sassen et al., 2008).

ErbB3 binds heregulin beta-1 (HRGβ1), but is unable to stimulate downstream signaling on 

its own as it has a defective kinase domain; however, heterodimerization with another ErbB 

family member, such as ErbB2 or EGFR, permits tyrosine phosphorylation of the ErbB3 C-

terminal domain (Campbell et al., 2010). Downstream signaling from the ErbB receptors 

includes the activation of a number of pathways, including the PI3-kinase pathway. ErbB3 

contains six YXXM motifs that bind the p85 subunit of PI3-kinase (Fiddes et al., 1998; 

Hellyer et al., 2001; Prigent and Gullick, 1994; Vijapurkar et al., 2003), emphasizing the 

potential importance of ErbB3 in PI3-kinase activation. In NIH 3T3 cells, mutation of 

specific tyrosines in the ErbB3 C-terminus uncouples ErbB3 from PI3-kinase, with a strong 

effect on HRGβ1-stimulated cell transformation and mitogenic responses (Hellyer et al., 

2001; Vijapurkar et al., 2003). Previous studies from our laboratory demonstrated that in 

MTLn3 mammary tumor cells, ErbB3 expression significantly enhances the chemotactic 

response and in vivo invasion towards HRGβ1, as well as greatly increases metastatic 

potential without affecting primary tumor growth rate (Hernandez et al., 2009a; Zhang et al., 

2006). Thus this model provides a valuable tool for examining how ErbB3 signaling affects 

metastatic properties beyond the enhancement of cell survival. PI3-kinase signaling via 

ErbB3 has the potential to modulate actin cytoskeleton rearrangement, thus influencing 
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motility and chemotaxis (Adam et al., 1998; Cain and Ridley, 2009; Chausovsky et al., 

2000).

In this paper we tested the hypothesis that the PI3-kinase signaling pathway coupled to 

ErbB3 is critical for motility, and therefore crucial for invasion, intravasation and metastasis. 

We created a version of the human ErbB3 receptor in which all six tyrosine residues 

responsible for binding the p85 subunit of PI3-kinase were replaced with phenylalanine, and 

evaluated breast cancer cell lines stably expressing either the wild-type ErbB3 or the mutant 

ErbB3 receptor. Our data revealed that mutation of the PI3K binding sites blocked a number 

of responses that are enhanced by overexpression of wild-type ErbB3. These include 

enhanced chemotaxis towards HRGβ1 in vitro and in vivo, increased tumor cell motility in 

the primary tumor, and increased transendothelial migration, intravasation, and metastasis. 

Taken together, our results demonstrate that coupling of the PI3-kinase pathway to ErbB3 is 

essential during the initial steps of breast cancer metastasis.

RESULTS

The PI3-kinase binding sites are required for HRGβ1-stimulated ErbB3 p85 
phosphorylation, p85 association, chemotaxis and invasion

We created a version of the human ErbB3 receptor in which the tyrosines for all six YXXM 

motifs responsible for binding the p85 subunit of PI3-kinase were replaced with 

phenylalanine by site-directed mutagenesis. We then generated stable transductants of 

MTLn3 cells with the empty vector pLXSN (pLXSN), the wild-type human ErbB3 receptor 

(ErbB3WT), or the human ErbB3 receptor mutated in all six PI3-kinase binding sites 

(ErbB3-Mutant). Surface overexpression levels of the ErbB3WT and ErbB3-Mutant 

constructs were similar (Figure 1A). The endogenous rat ErbB3 was reduced using a rat-

specific shRNA. All of the cell lines also stably expressed GFP. To measure ErbB3-Mutant 

and WT signaling activity, starved cultures were stimulated with HRGβ1, and ErbB3 was 

immunoprecipitated from MTLn3 ErbB3WT and ErbB3-Mutant cell lysates. ErbB3 

signaling activity and coupling to the PI3K pathway was assessed by measuring ErbB3 

immunoprecipitates (IP) for tyrosine phosphorylation (PTyr) and p85α association. ErbB3 

IPs from HRGβ1-stimulated ErbB3WT cells had high levels of PTyr and complexed p85α, 

while ErbB3 IPs from ErbB3-Mutant cells had very low levels of PTyr and little or no 

associated p85α (Figure 1B). We then tested whether decreased signaling through PI3K had 

an effect on HRGβ1-induced chemotaxis (Figure 1C). ErbB3WT cells showed dramatically 

enhanced chemotaxis to HRGβ1 compared to the control pLXSN cell line. In contrast, 

ErbB3-Mutant cells were similar to control cells, indicating that removal of the PI3-kinase 

binding sites completely blocks chemotactic responses driven by HRGβ1. Chemotaxis in 

response to insulin did not show differences between ErbB3WT and ErbB3-Mutant cells 

(Supplementary Figure 1). We also measured tumor cell invasiveness using Matrigel-coated 

transwells. We found that HRGβ1 significantly enhanced invasiveness of ErbB3WT cells 

into Matrigel, while invasiveness of ErbB3-Mutant cells was significantly lower (Figure 

1D). In summary, these data suggest that PI3K association with ErbB3 is required for 

HRGβ1 to induce chemotaxis and invasion.
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The PI3K binding sites are required for enhancement of spontaneous metastatic potential, 
intravasation and lung seeding

We then investigated the metastatic potential of the three tumor cell lines. Cells were 

injected into the mammary fat pads of SCID mice. We observed no significant differences in 

tumor growth and final tumor volumes between the three tumor types (Figure 2A). TUNEL 

(for apoptotic cells), IBA-1 (for macrophages), pAKT, and pERK staining did not show any 

differences between the tumors (Supplementary Figures 2 A - D). Strikingly, intravasation 

as measured by the number of circulating tumor cells was significantly higher for ErbB3WT 

compared to both pLXSN and ErbB3-Mutant (Figure 2B). However, staining for CD34 

revealed that this result was not due to obvious differences in the number of blood vessels, 

which were the same in all tumor types (Supplementary Figures 2 E and F). Our results 

indicate that the enhancement in intravasation produced by ErbB3 is dependent upon 

coupling to PI3K.

Intravasation can be a rate limiting step for metastasis (Wyckoff et al., 2000), and to test 

whether metastatic capability correlated with intravasation capability, H&E sections of the 

lungs of the mice were evaluated. The lungs of mice carrying ErbB3WT tumors showed 

greater than 10 times more metastases than the lungs of mice with pLXSN or ErbB3-Mutant 

tumors (Figure 2C). These results are consistent with intravasation rates regulating 

metastasis rates in this model. To evaluate lung seeding ability separately from intravasation 

efficiency, the three cell lines were injected into the lateral tail vein of SCID mice 

(experimental metastasis assay). Two weeks post- injection the mice were sacrificed and 

H&E sections of the lungs were examined for metastases. The lungs of mice injected with 

ErbB3WT cells had a small, but significant increase (approximately 2-fold) in lung seeding 

efficiency compared to the lungs of mice injected with the pLXSN and ErbB3-Mutant lines 

(Figure 2D). We conclude that the PI3-kinase binding sites are required in vivo for ErbB3 

enhancement of intravasation and lung seeding, with a major contribution to metastasis 

occurring at the intravasation step.

PI3-kinase binding sites are required for ErbB3 enhancement of in vivo motility and 
invasion

To examine the importance of ErbB3/PI3K for invasion in the primary tumor 

microenvironment, we used multiphoton microscopy to perform intravital imaging. 

Intravital imaging enables visualization and quantification of the movement and orientation 

of fluorescent cells directly at the primary tumor without exogenously added stimulants or 

chemoattractants. Local motility and invasion in the primary tumor may contribute to the 

ability of tumor cells to locate blood vessels and to intravasate. GFP expressing lines were 

used in this assay, and 33-38 days post injection into the mammary fat pad, animals were 

anesthetized and skin flap surgery was performed to expose the primary tumors for imaging 

(Wyckoff et al., 2007). Total tumor cell motility in pLXSN, ErbB3WT and ErbB3-Mutant 

tumors was evaluated by analyzing multiple 30-minute z-series from 7-8 tumors generated 

from each cell line. We found that ErbB3WT expression significantly enhanced tumor cell 

motility compared to the pLXSN control (Figure 3A and Supplementary Movies 1 and 2). 

Importantly, expression of the ErbB3-Mutant did not enhance cell motility above the level 

of the control cell line.
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The ErbB3WT cells were more polarized near vascular and stromal areas in the tumor 

compared to ErbB3-Mutant cells. We used the length/width ratio of cells in the proximity of 

vessels to quantify polarization (Wyckoff et al., 2000). There was a significant increase in 

the length/width ratio in ErbB3WT tumors (Figure 3B). This is consistent with increased 

sensitivity to endogenous gradients of ligands which could enhance both invasion and 

intravasation. We evaluated whether there was enhanced invasion in vivo in response to 

HRGβ1 using microneedles containing Matrigel and HRGβ1 inserted into the primary 

tumors to collect invasive cells (Figure 3C). ErbB3 expression had no effect on basal 

invasion into needles containing Matrigel alone. However, ErbB3WT tumor cells showed 

significantly enhanced in vivo invasion in response to 50 nM HRGβ1 over the empty vector 

control, while the mutant cells behaved like control cells. These data reveal that the ability 

of ErbB3 to directly couple to the PI3K pathway is essential for HRGβ1’s ability to 

stimulate in vivo invasion. To model the in vivo intravasation step, we used an in vitro 

transendothelial migration (TEM) assay (Figure 3D). Tumor cells alone, or mixed with 

macrophages, were plated on top of an endothelial monolayer and allowed to migrate 

through to the other side for 18 hours. For all lines, very few carcinoma cells traversed the 

endothelium in the absence of macrophages. The addition of macrophages dramatically 

enhanced the ability of ErbB3WT cells to cross the endothelium, but did not increase the 

ability of pLXSN to cross. The ErbB3-Mutant line showed enhancement by macrophages 

which was, however, significantly less than ErbB3WT cells. This is similar to the pattern of 

intravasation efficiency that we observed in vivo (Figure 2B). Importantly, IBA-1 staining of 

primary tumors revealed the presence of macrophages in all three tumor types 

(Supplementary Figure 2B), indicating that the defect in intravasation is not due to a 

difference in macrophage density in the tumor.

PI3-kinase inhibition reduces ErbB3WT chemotaxis, in vivo invasion and in vivo tumor cell 
motility

As an independent confirmation of the role of PI3-kinase in chemotaxis and invasion of 

ErbB3WT cells, we used a p110α-selective PI3-K inhibitor, PIK-75. At a concentration of 

200 nM, PIK-75 dramatically reduced the in vitro chemotactic response to HRGβ1 (Figure 

4A) and lowered pAkt levels by ~40% (Supplementary Figure 3). PI3K inhibition increased 

Erk activity by ~50%, consistently with a previously observed relief of feed-back inhibition 

following blockade of the PI3K/Akt pathway (Chandarlapaty et al., 2011; Serra et al., 2011). 

We then evaluated the effect of PIK-75 on invasion in vivo. Comparing microneedles 

containing HRGβ1 alone or HRGβ1 with PIK-75 inserted into ErbB3WT tumors, 

significantly fewer ErbB3WT cells migrated into microneedles containing HRGβ1 with 

PIK-75 compared to HRGβ1 alone (Figure 4B). Of note, a 4-hour treatment of cells in vitro 

with PIK-75 had no effect of cell viability (data not shown). We also examined the ability of 

systemic PIK-75 to inhibit HRGβ1-induced responses at the primary tumor. Mice bearing 

ErbB3WT tumors were IP-injected with PIK-75 three hours before performing the in vivo 

invasion assay using microneedles containing HRGβ1. Tumors in PIK-75-treated animals 

showed significantly reduced in vivo invasion (Figure 4C), compared to tumors from vehicle 

control treated animals confirming the importance of the PI3K pathway in HRGβ1-induced 

responses in vivo. Interestingly, PIK-75 did not inhibit EGF-induced in vivo invasion 
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(Supplementary Figure 4), supporting our hypothesis that PI3K signaling is specifically 

critical in HRGβ1/ErbB3-driven invasion.

Next we used the same treatment regimen and evaluated tumor cell motility by intravital 

imaging. PIK-75 treatment significantly reduced total tumor cell motility in ErbB3WT 

primary tumors (Figure 4D, also see Supplementary Movies 3 and 4). We observed that the 

ErbB3WT cells treated with vehicle control were more polarized near vessels in the tumor, 

as compared to tumor cells in mice pretreated with PIK-75. To determine whether this 

observation was significant, we evaluated the length/width ratio of cells in close proximity 

to vessels employing the same method used previously to compare the polarization of 

ErbB3WT and ErbB3-Mutant tumor cells. There was a significant decrease in the length/

width ratio in ErbB3 tumors pretreated with the inhibitor (Figure 4E). These effects were not 

due to differences in tumor cell survival, as TUNEL staining was similar in PIK-75 and 

vehicle-treated ErbB3WT tumors (data not shown).

Analysis of HRGβ1-induced signaling in the ErbB3 WT and ErbB3 Mutant cells

To provide more mechanistic insight into the pathways that are important for motility and 

invasion, activity of the PI3K/Akt and the Erk pathways were measured in response to 

HRGβ1 treatment using phospho-specific antibodies. Cultures were stimulated with HRGβ1 

for various times and pAkt (T308) and pERK levels were measured in lysates from the three 

cell lines. There were no significant differences in the basal levels of pERK, or in the 

HRGβ1-induced pERK levels in the three cell lines (Figure 5A), In contrast, basal pAKT 

levels were lower and the kinetics of HRGβ1-induced Akt activation were delayed in the 

ErbB3-Mutant cells in comparison to the other cell lines. ErbB3WT cells showed maximum 

pAKT levels by 5 min (Figure 5B and Supplementary Figure 5), while the ErbB3 mutant 

cells required 10-15 min to reach maximum.

We next examined whether the differential effect on signaling in ErbB3WT and ErbB3-

Mutant cells was specific to HRGβ1 stimulation, by evaluating pAKT and pERK after 

stimulation with EGF (Figure 5 C and D), PDGF or with IGF-1 (Figure 5D). The results 

show that there was no difference in pAKT or pERK levels in EGF treated cells. IGF-1 

caused an increase in pAKT, not pERK, and the pAKT levels were the same in both cell 

lines. Finally, PDGF had no effect on these pathways, likely due to absence of the receptor. 

Thus loss of the PI3K binding sites on ErbB3 resulted in AKT phosphorylation in response 

to HRGβ1.

These results suggest that HRGβ1’s ability to cause a rapid stimulation of PI3K signaling is 

important for its biological activity in motility and invasion. Next we employed an in vitro 

invasion assay using Matrigel-coated transwells in combination with specific inhibitors to 

investigate pathways downstream of ErbB3 in the ErbB3 WT cells (Figure 5E). We found 

that HRGβ1-induced invasion was totally blocked by inhibition of p110α and Akt. Next we 

looked at Rac1, which is downstream of PI3K, in the three cell lines. HRGβ1 rapidly 

stimulated Rac1 activity by 2-fold in the ErbB3 WT cells, while there was no induction in 

control and low levels in ErbB3-Mutant cells (Supplementary Figure 6). In accordance with 

these results treatment with a Rac 1 inhibitor (NSC23766) reduced invasion by 

approximately 50% (Figure 5E). In contrast, treatment with a Pak inhibitor had no effect on 
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HRGβ1-induced invasion (data not shown). Taken together, the data suggest that invasion of 

the ErbB3 WT cells is mainly dependent upon the PI3K-Akt-Rac pathway.

DISCUSSION

In this study we utilized the MTLn3 cell line to evaluate the role of the YXXM sites in 

ErbB3 in breast cancer metastasis. We find that these sites are required for ErbB3-mediated 

chemotactic responses to HRGβ1 in vitro and invasion responses both in vitro and in vivo. 

Increased expression of wild-type ErbB3 had no effect on primary tumor growth, but 

significantly enhanced intravasation and spontaneous metastasis (Fig 2 and our previous 

publication (Xue et al., 2006)). Mutation of the YXXM sites dramatically reduced the 

enhancement of intravasation and metastasis, while having no effect on primary tumor 

growth. In an experimental metastasis assay, wild-type ErbB3 overexpression had a 

significant, albeit slight, effect on the lung seeding process, which also required ErbB3 

coupling to PI3K. Similarly, an increase in spontaneous motility and cell polarization in the 

primary tumor induced by wild-type ErbB3 required the YXXM sites. Treatment of tumor-

bearing mice with the p110alpha inhibitor PIK-75 caused a significant decrease in intravital 

motility and in vivo invasion, attesting to the important role of PI3K in invasion. 

Overexpression of ErbB3 in the aggressive MDA-MB-231 human breast cancer model also 

significantly enhanced the invasiveness of the cells in response to HRGβ1 treatment 

(Supplementary Figure 7). Taken together the data presented here indicate that the ability of 

ErbB3 to couple to the PI3K/Akt pathway confers tumors overexpressing this receptor with 

an enhanced ability to invade and to metastasize.

Based on the studies reported here, we have identified intravasation as a key stage in 

metastasis that is enhanced by ErbB3 signaling both in vivo and in the in vitro 

transendothelial migration assay. Intriguingly, EGFR overexpression is not equivalent to 

ErbB3 overexpression in the in vitro TEM assay, since the former do not show increased 

intravasation (data not shown), while as we show here ErbB3 overexpression has a positive 

impact. These results are consistent with our in vivo studies using EGFR inhibitors (Kedrin 

et al., 2009a), where we show that inhibition of EGFR had a slow inhibitory effect on 

intravasation and was only evident with a delay of several hours after EGFR inhibition. 

Conversely, inhibition of ErbB2 rapidly inhibited intravasation (Kedrin et al., 2009b). Since 

ErbB3 forms preferred heterodimers with ErbB2, this suggests that an ErbB3/ErbB2 

heterodimer is important in enhancing the intravasation step, while EGFR is important for 

tumor cell invasion from the primary tumor to reach the blood vessels (Kedrin et al., 2009a). 

HRGβ1 is present in serum in subnanomolar concentrations (Ky et al., 2009), and by 

increasing ErbB3 levels in the tumor cells this might enable them to detect low levels of 

HRGβ1 and increase their intravasation. Endothelial cells have also been reported to express 

HRGβ1, which may also stimulate intravasation (Iivanainen et al., 2007; Kalinowski et al.).

HRGβ1 activated PI3K/Akt in both ErbB3 WT and ErbB3-Mutant cells but with different 

kinetics. In ErbB3WT cells the pathway was maximally activated after 5min of HRGβ1 

stimulation, while it took between 10 and 15min to see the same signal intensity in the 

ErbB3-Mutant cells. This suggests that early pathway activation, which is dependent upon 

p85/PI3K binding to HRGβ1 activated ErbB3-containing heterodimers, is responsible for the 
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major effects of the ligand on migration and invasion. The fact that blockade of PI3K or Akt 

activity using selective inhibitors totally blocked HRGβ1-induced invasion (Fig 5E), while 

ErbB3-Mutant cells were only blocked in their invasive ability by ~ 60% (Fig 1D), very 

likely reflects the fact that the PI3K/Akt pathway does get activated in these cells, but with 

slower kinetics. The importance of the kinetics of signaling pathway activation in response 

to ErbB ligands has been observed in other systems, (see, e.g. (Olayioye et al., 2001)).

While previous studies have shown the direct binding of p85 and subsequent signaling from 

all six YXXM motifs on the ErbB3 C-terminus (Hellyer et al., 2001; Prigent and Gullick, 

1994), high-throughput methods such as protein microarray studies suggest that other 

molecules could bind these sites (Jones et al., 2006). To confirm that the phenotype in the 

ErbB3-Mutant MTLn3 cells is due to defective PI3K pathway signaling, we used the p110-α 

selective inhibitor PIK-75, revealing that the in vitro chemotaxis as well as in vivo invasion 

of MTLn3-ErbB3WT cells towards HRGβ1 was impaired following PI3K inhibition. 

Moreover pretreatment of mice carrying ErbB3WT cell-induced tumors with PIK-75 caused 

reduced tumor cell motility, as visualized by multiphoton microscopy. Furthermore, the cells 

in the treated tumors were also more rounded on average as quantified by length/width 

ratios, thus mimicking the phenotype of the mutant ErbB3 tumors. These experiments 

support the hypothesis that PI3K pathway activation by ErbB3 is a major contributor to 

enhancing the initial steps of the metastatic cascade of mammary tumor cells.

MATERIALS and METHODS

Cell culture

Rat mammary carcinoma MTLn3 cells (Neri et al., 1982) were grown in α-MEM 

supplemented with 5% fetal bovine serum (FBS) and penicillin/streptomycin solution (Life 

Technologies). HRGβ1 was from R & D Systems (396-HB). MDA-MB-231 cells (American 

Type Culture Collection) were cultured in DMEM (Invitrogen) with 10% fetal bovine 

serum.

Animal models and in vivo assays for metastatic progression

All procedures involving mice were conducted in accordance with the National Institutes of 

Health regulations concerning the use and care of experimental animals. The study of mice 

was approved by the Albert Einstein College of Medicine animal use committee. MTLn3 

derived cell lines were grown to 70-85% confluence before being harvested for in vivo 

assays. To measure spontaneous metastasis, 5×105 cells were detached by incubation in 

DPBS + 2 mmol/L EDTA, scraping with a rubber policeman, centrifuged, and resuspended 

in DPBS at 107 cells/mL. MTLn3 (5 × 105) cells were injected into the right fourth 

mammary fat pad from the head of 5- to 7-week-old female severe combined 

immunodeficient (SCID/NCr) mice (National Cancer Institute, Bethesda, MD) in 100 μL 

DPBS with calcium and magnesium (Mediatech 21-031-cv) through a 25-gauge needle. 

Tumor growth rate was monitored at weekly intervals by measuring in two dimensions, and 

tumor volumes were calculated using the formula: length × width2/2. At the end point for 

spontaneous metastasis, the blood burden assay was performed using blood taken from the 

right atrium via heart puncture with a 25-gauge needle and a 1 mL syringe coated with 
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heparin and containing 0.1 mL of heparin. Blood was plated in tissue culture medium and 

after 7 days all tumor colonies in the dish were counted. Tumor blood burden was calculated 

as the total colonies in the dish divided by the volume of blood taken. To measure 

experimental lung metastasis, 5 × 105 cells were injected into the lateral tail veins of 5- to 7-

week-old female SCID mice (National Cancer Institute). Two weeks after injection, the 

mice were sacrificed, and the lungs were removed, fixed in formalin, and stained H&E 

sections were counted for metastasis. For each lung sample, all micrometastases were 

counted using a 10x objective. The efficiency of lung metastasis was expressed in number of 

metastases per lung section for each animal. Mean and SE were then calculated for each cell 

line.

In Vivo Invasion assay

The measurement of cell invasion into needles placed in the primary tumor of anesthetized 

mice was carried out as described previously in detail (Hernandez et al., 2009b). Invasive 

cells were collected into 33-gauge Hamilton needles (Fisher 14-815-423) filled with 

Matrigel (Beckton Dickinson 356234) diluted 1:10 with L15-BSA +/- chemoattractant for 4 

hours. At the end of collection, the contents of the needles were extruded using 0.5 μg/ml 

DAPI in PBS in a syringe onto a coverslip. The chemoattractants used in this assay include 

HRGβ1 at a concentration of 50 nM (R & D Systems 396-HB) and EGF at 25 nM (Life 

Technologies). To inhibit the activity of PI3-kinase, PIK-75 (Axon Medchem, Axon 1334), 

a p110-alpha-selective inhibitor (Chaussade et al., 2007), was used at 1 μM.

Intravital Imaging

Orthotopic primary tumors were grown and imaged at 4-5 weeks post injection. The animal 

was anesthetized, and a skin flap surgery was performed to expose the tumor. The animal 

was placed on an inverted microscope and tumor cells were imaged using a Radiance 2000 

MP multiphoton or on an Olympus Fluoview FV1000-MPE microscope using an excitation 

wavelength of 880nm with a 20X 0.95NA water objective (Wyckoff et al., 2007) or a 25X 

1.05NA water objective at resolutions of 1.06 and 0.994 um per pixel, respectively. Cell 

motility was observed by time-lapse imaging over 30 min at 2-minute intervals, where a 100 

μm z-series, with 10 μm steps, was collected at each time point. For quantification of 

average total cell motility, a motility event was defined as a protrusion of half a cell length 

or more. The length/width ratio (L/W) was calculated using ImageJ as follows: length was 

scored as the Feret’s diameter of the cell (the longest distance between any two points along 

the boundary); width was scored as the secondary axis of the best fit ellipse of the circled 

cells. Cells near stromal and vascular areas of the tumor in the top 40 um from the tumor 

surface were selected for these measurements. For inhibition of PI3-kinase in the tumor cells 

in vivo for imaging, PIK-75 was dissolved in DMSO and three hours prior to imaging, a 

dose calculated to be 50mg/kg of body mass was mixed with 200-300 ul PBS such that the 

final solution consisted of no more than 20% DMSO and 20% β-cyclodextrin, and injected 

intraperitoneally, following a previously described procedure (Hayakawa et al., 2007).

Additional reagents and methods are described in the Supplementary Materials and 

Methods.
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Statistical Analysis

Statistical significance was determined using unpaired, two-tailed Student’s t tests assuming 

unequal variances and an alpha level of 0.05. Differences were considered significant if the 

p value was <0.05. For blood burden assays the non-parametric Mann Whitney Wilcoxon 

rank sum test was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ErbB3 mutations block tyrosine phosphorylation, PI3K binding and show a defect in in 
vitro chemotaxis and invasion to HRGβ1
A. Flow cytometry analysis of surface ErbB3 levels in pLXSN (solid line), ErbB3WT 

(dotted line), and ErbB3-Mutant (dashed line) cells. A mouse anti-ErbB3 primary followed 

by an APC-labeled secondary was used. The curve with solid shading represents ErbB3WT 

cells incubated with just the APC-conjugated secondary antibody.

B. HRGβ1-induced ErbB3 tyrosine phosphorylation and association to the p85 subunit of 

PI3K. Serum starved MTLn3 ErbB3WT or ErbB3-Mutant cells were stimulated with buffer 

or HRGβ1 (0 or 0.4 HRG) for 5 minutes. ErbB3 immunoprecipitates (IP) and whole cell 

lysates (WCL) were resolved by SDS/PAGE, and probed for (PTyr) or p85α. Membranes 

were stripped and reprobed to control for ErbB3 levels.

C Chemotaxis to HRGβ1 of pLXSN (light gray bars), ErbB3WT (dark gray bars) and 

ErbB3-Mutant (patterned bars). Data are mean and SEM of 6-27 wells in 3-6 independent 

experiments.

D. In vitro invasion responses of ErbB3WT (black bars) and ErbB3-Mutant cells (patterned 

bar) into Matrigel-coated transwells stimulated by buffer or 12.5 nM HRGβ1. Data are 

presented as % Area invaded, and are mean and SEM of 3 independent experiments. *:p< 

0.02
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Figure 2. PI3-kinase binding sites contribute to intravasation and lung metastasis
A. Tumor growth after orthotopic injection into the mammary fat pad. There are no 

statistically significant differences between the average primary tumor volumes formed by 

MTLn3 pLXSN, ErbB3WT or ErbB3-Mutant lines. Data are means and SEM of 9-27 tumor 

measurements determined on average 36 days after injection for all cell lines.

B. Intravasation measured 4-5 weeks post injection into the mammary fat pad. Blood drawn 

from the right atrium of the heart was plated into cell culture medium and colonies were 

counted 7 days later. Data are means and SEM of total numbers of colonies normalized per 

ml of blood drawn for 15 – 17 mice per cell line. *: p<0.004, **: p<0.05.

C. Spontaneous metastatic potential measured 4-5 weeks post injection into the mammary 

fat pad was determined by quantifying metastases in H&E stained sections through the 

middle of the lungs. Data are means and SEM of counts from 11 – 13 animals carrying 

tumors from each cell line. *: p< 0.02

D. Lung seeding efficiency determined by evaluating metastases in H&E stained sections 

through the middle of the lungs 2 weeks post injection via tail vein. Data are means and 

SEM of 9 – 12 animals per cell line. *: p<0.02, **: p<0.03
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Figure 3. PI3-kinase binding sites are required for ErbB3 enhancement of in vivo motility and 
invasion
A. Intravital imaging using multiphoton microscopy of primary mammary tumors of GFP-

labeled tumor cells. Time-lapse z-series were acquired and the average total cell motility 

was determined per 40 μm z-stack (5 sections imaged at 10 μm intervals). Data are means 

and SEM of 24 – 33 separate z stacks from 7-8 mice per cell line. *: p<0.025, **: 

p<0.0000042. i/ii panels illustrate examples of (i) ErbB3WT GFP and (ii) ErbB3-Mutant 

GFP cell motility in vivo. Cells are green with collagen fibers detected by second harmonic 

scattering in purple. Frames are 6 minutes apart, arrows show migrating tumor cell; Scale 

bar = 25 μm. Asterisks mark a single cell in i and ii and arrows mark a moving cell in i.

B. Length/width ratio comparisons. Top: representative images. Bottom: Mean and SEM of 

ratios of 50-100 cells from 3 tumors, 5 slices analyzed per z stack. Scale bar = 25 μm. *: 

p<0.002, **: p<6×10-5

C. In vivo invasion responses. Microneedles containing buffer or 50 nM HRGβ1 were 

inserted into primary tumors and invasive cells were quantified. *: p<4×10-5, **: p< 5×10-6. 

Data are means and SEM of 9-13 measurements from 3-4 tumors per cell line (pLXSN: 

gray, ErbB3WT: black, ErbB3-Mutant: patterned).

D. In vitro transendothelial migration assay. Cells were plated on the basal side of an 

endothelial monolayer either alone or mixed with macrophages (+M) and allowed to migrate 

for 18 hours. for comparison of ErbB3WT+M with ErbB3-Mutant+M: p<4×10-6. Data are 

represented as the fold migration over pLXSN alone, with mean and SEM of 4 independent 

experiments with each cell line.
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Figure 4. The PI3-kinase inhibitor PIK-75 blocks HRGβ1 induced chemotaxis, in vivo invasion 
and total tumor cell motility
A. In vitro chemotaxis is inhibited by PIK-75. Migration of ErbB3WT cells in response to a 

gradient of either 1.25 nM HRGβ1 (black bar) or 1.25 nM HRGβ1 + 0.2 μM PIK-75 

(patterned bar). *: p< 0.0001. Data are mean and SEM of measurements from 3 independent 

experiments.

B. In vivo invasion is inhibited by PIK-75. Microneedles containing 50 nM HRGβ1or 50 nM 

HRGβ1 + 1 μM PIK-75 were inserted into the primary tumor and invasive cells were 

collected and counted. Data are mean and SEM from 6 needles for HRGβ1 and 10 needles 

for HRGβ1 + PIK-75 from 3 tumors for each condition. *: p< 1 × 10-5.

C. In vivo invasion stimulated by 50 nM HRGβ1 is inhibited by systemic application of 

PIK-75. Mice bearing ErbB3WT tumors were injected i.p. either with vehicle control (black 

bar) or with 1.5 mg PIK-75 (pattern) 3 hours prior to assay. Microneedles containing 50 nM 

HRGβ1 were inserted into primary tumors and invasive cells were quantified as described in 

the methods.*: p< 0.00035. Data are means and SEM of 4-8 measurements from 4 tumors 

per condition.
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D. Cell motility in vivo using intravital imaging. Mice bearing tumors were injected i.p. 

either with vehicle control (black bar) or with 1.5 mg PIK-75 (pattern) 3 hours prior to 

imaging. Tumors were exposed by skin-flap surgery and time-lapse z-series were acquired. 

The average total cell motility was determined per 40 μm z-stack (5 sections imaged at 10 

μm intervals).

Top: Data are means and SEM of 8 (vehicle control) and 15 (PIK-75) separate z stacks from 

3 mice per condition. *: p< 0.016

Bottom: Representative panels from tumors of animals injected with (i) MTLn3-ErbB3--

GFP vehicle control or (ii) PIK-75 3 hours prior to imaging. Cells are green with collagen 

fibers detected by second harmonic scattering in purple. Frames are 6 minutes apart, arrow 

shows migrating tumor cell; * indicates a single cell. Scale bar = 25 μm.

E. Length/width ratio comparison. Top: representative images Bottom: Mean and SEM of 

40-50 cells from 3 tumors per condition, 5 slices analyzed per field. Scale bar = 25 μm.*: 

p<0.002
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Figure 5. Analysis of HRGβ1 induced signaling in the ErbB3 WT and ErbB3-Mutant cells
A. Erk phosphorylation was determined in serum-starved cells after 5 minute treatment with 

0 (-) or 0.4 nM HRGβ1 (+). Similar results were observed in three independent experiments.

B. MTLn3 pLXSN, ErbB3WT, and ErbB3-Mutant cells were stimulated with 0.4 nM 

HRGβ1for 0, 5, 10, and 15 minutes (Min HRG). A delay in phosphorylation of Akt on Thr 

308 was observed in ErbB3-Mutant cells response to HRGβ1.

C. Akt (T308) and Erk phosphorylation activation was determined in serum-starved cells 

after 5 min treatment with 0 (-) or 5 nM (+) EGF. Similar results were observed in three 

independent experiments.

D. Akt (T308) and Erk phosphorylation activation was determined in serum-starved cells 

after 10 min treatment with PDGF, IGF-I, and EGF. Similar results were observed in three 

independent experiments.
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E. Matrigel-coated transwells were used to test 12.5 nM HRGβ1induced in vitro invasion 

responses of MTLn3 ErbB3WT in the presence of vehicle (gray bars) or inhibitor (patterned 

bars). PIK-75 is a p110α selective inhibitor, Triciribine is an Akt inhibitor, and NSC23766 

is a Rac1 inhibitor. Data are mean and SEM from 3 independent experiments. *: p< 0.05, 

**: p< 1.83E-05
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