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Myeloid cell-specific sirtuin 6 deficiency
delays wound healing in mice by
modulating inflammation and
macrophage phenotypes
Jeung-Hyun Koo1, Hyun-Young Jang1, Youngyi Lee1, Young Jae Moon1, Eun Ju Bae2, Seok-Kweon Yun3,4 and
Byung-Hyun Park1

Abstract
We recently reported that myeloid cell-expressed sirtuin 6 (Sirt6) plays a crucial role in M1 macrophage polarization
and chemotaxis. Given the prominent role of macrophages during wound repair and macrophage heterogeneity, we
hypothesized that a Sirt6 deficiency in myeloid cells would delay skin wound closure by affecting the phenotypes of
macrophages in wounds. To address this question, a full-thickness excisional lesion was made in the dorsal skin of
myeloid cell-specific Sirt6 knockout (KO) and wild-type mice. Wound closure was delayed in the KO mice, which
exhibited less collagen deposition, suppressed angiogenesis, and reduced expression of wound healing-related genes
compared to the wild-type mice. Using immunohistochemical, flow cytometric, and gene-expression analyses of
macrophage subpopulations from wound tissue, we identified increased infiltration of M1 macrophages with a
concomitant decrease in M2 macrophage numbers in the KO mice compared to the wild-type mice. Consistent with
the in vivo wound closure defects observed in the KO mice, keratinocytes and fibroblasts treated with KO
macrophage-derived conditioned medium migrated slower than those treated with wild-type macrophage-derived
conditioned medium. An analysis of downstream signaling pathways indicated that impaired Akt signaling underlies
the decreased M2 phenotypic switching in KO mice. These results suggest that a macrophage phenotypic switch
induced by Sirt6 deficiency contributes to impaired wound healing in mice.

Introduction
Skin wound healing is a highly ordered process com-

prising several overlapping stages: (i) an inflammatory
stage that cleans out debris and bacteria, (ii) a proliferative
stage that refills the dermal wound space, and (iii) a long-
term remodeling stage that involves the resolution of

inflammation and reorganization of connective tissue into
a scar1. Thus, the recruitment of inflammatory cells into
the wound site is an initial event in the tissue repair pro-
cess. Neutrophils form the first line of defense against
infection and are a source of proinflammatory cytokines2,3.
Macrophages also regulate wound healing by producing
various growth factors such as transforming growth fac-
tor-β, basic fibroblast growth factor, and platelet-derived
growth factor4–6. In response to these growth factors,
epithelial cells proliferate and migrate to cover the wound,
endothelial cells participate in angiogenesis, and fibro-
blasts contribute to the process of dermal healing7. In
support of this view, suppressed recruitment of macro-
phages into wound sites impairs wound healing8,9.
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However, due to the release of proinflammatory and
cytotoxic mediators, uncontrolled macrophage activity
may also be detrimental to tissue repair1. Macrophages
have been subdivided into two subpopulations based on
their distinct gene-expression profiles: classically activated
M1 macrophages and alternatively activated M2 macro-
phages10. Interestingly, not only does the number of
macrophages infiltrating the wound site change but mac-
rophage phenotypes also shift in the various stages of
wound repair. In the inflammatory stage, M1 macrophages
initiate an acute inflammatory response, whereas during
the proliferative stage, M2 macrophages promote angio-
genesis and granulation tissue formation11. These findings
suggest that proper macrophage polarization is critical to
effective wound healing. However, the mechanism that
regulates macrophage polarization is unclear.
Sirtuins are a class of NAD-dependent histone deace-

tylases that consists of seven enzymes (Sirt1 to Sirt7) that
differ in their cellular localization. Among the seven sir-
tuin family members, Sirt6 is localized in the nucleus and
is involved in transcriptional silencing, genome stability,
and longevity12. As a histone deacetylase, Sirt6 deacety-
lates histone H3 lysine 9 (H3K9)13 and histone H3 lysine
56 (H3K56)14 and represses the transcriptional activities
of several transcription factors. As a nonhistone protein
deacetylase, Sirt6 deacetylates forkhead box protein
O115,16, C-terminal binding protein interacting protein17,
GCN518, pyruvate kinase M219, and GATA binding pro-
tein 320. Since Sirt6 is a critical determinant of phenotypic
switching and the migratory responses of macrophages21,
we hypothesized that myeloid cell-expressed Sirt6 could
play a role in the wound healing process. To test this
hypothesis, we constructed myeloid cell-specific Sirt6
knockout (mS6KO) mice and studied the effects of Sirt6
deficiency on cell migration in vitro and inflammation and
wound healing in vivo.

Materials and methods
Animals
Sirt6flox/flox mice (B6;129-Sirt6tm1Ygu/J) and LysM-Cre

mice (B6.129P2-lyz2tm1(cre)Ifo/J) were obtained from The
Jackson Laboratory (Bar Harbor, ME, USA). Sirt6flox/flox

and homozygous LysM-Cre mice were crossed to obtain
mS6KO mice. To avoid potential variations due to sex
and/or genetic background, female mice from the F2
generation [Sirt6flox/flox; LysM-Cre+ (mS6KO) and Sirt6-
flox/flox; LysM-Cre− (WT)] were used for all experiments.
The mice had free access to food and water and were
maintained in a room with controlled humidity (50%) and
temperature (22 °C) on a 12-h light/dark cycle. All animal
experiments were performed in accordance with the
Guide for the Care and Use of Laboratory Animals pub-
lished by the US National Institutes of Health (NIH
Publication No. 85-23, revised 2011). The study protocol

was approved by the Institutional Animal Care and Use
Committee of Chonbuk National University (Permit No.
CBNU 2015-083).

Wound modeling
Twelve-week-old WT and KO mice were intraper-

itoneally anaesthetized with ketamine (100 mg/kg) and
xylazine (5 mg/kg), shaved, and cleaned. An immediate-
bonding adhesive (Grace Bio-Labs, Bend, OR, USA) was
used to fix a splint to the skin. Full-thickness wounds were
made in the doughnut region of the splint using 6-mm-
diameter punches (Acuderm, Fort Lauderdale, FL, USA).
Tegaderm film (3M Health Care, St. Paul, MN, USA) was
placed over the wounds to stabilize the wound site. The
percentage of the initial wound that remained open was
quantitated at different time points (days 0, 3, 5, 7, and
14). After the mice were sacrificed, the skin wounds were
collected for histopathological analysis and RNA isolation.

Histology
Tissue was removed and immediately placed in fixative

(10% formalin solution in 0.1M phosphate-buffered saline
(PBS)). Histological sections (5 μm) were cut from for-
malin-fixed, paraffin-embedded tissue blocks. To compare
histopathology between lesions, we harvested skin near
the center of the wound. The tissue sections were stained
with hematoxylin-eosin (H&E) under standard condi-
tions. Immunohistochemical staining was performed
using a DAKO Envision system (DAKO, Carpinteria, CA,
USA), which uses dextran polymers conjugated with
horseradish peroxidase to avoid contamination with
endogenous biotin. After deparaffinization, the tissue
sections were treated using a microwave antigen-retrieval
procedure with 0.01M sodium citrate buffer. After
blocking endogenous peroxidase activity, the sections
were incubated with Protein Block Serum-Free (DAKO)
to block nonspecific staining. The sections were then
incubated with antibodies against F4/80 and von Will-
ebrand factor (vWF; Millipore, Beverly, MA, USA). Per-
oxidase activity was detected with 3-amino-9-ethyl
carbazole. The number of F4/80-positive macrophages
was counted in five microscopic fields (magnification,
100×) for each sample in the fields with the highest
numbers of F4/80-positive macrophages. The results are
expressed as the average number of F4/80-positive
macrophages per field. Masson’s trichrome staining was
performed with a commercial kit from Abcam (ab150686,
Cambridge, UK). Double-staining immunofluorescence
analysis was performed to determine the types of mac-
rophages in the skin wounds. Frozen sections were
incubated with a combination of anti-F4/80 and anti-
iNOS antibodies (Santa Cruz Biochemicals, Dallas, TX,
USA) or anti-F4/80 and anti-MRC1 antibodies
(also known as CD206; Abcam) at 4 °C overnight.
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Myofibroblasts were identified by staining with antibodies
to vimentin (Santa Cruz Biochemicals) and α-smooth
muscle actin (α-SMA; Abcam). After incubation with the
corresponding fluorochrome-conjugated secondary anti-
bodies, the sections were mounted and visualized using a
LSM510 confocal laser scanning microscope (Carl Zeiss,
Oberkochen, Germany).

ELISA analysis
Tissue levels of TNF-α, IL-1β, IL-6, IL-4, IL-13, and IL-

10 were measured using specific ELISA kits (all from
eBioscience, San Diego, CA, USA).

Flow cytometric analysis
Wound cells were isolated by an enzymatic digestion

with collagenase V. For flow cytometric analysis, Fc
receptors were blocked with mouse SeroBlock FcR
(CD16/CD32, eBioscience). The cells were stained with a
PerCP- or FITC-conjugated anti-F4/80, a FITC- or PE-
conjugated anti-Ly6g, an APC-conjugated anti-CD11b, a
PE-conjugated anti-Ly6c, or a FITC-conjugated anti-
MHCII antibody for 30min at 4 °C. After washing with
FACS buffer (2% fetal bovine serum (FBS) in PBS) three
times, the cells were analyzed using an Accuri flow cyt-
ometer (BD Biosciences, San Jose, CA, USA).

Cell culture
The human keratinocyte cell line HaCaT was kindly

donated by Dr. Jeong HS (Chonnam National University
Medical School, Gwangju, Korea). The cells were grown
in Dulbecco’s modified Eagle’s medium (Lonza, Walk-
ersville, MD, USA) supplemented with 10% (v/v) FBS and
antibiotics (100 U/ml penicillin and 100mg/ml strepto-
mycin) at 37 °C in a humidified atmosphere with 5% CO2.
A mouse dermal fibroblast cell line (MDFB) was obtained
from iXCells Biotechnologies (San Diego, CA, USA) and
grown in fibroblast growth medium (iXCells Biotechnol-
ogies). Adenoviruses expressing Sirt6 (AdSirt6) and
β-galactosidase (AdLacZ) were prepared as described
previously22.

Preparation of conditioned medium and the wound
scratch assay
Bone marrow was isolated from the femurs and tibias of

WT and KO mice and cultured in α-MEM (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% FBS. Floating
cells were defined as bone marrow macrophages (BMMs).
To prepare conditioned medium (CM), BMMs (2 × 106)
were grown in α-MEM supplemented with 10% FBS.
Confluent cells were treated with TNF-α (10 ng/ml), IL-1β
(10 ng/ml), and IL-6 (10 ng/ml) for 3 h; washed 3 times;
and cultured for a further 24 h; then, the supernatants were
collected and used. Cell migration was assessed by deter-
mining the ability of the cells to move into a cell-free area

in a two-dimensional scratch assay. Briefly, HaCaT cells
(2 × 106 cells) or MDFB cells (2 × 106 cells) were grown in a
12-well plate. When cell confluence reached 90% or higher,
fresh medium containing 10 μg/ml mitomycin C was
added for 2 h. The cells in the center of the well were
scratched with a 100-μl sterile pipette tip to create a cell-
free area. The medium was changed to WT or KO BMM-
derived CM. The scratched area was photographed using a
microscopy system (Carl Zeiss) soon after scratching and
12 and 36 h later. The scratch area was measured using
iSolution DT 36 software (Carl Zeiss).

M2 polarization
BMMs grown in α-MEM were stimulated with IL-4

(10 ng/ml, Invitrogen) and macrophage colony-
stimulating factor (10 ng/ml, Thermo Fisher Scientific,
Waltham, MA, USA) for 6 h. To exogenously express Akt
in BMMs, cells were transduced with adenoviruses
expressing a constitutively active form of Akt (S473D/
T308D, AdAkt). The adenoviruses were a kind gift from
Dr. Ahn J.Y. (Sungkyunkwan University, Suwon, Korea)23.

Western blotting
Cells were homogenized in Mammalian Protein

Extraction Reagent (Thermo Fisher Scientific). The
homogenates (20 μg of total protein) were separated by
sodium dodecyl sulphate polyacrylamide gel electro-
phoresis and transferred to nitrocellulose membranes.
The blots were probed with primary antibodies against
Sirt6 (Abcam), p-Akt, Akt, p-FoxO1, p-STAT6 (Cell
Signaling Technology, Beverly, MA, USA), HSP90, α-
tubulin, GAPDH (Bioworld, Irving, TX, USA), Arg1
(Santa Cruz Biochemicals), and Ym1 (STEMCELL Tech-
nologies, Vancouver, Canada). Immunoreactive bands
were detected with a Las-4000 imager (GE Healthcare Life
Science, Pittsburgh, PA, USA).

RNA isolation and real-time RT-PCR
Total RNA was extracted from tissue using Trizol

reagent (Invitrogen). RNA was precipitated with iso-
propanol and dissolved in diethyl pyrocarbonate-treated
distilled water. First-strand cDNA was generated with
oligo dT-adaptor primers by reverse transcription
(TaKaRa). Specific primers were designed using qPri-
merDepot (http://mouseprimerdepot.nci.nih.gov, Table
S1). The real-time reverse transcription polymerase chain
reaction (RT-PCR) reaction systems had a final volume of
10 μl and contained 10 ng of reverse-transcribed total
RNA, 200 nM forward and reverse primers, and a PCR
master mix. RT-PCR was performed in 384-well plates
using the ABI Prism 7900HT Sequence Detection System
(Applied Biosystems, Foster City, CA, USA). Reverse
transcription and PCR were performed using a One-Step
RT-PCR kit (Invitrogen). The PCR products were
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separated by electrophoresis on 2% agarose gels, followed
by staining with ethidium bromide.

Statistical analyses
Data are expressed as the mean ± standard error of the

mean. GraphPad Prism software was used to perform the
statistical analyses (GraphPad Prism version 5.2, San
Diego, CA, USA). Significant differences between groups
were determined using an unpaired Student’s t test. A p
value less than 0.05 was considered significant.

Results
Wound healing is impaired in mS6KO mice
To understand the role of myeloid cell-expressed Sirt6 in

excisional wound healing, we generated mS6KO mice by
breeding Sirt6flox/flox mice with LysM-Cre mice. By Wes-
tern blot analysis, the successful deletion of Sirt6 was
confirmed in BMMs from mS6KO mice (Fig. 1a). Excision
wounds were made in the dorsal skin of female mS6KO
mice and their WT littermates. We observed slower
wound healing in the mS6KO mice than in the WT mice,
suggesting that the myeloid cell-specific Sirt6 deficiency
delayed wound healing (Fig. 1b, c). Histological compar-
ison of the wounds further confirmed delayed wound
closure in the mS6KO mice (Fig. 1d). Trichrome staining
of tissue harvested on day 14 after wounding showed
reduced collagen content in the granulation tissue of the

mS6KO mice (Fig. 2a). Similarly, the intensity of vWF-
positive immunostaining was decreased in KO tissue,
indicating that angiogenesis was also suppressed in the
mS6KO mice (Fig. 2a). The mRNA levels of extracellular
matrix genes (Col1a1, Col3a1, Timp1, Pdgfra, and Tgfb1)
and the angiogenesis gene Vegfa were significantly sup-
pressed in the skin tissue of the mS6KO mice (Fig. 2b).
Consistent with these results, the number of myofibro-
blasts (vimentin+α-SMA+ cells) was significantly
decreased in the skin wounds of the mS6KOmice (Fig. 2c).
Collectively, these data suggest that myeloid cell-specific
Sirt6 deficiency delays wound healing through the
repression of collagen deposition, epithelial regrowth, and
angiogenesis.

Myeloid cell-specific Sirt6 deficiency decreases M2
macrophage infiltration into skin wounds
We examined the infiltration of macrophages, which are

critical inflammatory cells for wound healing, into wound
sites by counting F4/80-positive cells. The accumulation
of F4/80-immunopositive cells was significantly increased
in mS6KO mice compared to WT mice (Fig. 3a, b). Real-
time RT-PCR for F4/80 mRNA (Adgre1) expression and
flow cytometric analysis for wound-associated macro-
phages (F480hiLy6gloCD11bhi) corroborated the increased
accumulation of macrophages in mS6KO mice compared
to WT mice (Figs. 3c, d, and S1A).
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Next, we immunostained skin wounds with an M1-
specific anti-iNOS antibody and M2-specific anti-MRC1
antibody. Myeloid cell-specific Sirt6 deficiency increased
the number of F4/80+iNOS+ macrophages and decreased
the number of F4/80+MRC1+ macrophages in the skin
wounds of mS6KO mice compared to those of WT mice
(Fig. 4a, b). Flow cytometric analysis also showed a
decrease in the accumulation of M2 macrophages
(F480hiLy6cloMHCIIhi) in the skin wounds of mS6KO mice
(Figs. 3e and S1B). Consistently, mRNA expression levels
for M1 marker genes (Ccl2, Tnfa, Il6, Il1b, Nos2, and Il1b)
and M1 cytokines (TNF-α, IL-1β, and IL-6) were increased,
while the levels of M2 marker genes (Clec7a, Arg1, Chil3,
Mrc1, andMgl1) and M2 cytokines (IL-4, IL-13, and IL-10)
were decreased in mS6KO tissue (Fig. 5a–d). These results
indicate a decrease in the accumulation of M2-type mac-
rophages in the skin wounds of mS6KO mice.

CM from mS6KO BMMs decreases scratch wound closure
To examine whether secreted factors from M1 macro-

phages suppress cell migration during wound closure, we
conducted scratch wound assays (Fig. S2). We chose epi-
dermal keratinocytes (HaCaT cells) and dermal fibroblasts
(MDFB cells) for the cell migration study. CM from KO
BMMs significantly decreased the rate of HaCaT cell
migration compared to CM from WT BMMs (Fig. 6a).
Complete gap closure was seen with treatment with CM
fromWT BMMs by 36 h, as opposed to treatment with CM

from KO BMMs resulting in only 58% closure at the same
time. In experiments with MDFB cells, the overall results
were similar: the fibroblasts treated with CM from WT
BMMs migrated more quickly to fill the scratch area than
those treated with CM from KO BMMs (Fig. 6b). Next, we
assessed whether exogenous Sirt6 expression in KO BMMs
could rescue the migratory defect seen in HaCaT and
MDFB cells. Ectopic overexpression of Sirt6 in KO BMMs
rescued cells from the migratory defect (Fig. 6a, b).

Myeloid cell-specific Sirt6 deficiency suppresses M2
polarization through downregulation of the PI3K-Akt
pathway
To explain the decreased number of M2 macrophages

in skin wounds in mS6KO mice, we compared M2
polarization in vitro. BMMs isolated from mS6KO mice
expressed markedly lower levels of M2 marker genes
(Arg1, Il10, Clec7a, Mrc1, and Chil3) in IL-4-stimulated
M2-polarizing conditions than BMMs from WT mice
(Fig. 7a). The classic IL-4 signaling pathway involves the
activation of phosphoinositide 3-kinase (PI3K)-Akt
through the recruitment of IRS-1/224. We observed
increased levels of p-Akt and the downstream molecule p-
FoxO1 after IL-4 stimulation in BMMs from WT mice,
whereas this increase was not observed in BMMs from
mS6KO mice (Figs. 7b and S3A). In addition to activating
Akt, IL-4 treatment also leads to the activation of JAK2-
STAT625. The phosphorylation levels of STAT6 were
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similar in BMMs from mS6KO and WT mice (Fig. 7b),
indicating that the change in M2 marker expression was
mediated through the downregulation of components of
the PI3K-Akt pathway and not through the JAK2-STAT6
pathway. To further investigate the regulation of the
PI3K-Akt signaling pathway by Sirt6 under M2-polarizing
conditions, we transduced BMMs with either Sirt6
(AdSirt6) or a constitutively active form of Akt (AdAkt).
Treatment with IL-4 led to a moderate increase in M2
marker protein expression in the BMMs from mS6KO
mice expressing Sirt6 or Akt (Figs. 7c and S3B). Accord-
ingly, the levels of M2 marker genes were increased in the
Sirt6- or Akt-overexpressing KO cells (Fig. 7d). The role
of Akt signaling in the enhancement of M2 polarization
was further tested by blocking Akt signals with MK2206
or Akti. When WT BMMs were pretreated with these Akt
inhibitors prior to stimulation with IL-4, Akt phosphor-
ylation and M2 marker gene expression were markedly
suppressed (Figs. 7e, S3C, and 7F). Finally, consistent with

these in vitro results, in vivo results showed that Akt
phosphorylation was increased in skin wounds in WT
mice but was significantly impaired in skin wounds in KO
mice (Fig. S4).

Discussion
In this study, we demonstrated that myeloid cell-specific

Sirt6 deficiency leads to delayed wound closure compared
to WT control. This aberrant wound closure pattern was
associated with the augmented infiltration of macro-
phages that failed to phenotypically switch from M1 to
M2 macrophages.
Previously, Thandavarayan et al.26 observed that Sirt6

knockdown impairs diabetic wound closure with con-
comitantly increased levels of oxidative stress, inflamma-
tory cytokines, and NF-κB activation in skin wounds.
Similarly, the sirtuin activator resveratrol accelerates
wound repair by increasing keratinocyte proliferation,
while the sirtuin inhibitor sirtinol retards wound
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closure27. More recently, Hu et al.28 showed that Sirt6 KO
mice display delayed and incomplete healing of the cornea
after wounding. These reports suggest a beneficial role for
sirtuin (specifically Sirt6) activation in wound healing.
Based on this background, we aimed to understand how a
myeloid cell-specific Sirt6 deficiency would affect mac-
rophage infiltration and wound closure using mS6KO
mice. Our results showed that the number of macro-
phages in excisional wounds was markedly increased in
mS6KO mice. The significantly increased expression of a
macrophage chemoattractant, CCL2, in mS6KO mice is
possibly responsible for the increased infiltration of
macrophages seen in the wounds of this strain compared
to those of WT mice. Remarkably, we clearly demon-
strated heterogeneity in the macrophage populations
recruited to the wounds of mS6KO mice. The expression
levels of established M1-specific marker genes were
upregulated in skin wounds in mS6KO mice, while the
levels of M2 marker genes were downregulated. These
results imply that the wound environment in mS6KO
mice favors the proinflammatory M1 status.
Ample evidence points to a phenotypic switch from an

M1 to an M2 macrophage in the process of wound
repair29. In the early inflammatory phase, M1 macro-
phages are the predominant cells in the tissue and are
involved in the clearance of pathogens and dead cells and
in the modulation of the adaptive immune system. In the
later proliferative phase, M2 macrophages contribute to
the resolution of inflammation and tissue remodeling.
While STAT6 has been shown to be required for IL-4 to
exert its effects24, the level of p-STAT6 was shown to be
unaffected by Sirt6 deficiency, indicating that IL-4
impacts other signaling pathways. We observed
enhanced levels of p-Akt in BMMs after exposure to IL-4,
a finding consistent with that of a previous study showing
that the activation of the PI3K-Akt pathway results in
stronger polarization of macrophages toward the M2
phenotype25. Moreover, the transduction of KO BMMs
with CA-Akt selectively restored the expression of M2
marker genes. These results indicate that the activation of
the PI3K-Akt pathway is required for the expression of
M2 markers; however, future studies are needed to
determine how Sirt6 deficiency affects the PI3K-Akt
pathway.
Using in vivo and in vitro approaches, we demonstrated

that myeloid cell-specific Sirt6 deficiency utilizes the fol-
lowing mechanisms to delay wound closure. First, more
proinflammatory cytokines such as TNF-α, IL-1β, and IL-
6 were produced in mS6KO mice. It is well known that
M1-type macrophages are a source of proinflammatory
cytokines. These cytokines alter the normal functioning of
epithelial cells and dermal fibroblasts and ultimately delay
the rates of re-epithelialization (epithelium closure) and
wound closure (dermis closure)29. Second, we observed a

lower number of vWF-positive cells in mS6KO mice than
in WT mice. M1 macrophages are described as having an
antiangiogenic profile, which is considered detrimental to
recovery after an inflammatory event30,31. Third, the
delayed wound closure observed in mS6KO mice was
accompanied by decreases in the migration of keratino-
cytes and dermal fibroblasts, suggesting that myeloid cell-
specific Sirt6 deficiency might impair epithelial and der-
mal closure by suppressing cell migration. Although the
underlying mechanisms by which myeloid cell-specific
Sirt6 deficiency suppresses keratinocyte and dermal
fibroblast migration remain elusive, these findings sug-
gest, for the first time, that myeloid cell-specific Sirt6
deficiency has a deleterious role in excisional wound
healing. Therefore, myeloid cell-specific Sirt6 activation
might be a therapeutic strategy for accelerating wound
healing.
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