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Background. Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of
flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular
mechanisms underlying the cold temperature regulation of flowering time are not fully understood. Methodology/Principal

Findings. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time
and cold response. An Arabidopsis mutant, long vegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was
isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from
the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected
flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the
photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1
controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was
consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed
that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature,
whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold
response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-
binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Conclusions. Our study shows
that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as
a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results
suggest an overlapping pathway for controlling cold stress response and flowering time in plants.
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INTRODUCTION
Timing of the developmental transition to the reproductive phase

is very important for plants to ensure successful reproduction and

requires the proper perception and processing of a variety of

stimuli. It is therefore not unexpected that the integration of

complex signals from environmental and endogenous cues is

necessary to enable plants to time this transition at the most

advantageous moment. In Arabidopsis, at least four major floral

promotion pathways are known to mediate signalling from the

different cues: the photoperiod, vernalization, autonomous and

gibberellin (GA) pathways [1]. Of these pathways, the photoperiod

pathway plays an important role in controlling the timing of the

developmental transition to flowering in Arabidopsis.

CONSTANS (CO) is an important floral promoter that acts within

the photoperiod pathway [2]. It encodes a nuclear protein

containing a CCT motif and two B-Box-type zinc-finger domains.

The mRNA expression level of CO is modulated by the circadian

clock and by day-length, and exposure to light is required to

activate CO protein function [3], suggesting that CO fulfills the role

of a mediator between the photoperiod/circadian clock and the

floral integrators. Several upstream regulators of CO in photoperiod

and circadian clock signalling have been identified. GIGANTEA (GI)

positively mediates signalling from the circadian clock oscillators to

CO [4]. RED AND FAR-RED INSENSITIVE 2 (RFI2) [5], CYCLING

DOF FACTOR 1 (CDF1) [6], and SUPPRESSOR OF PHYA-105

(SPA1) [7] are light signalling molecules controlling CO expression

downstream of photoreceptors. Although it has been firmly

established that CO expression is regulated by the photoperiod

and circadian clock, the regulation of CO expression by other

environmental stimuli is poorly understood.

NAC (NAM, ATAF1, -2, and CUC2)-domain proteins are

a class of transcription factors known to control multiple processes

in plants, including developmental programs and abiotic/biotic

stress responses [8]. One of the first reported NAC genes, NO

APICAL MERISTEM (NAM) from petunia, plays a critical role in

meristem formation [9]. As NAC-domain transcription factors are

found only in plants, it is highly likely that they are involved in

various plant-specific functions. As such, it is not surprising that

NAC-domain genes comprise one of the largest transcription

factor families in the compact Arabidopsis genome [10]. However,

only a small number of the NAC-domain proteins have been

studied to date [8], and the functions and regulation of most

Arabidopsis NAC-domain genes are still largely unknown.
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Temperature is an important environmental stimulus that

affects flowering time, and an abundance of studies have indicated

that it is highly probable that plants use different mechanisms to

control flowering time in response to different temperature ranges.

The thermosensory pathway genes play a role in regulating

flowering in response to ambient growth temperature (moderately

elevated or decreased temperatures) [11–13]. In response to near-

freezing temperatures, plants exhibit cold acclimation or the

vernalization response [14]. The duration of cold exposure to

establish these respective responses is different, such that a few

days of cold exposure is sufficient to initiate cold acclimation [15],

whereas several weeks are required for vernalization [16]. It is

generally accepted that cold acclimation is necessary for a plant to

deal successfully with sudden temperature changes and that

vernalization is required to ensure that flowering is inhibited until

spring [14]. Although the molecular mechanisms involved in the

control of flowering time by vernalization are well understood

[14,17], many questions have yet to be resolved in terms of cold

temperature regulation of flowering time.

We report here a NAC-domain transcription factor, LOV1,

which exerts its inhibitory effect on floral development by

negatively regulating CO expression in a GI-independent manner.

Mutations in LOV1 led to altered responses to freezing

temperatures. The loss-of-function lov1 allele was hypersensitive

to cold temperature, whereas a gain-of-function allele was tolerant

to cold temperature. The freezing tolerance was attributed to the

upregulation of cold response genes without altering expression of

the C-repeat-binding factor/dehydration responsive element-

binding factor 1 (CBF/DREB1) gene family. Based on our results,

we propose that LOV1 plays an important role in the coordination

of cold response and flowering time.

METHODS

Plant materials and growth conditions
All of the plants used in this study were Arabidopsis thaliana plants in

the Columbia background, except for co-2 and gi-3, which were in

the Ler background. gi-2 plants harbouring 35S::GI transgene were

used for GI overexpressor plants (genotype: 35S::GI gi-2). The lov1-

1D mutant was isolated from an activation-tagged mutant library

that had been generated in our laboratory [18]. A loss-of-function

allele of LOV1 that we used was a transposon insertion allele

identified from the Exon Trapping Insert Consortium (EXOTIC)

[19]. Since the allele was in the Landsberg background, we

introgressed it four times into the Columbia background. The

introgressed line was named lov1–4. Plants were grown in

Sunshine Mix 5 (Quincy, Mich.) under long-day (16:8 h,

light:dark) or short-day (8:16 h, light:dark) conditions at 23uC.

The flowering time of the plants was measured by scoring the

number of primary rosette and cauline leaves of at least 12 plants.

Recombinant plasmid construction
A LOV1 cDNA clone (C104984) was obtained from The

Arabidopsis Information Resource (TAIR) and fused with the

35S promoter and rbcS terminator. The resulting construct,

pSYY004, is referred to as 35S::LOV1 and was used for an

overexpression analysis. The 35S::LOV1:GFP (Green Fluorescence

Protein) construct was generated by fusing a LOV1 cDNA to smGFP

[20]. To generate a pLOV1::GUS (b-glucuronidase) construct, we

amplified a fragment of the LOV1 promoter (–1,943 to –1, relative

to a translational start) from the T16F16 BAC clone and cloned it

into the pBI101.1 vector. The pLOV1::LOV1:HA transgene was

generated by fusing the 1.9-kb LOV1 promoter with HA-tagged

LOV1 cDNA in the pJHA212B vector [21].

Expression analysis
RNA expression levels were measured by semi-quantitative reverse

transcriptase (RT)-PCR followed by Southern hybridization [22].

Oligonucleotide sequences used to detect the mRNA of the genes

studied are listed in Table S1. Seedlings for RNA extraction were

harvested at the indicated Zeitgeber (ZT) times. Either the

UBIQUITIN10 (UBQ10) or tubulin gene was used as an internal

positive control. For the diurnal expression analyses, plants were

entrained under 12:12 h (light:dark) conditions for 10 days, then

grown under continuous light conditions. The subcellular localiza-

tion of LOV1 was determined by using the 35S::LOV1:GFP reporter

gene. The 35S::LOV1:GFP construct was introduced into onion

(Allium cepa L.) epidermal cells by means of a particle gun (PDS-

1000/He; Bio-Rad, Hercules, Calif.) using tungsten particles coated

with plasmid DNA. The bombarded cells were then incubated at

22uC for 12 h, followed by staining with 49-6-diamidino-2-

phenylindole (DAPI; Sigma, St. Louis, Mo.); the GFP fluorescence

was observed under a fluorescence microscope (model Axioskop 2

plus; Carl Zeiss, Germany) and photographed with AxioCam HRc

(Carl Zeiss). For the histochemical GUS assay, whole seedlings were

stained according to the procedure of Sessions et al. [23].

Freezing-tolerance assay
lov1, co-2, and wild-type plant seeds were planted on soil and

grown under long-day conditions. For the freezing treatment, the

seedlings were placed in a controlled temperature chamber

(CryMedH Freezer; ThermoForma, Marietta, Ohio) and subjected

to freezing at –8uC for 2 h with or without cold acclimation. The

plants were then transferred to a cold room (4uC) under white light

and incubated overnight. Following thawing overnight, the plants

were moved to a climate chamber maintained at 23uC and grown

for 1 week under long-day conditions. For cold acclimation, 2.5-

week-old seedlings were transferred to a cold room (4uC) and

grown for 4 days prior to the freezing treatment.

RESULTS

Isolation of lov1-1D mutants that show a

late-flowering phenotype
A mutant that displayed delayed flowering under long-day

conditions was isolated from an activation tagging library [18].

This mutant, which we denoted as long vegetative phase 1-1D (lov1-

1D), flowered with 26.6 leaves under long days, whereas wild-type

plants flowered with 15.5 leaves (Figure 1A). A plasmid rescue

experiment [24] revealed that a T-DNA had been inserted into the

last exon of At2g02440 in chromosome 2. Despite the insertion of

this T-DNA into the coding sequence of At2g02440, we concluded

that the late-flowering phenotype was not associated with any

disruption of the At2g02440 gene structure because (1) the late-

flowering phenotype was dominant and (2) At2g02440 was

a hypothetical protein whose cDNA was not detected in the

known expressed sequence tag (EST) libraries. The next closest

gene to the 35S enhancers in the T-DNA was At2g02450, which

was located 8.9 kb from the right border of the T-DNA. Despite

this long distance, the expression of At2g02450 was significantly

upregulated in lov1-1D mutants (Figure 1B). Genomic Southern

hybridization using the BAR gene as a probe revealed a single

T-DNA insertion in the lov1-1D mutants (Figure 1C). Taken

together, these results strongly indicated that the late-flowering

phenotype in lov1-1D plants was closely associated with the

transcriptional activation of At2g02450.

We carried out a recapitulation experiment to confirm that

overexpression of At2g02450 caused the late-flowering phenotype.

Developmental Role of LOV1
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We expressed At2g02450 cDNA under the control of the 35S

promoter and chose transgenic lines that expressed At2g02450 at

high levels (Figure 1D). These transgenic plants showed late

flowering (average leaf number: 23.765.1) under long-day

conditions (Figure 1A), indicating that overexpression of

At2g02450 conferred the late-flowering phenotype observed in

lov1-1D mutants. The overall phenotypes of the lov1-1D mutants

and those of the transgenic plants that overexpressed At2g02450

cDNA were similar. We therefore designated At2g02450, which

encodes a NAC-domain transcription factor, as LOV1.

Alteration of LOV1 activity affects flowering time

mainly under long-day conditions
We identified a transposon allele in the Landsberg background

which had a Ds transposon inserted into the second intron of

LOV1 (Figure 2A). Changes in flowering time in this line were very

weak under long-day conditions (Figure 2B), possibly because

Landsberg is a rapid-cycling accession. We introgressed this

mutation into the Columbia background in order to facilitate its

genetic analysis with other flowering time mutants that are in the

Columbia background and then used this introgressed line (lov1-4)

to investigate LOV1 function. Semi-quantitative RT-PCR did not

detect any LOV1 expression in the mutants (Figure 2C), which

suggested that lov1-4 was most likely an RNA null allele.

Under long-day conditions, lov1-4 plants flowered with

11.961.5 leaves (wild-type plants = 15.461.3 leaves), indicating

that loss of LOV1 function resulted in a slightly early-flowering

phenotype (Figures 2D and 2E). However, no significant changes

in flowering time were seen under short-day conditions. 35S::LOV1

plants and lov1-1D plants flowered with 51.566.0 and 55.163.0

leaves under short-day conditions (Figure 2E), respectively,

whereas wild-type plants flowered with 48.163.0 leaves under

the same conditions. In addition, the flowering time of lov1-4

plants was also similar to that of the wild-type plants under short-

day conditions (average leaf number: 55.764.6 vs. 57.365.0,

respectively) (Figure 2E). These flowering time measurements

indicated that both gain- and loss-of-function alleles of LOV1

(hereinafter lov1 mutants) exhibited altered flowering time under

long-day conditions, but not under short-day conditions.

35S::LOV1 and lov1-4 plants resembled the wild-type plants in

their response to GA treatment, vernalization, and different light

qualities (Figure S1). These suggested that LOV1 may not be

involved in the genetic pathways that mediate these floral

promoting signals. These data indicated that LOV1 affected

flowering time primarily under long-day conditions, which is

characteristic of the photoperiod pathway mutants [25]. Taking

into consideration the fact that the absence of LOV1 function

caused early flowering, our data suggest that LOV1 may act as

a floral repressor within the photoperiod pathway.

Complementation analysis of lov1-4 mutants
Since we introgressed lov1-4 mutation into the Columbia

background, it was still possible that the early flowering phenotype

seen in the introgressed line resulted from a linked quantitative

trait locus (QTL). To confirm that a mutation in LOV1 caused the

flowering time change in lov1-4 mutants, we introduced the LOV1

gene into lov1-4 mutants by crossing pLOV1::LOV1:HA and lov1-4

plants and then determined whether the early flowering defect was

rescued. LOV1:HA protein expression in the transgenic plants was

confirmed by means of Western blot analysis using HA antibodies

(Figure 2F). pLOV1::LOV1:HA lov1-4 plants flowered with 13.1

leaves under long-day conditions, whereas wild-type Columbia

and lov1-4 plants flowered with 13.4 and 11.2 leaves, respectively

(Figure 2G). This indicated that LOV1:HA can functionally

complement the lov1-4 mutation and further suggested that the

early flowering phenotype seen in lov1-4 mutants resulted from the

presence of the Ds transposon and, consequently, from the

disruption of the LOV1 gene structure.

Expression patterns of LOV1 in wild-type plants
A time-course analysis of LOV1 expression in wild-type plants

showed that LOV1 was highly expressed in the early stages of

seedling development but that its transcript levels subsequently

gradually decreased (Figure 3A). The expression of APETALA1

Figure 1. Characterization of gain-of-function alleles of lov1. (A) lov1-1D plants and 35S::LOV1 plants, an activation-tagged mutant and a cDNA
overexpressor plant, respectively, grown under long-day conditions. These plants were germinated at the same time, and this photo was taken when
a floral bud was seen in 35S::LOV1 plants. Bars = 1 cm (B) Expression of At2g02450 in 18-day-old wild-type plants and lov1-1D mutants. 25S RNA was
used as a loading control. (C) Genomic Southern blot analysis of lov1-1D mutants using BAR gene as a probe. B; BamHI, E; EcoRI, H; HindIII, M; marker,
P; PstI (D) Confirmation of overexpression of At2g02450 in 10-day-old transgenic plants (At2g02450 O/X) via northern blot analysis. UBQ10 was used for
a loading control.
doi:10.1371/journal.pone.0000642.g001
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(AP1) [26], a molecular marker of floral transition, was also

measured to identify the growth stages of the seedlings that we had

harvested. AP1 expression levels began to increase at day 10,

suggesting that wild-type plants are in transition to flowering

around this time point. This observation indicated that LOV1

expression decreased during flower development, which is in good

agreement with our proposal that LOV1 acts as a floral repressor.

We then measured circadian expression levels of LOV1 to

determine whether LOV1 expression was controlled under the

circadian clock [27]. The level of LOV1 mRNA displayed

Figure 2. lov1-4, a loss-of-function allele of LOV1, and its flowering time. (A) Transposon (Ds) insertion map of lov1-4 mutants. Open boxes and
closed boxes indicate exons and introns of LOV1, respectively. Grey boxes mark a conserved NAC-domain. A transposon is denoted as a reverse
triangle. (B) Distribution of the total number of leaves of the original transposon allele of lov1-4 (asterisk) and wild-type Ler plants. (C) Absence of
LOV1 expression in lov1-4 mutants grown under long-day conditions. (D) Slight early flowering of lov1-4 mutants under long-day conditions.
Bars = 1 cm (E) Flowering time of lov1-1D, 35S::LOV1 and lov1-4 plants under long-day and short-day conditions. Note that changes in the flowering
times of these mutants were more prominent under long-day conditions. (F) Expression of the LOV1:HA proteins in two independent 10-day-old
pLOV1::LOV1:HA transgenic plants. (G) Distribution of the total number of leaves of lov1-4 plants with or without pLOV1::LOV1:HA transgene grown
under long-day conditions. #2-1 and #2-9 are two independent lines of pLOV1::LOV1:HA lov1-4 plants.
doi:10.1371/journal.pone.0000642.g002
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a circadian oscillation with a peak at dawn under continuous light

conditions (Figure 3B). Measuring the expression pattern of LOV1

protein using HA-tagged LOV1 protein, we found that the

expression level of the LOV1-HA fusion protein also oscillated

under continuous light conditions, with a broader peak around

dusk and lower expression levels around dawn. These observations

suggest that LOV1 protein began to accumulate after LOV1

transcript levels decreased and that the mRNA and protein levels

were regulated differentially. They also raised the possibility that

LOV1 protein expression is under the control of the circadian

clock or that LOV1 function may be closely associated with

circadian clock-controlled genes. An analysis of the tissue-specific

expression patterns of LOV1 in wild-type plants revealed that the

LOV1 transcript was detectable in all vegetative tissues except for

the root (Figure 3C). This spatial expression pattern was also

confirmed by the GUS reporter assay. LOV1 promoter-driven

GUS expression was detectable mainly in the above-ground parts

of the seedlings (Figure 3D). A subcellular localization analysis of

LOV1 using LOV1:GFP protein revealed that LOV1 is pre-

dominantly localized in the nucleus in transiently transformed

onion epidermal cells, whereas free smGFP was detected

throughout the cell, thereby suggesting that LOV1 is a nuclear

protein (Figure 3E).

Negative regulation of CO expression by LOV1

Based on our result that the main effect of LOV1 on flowering time

was seen under long-day conditions, we analyzed the expression

levels of flowering time genes that act within the photoperiod

pathway. Due to the oscillation of the transcript and protein levels

of LOV1, we first monitored the expression of the circadian clock

genes and found that circadian expression levels of CIRCADIAN

CLOCK ASSOCIATED 1 (CCA1) [28] and LONG HYPOCOTYL

(LHY) [29], the key regulators in the circadian clock function, were

not altered by the overexpression of LOV1 (Figure 4A). No

significant differences in the peak patterns, period length, and

amplitude of expression of these genes between 35S::LOV1 and

wild-type plants were observed, although the peak expression of

LHY appeared to shift slightly at day 10. Furthermore, the

circadian oscillation of CCA1 and LHY expression was not changed

in lov1-4 mutants. Therefore, it appeared that alterations in LOV1

activity did not affect transcript levels of the circadian clock genes.

This suggested that LOV1 may act independently of the central

oscillators of the circadian clock to regulate flowering time under

long-day conditions.

An analysis of the time-course expression of genes acting

downstream of the circadian clock showed that the expression level

Figure 3. Expression pattern of LOV1 in wild-type plants. (A) Time-course expression of LOV1 and AP1 in wild-type plants from day 6 to day 14
grown under long-day conditions. (B) Diurnal expression levels of LOV1 transcripts and LOV1:HA fusion proteins. The expression level of the
transcripts and LOV1:HA proteins was normalized against that of UBQ10 and rbcS, respectively. The highest expression level was set to 1.0 for LOV1
transcripts and LOV1:HA proteins. The rbcS is Ponceau S-stained blot used for a loading control. Open and grey boxes indicate subjective days and
nights, respectively. (C) Tissue-specific expression pattern of LOV1 in wild-type plants determined by RT-PCR. CL: cauline leaves; I: inflorescences; R:
roots; RL: rosette leaves; S: stems (D) Histochemical GUS staining of 10-day-old LOV1::GUS transgenic plants. (E) Nuclear localization of LOV1:GFP
protein. 35S::LOV1:GFP was transiently expressed in onion epidermal cells and observed by fluorescence microscopy. smGFP was used as a control.
DAPI was used to visualize the nucleus. An arrow indicates the nucleus.
doi:10.1371/journal.pone.0000642.g003
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of GI, which may participate in a feedback loop of the plant

circadian system [30], remained unaffected in 35S::LOV1 plants

(Figure 4B). However, the expression levels of CO, which is an

important floral promoter and known to act downstream of GI [4],

were significantly downregulated in 35S::LOV1 plants (Figure 4B).

Consistent with this result, the expression of FT [22,31], a floral

Figure 4. Expression patterns of the circadian clock and flowering time genes in wild-type plants and lov1 mutants grown under long-day
conditions. (A) Circadian rhythms of CCA1 and LHY expression determined by RT-PCR analysis. Plants were harvested every 4 h for 48 h. Open and
closed boxes indicate days and nights, respectively. (B) Time-course expression of GI, CO, and FT in 35S::LOV1 plants. Seedlings were harvested at ZT
10. (C) Time-course expression of GI, CO, FT, and AP1 in lov1-4 mutants. Seedlings were harvested at ZT 10. AP1 was used as a molecular marker that
indicates initiation of flower development. (D) Circadian expression of CO in 35S::LOV1 and lov1-4 plants. Seedlings were harvested every 4 h for 48 h.
GI and UBQ10 were used as negative controls.
doi:10.1371/journal.pone.0000642.g004
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integrator gene acting downstream of CO, was also downregulated

in 35S::LOV1 plants. These results indicated that downregulation

of CO expression by LOV1 overexpression may be the main

regulatory factor explaining why LOV1 overexpressor plants

exhibited a late-flowering phenotype.

An expression analysis of the genes in the lov1-4 mutants was

conducted to confirm that LOV1 affects the expressions of CO and

FT but not GI. The result showed that GI expression was not

altered in lov1-4 mutants (Figure 4C). In contrast, CO expression

was slightly upregulated and the expression of FT was also

upregulated, which is consistent with the expression data obtained

in 35S::LOV1 plants (Figure 4B). Furthermore, the expression of

AP1 [26] was precociously upregulated in lov1-4 mutants

(Figure 4C), which can be explained by the upregulation of CO

and FT in the mutants.

Because CO expression levels oscillate in wild-type plants [3], we

measured circadian expression levels of CO in lov1 mutants to

further confirm the negative regulation of CO expression by LOV1.

The expression levels of CO were changed, such that overall

expression levels of CO were lower in 35S::LOV1 plants but higher

in lov1-4 mutants (Figure 4D), although peak patterns and period

length remained unaltered. It was notable that the peaks of CO

expression were broader in lov1-4 mutants. This observation

suggested that more CO transcripts were present in lov1-4 mutants

under light conditions and that this increased level may sub-

sequently activate FT expression and ultimately induce flowering.

In contrast, GI transcript levels were largely unaffected by changes

in LOV1 activity. These data suggest that LOV1 negatively

regulates CO expression and that the de-repression of CO

expression in the absence of LOV1 function causes early flowering

in lov1-4 mutants.

Genetic interaction studies of LOV1: overexpression

of CO is epistatic to LOV1 overexpression
To confirm the results obtained from the expression analysis, we

investigated the genetic interaction between LOV1 and genes that

act downstream of the circadian clock in the photoperiod pathway

by crossing gain- or loss-of-function alleles of LOV1 with mutants

in such genes. The result showed that the early-flowering

phenotype of 35S::GI plants was suppressed by LOV1 over-

expression (Figure 5A). Under long-day conditions, 35S::GI plants

flowered with 11.260.8 leaves, whereas plants overexpressing

both GI and LOV1 flowered late, with an average of 26.0 (65.6)

leaves, which was comparable to the late-flowering time of

35S::LOV1 plants (24.964.8 leaves). This result suggested that

overexpression of LOV1 masked the early-flowering phenotype of

35S::GI and that LOV1 may act downstream of GI or be

independent of GI. 35S::CO plants flowered with 7.2 leaves,

whereas lov1-1D 35S::CO plants flowered with 8.461.2 leaves,

indicating that increased CO activity was able to suppress the late-

flowering phenotype of 35S::LOV1 plants. Consistent with this, the

overexpression of FT was also epistatic to LOV1 overexpression.

The flowering of FT and LOV1 double-overexpressor plants

resembled that of FT single overexpressor plants (4.160.3 vs.

4.060.1 leaves, respectively). These data suggested that the late-

flowering phenotype caused by the overexpression of LOV1 was

largely suppressed by the overexpression of CO or FT, but not by

overexpression of GI. Thus, the results of the genetic analysis were

consistent with the expression analysis (Figure 4), which further

supports the hypothesis that LOV1 acts upstream of CO and may

act downstream or independent of GI.

Genetic crosses with lov1-4 mutants were carried out to confirm

the results of genetic studies performed with the gain-of-function

alleles (Figure 5B). Both gi-3 lov1-4 double mutants and gi-3 single

mutants showed a similar flowering time (average leaf number:

26.761.3 vs. 27.062.2, respectively), indicating that lov1-4

mutation failed to suppress the late flowering of gi-3 mutants

and that de-repression of CO expression in the absence of LOV1

function would not be sufficient to overcome the effect of gi-3

mutations. This result suggested that LOV1 may not be simply

downstream of GI. co-2 lov1-4 double mutants flowered similarly as

did co-2 single mutants (average leaf number: 22.862.6 vs.

23.663.4, respectively), indicating that co-2 mutation largely

suppressed early flowering of lov1-4 mutants. This result is

consistent with the epistatic relationship between LOV1 and CO.

soc1-2 lov1-4 double mutants flowered with 17.6 leaves, whereas

lov1-4 and soc1-2 single mutants flowered with 11.0 and 20.4

leaves, respectively, indicating that soc1-2 mutation largely

suppressed the early flowering of lov1-4 mutants. Taking into

consideration that SOC1 is a direct downstream target of CO [32],

this observation also supports the notion that LOV1 acts upstream

of CO and may act downstream or independently with GI.

Figure 5. Genetic interaction of LOV1 with genes that act within the
photoperiod pathway. (A) Flowering time of the plants with LOV1 gain-
of-function alleles and mutants that double-overexpress LOV1 and
a flowering time gene under long-day conditions. (B) Flowering time of
the plants with LOV1 loss-of-function allele (lov1-4 mutants) and double
mutants under long-day conditions. Each error bar denotes the
standard deviation.
doi:10.1371/journal.pone.0000642.g005
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lov1-4 plants are hypersensitive to freezing

treatment
In order to identify the upstream signalling pathway regulating

LOV1 activity, the responses of lov1 mutants to various stimuli,

including hormones and abiotic stresses, were examined. lov1

mutants displayed normal responses to phytohormones and most

of the abiotic stresses (data not shown). However, lov1-4 plants

were hypersensitive to freezing temperature (–8uC), whereas

35S::LOV1 plants were tolerant (Figure 6A). Under our experi-

mental conditions, 54% of the non-acclimated wild-type plants

survived. In contrast, although only 24% of the lov1-4 plants

survived, the survival rate of 35S::LOV1 plants was 88%. When

plants were cold-acclimated prior to the freezing treatment, the

majority (92%) of wild-type plants became tolerant to the freezing

temperature; in comparison, 74% of the lov1-4 plants also became

tolerant to the freezing treatment, suggesting that lov1-4 plants are

sensitive to freezing temperatures but are able to acclimate to the

cold. Following a cold acclimation period, 35S::LOV1 plants were

largely insensitive to the freezing treatment, and 95% of the plants

survived the exposure to freezing at –8uC. These data suggested

that LOV1 may regulate the cold response in plants. As cold

acclimation and constitutive freezing tolerance are under in-

dependent genetic control [33,34], LOV1 would appear to

primarily control constitutive freezing tolerance in Arabidopsis.

Interestingly, we observed that a mutation in CO also led to

freezing tolerance (Figure 6B). Of the co-2 plants tested, 55% of the

non-acclimated and 95% of the acclimated plants showed freezing

tolerance; in comparison, 35% and 66% of the non-acclimated

and acclimated wild-type Ler plants showed freezing tolerance.

Given our result that LOV1 negatively regulates CO expression,

this freezing-tolerant phenotype seen in co-2 mutants is consistent

with the phenotype of the LOV1 overexpressor plants. Thus, our

results suggest that both LOV1 and CO, a well-known flowering

time gene in the photoperiod pathway, may be involved in

freezing tolerance.

LOV1 positively regulates COR15A and KIN1

expression for the cold response
To obtain empirical evidence of the mechanism by which LOV1

affects cold response, we first determined the expression levels of

CBF/DREB1 family genes [35], the most important of the known

transcription factors involved in the cold response, in lov1 mutants.

CBF1 expression was not detectable at 23uC in wild-type plants,

whereas CBF2 and CBF3 gene expressions were weakly detected

(Figure 7A). When the wild-type plants were cold-treated at 4uC,

the expressions of the CBF/DREB1 genes were rapidly induced.

These induction patterns of CBF genes at 4uC were also observed

with 35S::LOV1 and lov1-4 plants, indicating that CBF expression

was not affected by LOV1 expression.

We also monitored the expression of several cold-regulated

genes in lov1 mutants. We found that COR15A [36] and KIN1 [37]

expressions were upregulated in 35S::LOV1 plants, whereas the

expressions levels of RD29A [38] and KIN2 [39] were unaltered

(Figure 7B). In lov1-4 mutants, COR15A expression was down-

regulated (Figure 7C), which is consistent with the data obtained

from 35S::LOV1 plants. However, KIN1 expression levels remained

unaltered in lov1-4 mutants, suggesting that LOV1 may not be

essential for the expression of KIN1. These results suggest that the

changed sensitivity of lov1 mutants to cold temperature is, at least

partially, conferred by the altered expression of COR15A and KIN1

genes and may be regulated by means of one of several CBF/

DREB1-independent signalling pathways in the cold response [40].

Considering that CBF/DREB1 family genes do not have CRT/

DRE motifs, a major cis-acting element in cold stress response

[41], but that COR15A and KIN1 do contain the motifs within their

promoters, it is possible that LOV1 may bind to the motifs to

regulate its target genes in the cold response.

Figure 6. Altered sensitivity of lov1 mutants to freezing temperature.
(A) Freezing tolerance test of lov1 mutants. 2.5-week-old 35S::LOV1 and
lov1-4 plants grown with or without cold acclimation were used for the
freezing treatments. The photographs were taken 1 week after the
freezing treatment. (B) Quantitative analysis of the plant survival rate 1
week after the freezing treatment.
doi:10.1371/journal.pone.0000642.g006

Figure 7. Expression analysis of cold response genes in lov1 mutants
grown under long-day conditions. (A) Expression patterns of CBF/
DREB1 genes in lov1 mutants and wild-type plants. The plants were
grown at 23uC for 10 days, and samples were harvested after 3 and 6 h
with or without cold treatment (4uC). (B) Time-course expression of cold
response genes in 35S::LOV1 and wild-type plants. (C) Time-course
expression of cold response genes in lov1-4 and wild-type plants.
doi:10.1371/journal.pone.0000642.g007
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DISCUSSION
An activation tagging screen resulted in the identification of LOV1,

a member of the plant-specific NAC-domain transcription factors.

Our data suggest that LOV1 regulates flowering time by negatively

regulating CO expression and that it also regulates the cold

response by regulating the expressions of COR15A and KIN1. We

propose that LOV1 may play a pivotal role in coordinating

flowering time and cold response.

Since LOV1 negatively regulates CO expression, an important

question is whether LOV1 directly binds to a cis-acting element within

the CO sequence. This possibility of such a binding is supported by the

observation that the oscillation patterns of LOV1 protein levels and

CO mRNA levels were largely in reverse phase to each other

(Figures 2 and 3). However, an electrophoretic mobility shift assay

that we performed did not identify the specific binding sites of LOV1

protein within the CO promoter sequence; rather, it appeared that

LOV1 protein binds non-specifically to the promoter region of CO

(S.Y.Y. and J.H.A., unpublished results). This suggests that LOV1

may not directly regulate CO expression and that LOV1 may require

an additional downstream gene that mediates signalling from LOV1

to CO. However, we cannot exclude the possibility that non-specific

binding to the CO promoter is required for changes in the chromatin

structures of the CO locus, thereby leading to downregulation of CO,

as seen in plant homeodomain finger proteins [42].

LOV1 appears to control CO expression in a pathway that might

be distinct from those of the photoperiod pathway and the circadian

clock. CO is known to integrate the circadian clock and

photoreceptor signalling processes in flower development [2-

4,43,44]. In this study, however, we have shown that alterations in

flowering time associated with changes in LOV1 activity appear to be

independent of GI and other circadian clock oscillators (Figure 4) and

that lov1 mutants did not show any significant changes in hypocotyl

lengths under different light qualities (Figure S1). These results

suggest that LOV1 may function in a pathway that does not require

the photoreceptor and circadian clock function. This concept is

further supported by the observations that LOV1’s pattern of

regulation of CO expression is different from those of previously

identified regulators of CO, such as the gi mutation, which is epistatic

to the rfi2 mutation [5], the post-transcriptional regulation of CO by

SPA1, which is likely short-day specific [7,45], and CDF1, which

directly binds to a cis-acting motif with the CO promoter [6]. Based

on our results, LOV1 is likely an additional upstream regulator that

may mediate different a signalling pathway to CO (Figures 3 and 4).

Given the fact that CO plays a central role in photoperiodic flowering

and that the determination of the timing of flowering is critical for

plants’ successful reproduction, it is not particularly surprising that

multiple independent regulators control the expression of CO in its

function as a regulator of flowering.

One very interesting observation was that the downregulation of

CO, a flowering time gene, also led to a tolerance to cold

temperature, as this would suggest that CO could be an important

regulator integrating developmental regulation and the cold stress

response. The enhanced tolerance seen in co mutants is consistent

with the finding that 35S::LOV1 plants are tolerant to cold

temperature. Given our result that the overexpression of LOV1

caused a decrease in CO transcript level, it is expected that LOV1

overexpressor plants and a loss-of-function allele of CO exhibit

a similar cold response (Figure 6). This implies that a subset of

flowering time genes may play an additional role in the cold

response. Consistent with this hypothesis is a recent finding that

GI, an upstream regulator of CO, is involved in the cold stress

response [46]. GI positively regulates tolerance to freezing

temperature in a CBF-independent pathway, as observed in lov1

mutants. Thus, it is probable that the canonical photoperiod

pathway genes in flower development may play a dual role in

flowering time control and the cold response. This may explain, at

least partially, the delay or inhibition in the flowering of wild-type

Arabidopsis plants that are exposed to intermittent cold stress.

Our proposal that LOV1 may regulate the cold response is also

supported by the observation that lov1 mutants showed responses

similar to those of hos9 and sfr6 mutants that are known to involve

in cold signalling. hos9 and sfr6 mutants display altered sensitivities

to freezing stress without affecting CBF/DREB1 gene expression

[47,48], as also seen in lov1 mutants. An interesting result is that

hos9 mutants also exhibit a flowering time phenotype [47,48];

however, the precise mechanism by which HOS9 regulates

flowering time is unknown. In sfr6 mutants, expressions of KIN1

and COR15A, which contain the CRT/DRE motif in their

promoters, were upregulated, as also seen in 35S::LOV1 plants. It is

worth noting that SFR6 may be a positive regulator of LOV1 in the

cold response since the level of LOV1 transcripts was significantly

decreased in sfr6 mutants [49]. However, the SFR6 gene has not

yet been cloned. Future elucidation of the identity of SFR6 will

facilitate studies aimed at determining whether SFR6 and LOV1

act in the same pathway to control cold tolerance or whether they

interact with each other to mediate the cold response.

In summary, our results suggest that the LOV1 encodes a NAC-

domain transcription factor that plays a pivotal function in flowering

time regulation and cold response. LOV1 acts as a floral repressor by

negatively regulating the transcript level of CO, a central regulator of

the photoperiod pathway. It also regulates the response of plants to

freezing temperature by controlling a subset of cold response genes

via a CBF/DREB1-independent pathway. Our results suggest

a shared mechanism for controlling cold stress response and

flowering time in plants and that the regulation of CO via LOV1

may be common for these two distinct responses. Future investiga-

tions to determine the precise mechanism by which LOV1 acts in two

intersecting pathways will provide a better understanding of the

modulation of reproductive development in plants under continu-

ously changing temperature conditions.

SUPPORTING INFORMATION

Figure S1 Physiological responses in lov1 mutants and wild-type

plants. (A) Effect of vernalization on flowering time of lov1

mutants. Hydrated seeds were treated with (+Ver) or without (-

Ver) vernalization for 4 weeks at 4uC in a cold room under dark

conditions. (B) Effect of GA treatment on flowering time of lov1

mutants. Flowering time was measured under short-day condi-

tions. 20 mM of GA was sprayed onto the entire aerial part of the

plants until the floral bud was emerged. (C) Light effects on the

elongation of the hypocotyls of lov1 mutants. Note that the length

of the hypocotyls was not affected by the quality of the

monochromatic light.

Found at: doi:10.1371/journal.pone.0000642.s001 (0.12 MB TIF)

Table S1 Oligonucleotides used for RT-PCR

Found at: doi:10.1371/journal.pone.0000642.s002 (0.07 MB

DOC)
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