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Introduction
We focused on the adverse drug reaction (ADR) subset of 
adverse drug events (ADEs). We defined ADE and ADR 
according to the Nebecker definitions.1 An ADE is “an injury 
resulting from the use of a drug.” Under this definition, the 
term ADE includes harm caused by the drug (ADEs and over-
doses) and harm from the use of the drug (including dose 
reductions and discontinuations of drug therapy). An ADR is 
defined as “response to a drug which is noxious and unintended 
and which occurs at doses normally used in man for prophy-
laxis, diagnosis, or therapy of disease or for the modification of 
physiologic function.”1 “In sum, an ADR is harm directly 
caused by the drug at normal doses, during normal use.”2

It remains challenging to incorporate clinical evidence in 
electronic ADE alerting systems, especially in pediatric set-
tings.3,4 Adverse drug reactions can happen in all health care 
settings including inpatient, outpatient, and nursing homes, 
causing more than 700 000 injuries in the United States annu-
ally.5–7 Many ADRs could be detected and mitigated if we 
could identify patients’ clinical status changes promptly. 
However, it is a big challenge to detect such changes and ulti-
mately ADRs from complex clinical documents. An automated 
or even semiautomated system could be an advancement if the 

positive predictive value (PPV) achieved is higher than pro-
vided by current techniques.8,9

Several studies have been conducted in identifying ADRs. 
In the past, researchers manually reviewed clinical documents 
to identify ADRs.10 With the rapid growth of information 
technology, the researchers started leveraging the information 
from electronic health record (EHR) and newly emerging 
techniques to identify ADRs. The EHR data are a rich resource 
for data mining and knowledge discovery on ADRs.11 It stores 
both structured and unstructured information related to a 
patient over time, including demographics, diagnoses and 
medical histories, medications taken, and clinical notes. The 
ADR-related information is often contained in clinical narra-
tives. It remains challenging to identify clinical evidence from 
the EHR sources to ascertain ADR events.

The Food and Drug Administration’s Adverse Event 
Reporting System (FAERS) collects ADEs from health pro-
fessionals and patients.12 Both structured reports and unstruc-
tured plain text are provided to describe ADR-related 
information on the Food and Drug Administration (FDA) 
Web site. In this study, we focused on using the FAERS infor-
mation to help identify reactions that might be caused by a 
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specific medication. We then identified ADR-related Drug-
Reaction Pair Sentences (DRPSs) from clinical notes in the 
EHRs with natural language processing (NLP) technologies.

By leveraging the information from the FAERS reports, our 
objective was to build an NLP-based, sentence-level pipeline 
to detect potential ADRs from the EHR data. The null 
hypothesis (H0) of the study stated that leveraging drug-reac-
tion pairs from the FAERS reports would not improve the perfor-
mance of EHR-based ADR detection. As a proof-of-concept 
study, we focused on detecting ADRs on patients treated at an 
urban tertiary care pediatric hospital.

Usually, NLP studies report both recall and PPV in their 
evaluation sections. However, in studies similar to ours, calcu-
lating recall requires to accurately identify all the sentences 
with true-positive ADR mentions, at least in a randomly 
selected sample of sentences in the EHR. This poses a serious 
challenge because the true-positive ADR mentions are 
extremely rare compared with the number of sentences in the 
EHR. Consequently, calculating the recall statistics in those 
studies would require such a large physician work effort that is 
usually not feasible. Our evaluation was modeled on the pub-
lished studies that faced similar challenges,13–20 where we cal-
culated PPV and approximated recall using the relative recall 
(RR) measure.21

The following sections describe our work in detail. First, we 
introduce the related work for the study; second, we describe 
the data sets used to detect ADRs and the implementation 
processes of the ADR detector; then, we present the results and 
findings, evaluate, and specify our limitations. Finally, we con-
clude the work and propose potential improvements for future 
studies.

Related work

Rule-based ADR detection has been widely used in recent 
works. Chazard et al22 generated potential rules for ADE 
detection using decision trees and association rules based on 
structured and unstructured data from the EHR. The rules 
were then filtered, validated, and reorganized by domain 
experts, resulting in 236 validated ADE detection rules. In 
their experiments, the rules were applied to automatically 
detect 27 types of ADEs. One limitation for Chazard method 
was that generating ADE detection rules with data mining was 
complex. By applying the 236 validated ADE detection rules 
and statistical analysis, Chazard et al23 concluded that contex-
tualization was necessary for ADE detection and prevention. 
Instead of extracting context, our study presented a new tech-
nique to detect ADRs by leveraging additional knowledge 
sources.

Sohn et al8 developed a system to extract physician-asserted 
drug side effect sentences from clinical notes for psychiatry and 
psychology patients. They examined key words and expression 
patterns of side effects manually and developed matching rules 
to discover a side effect and its causative drug relationship. They 

then used decision trees (C4.5) to extract sentences that contain 
side effect and causative drug pairs. The approach achieved a 
64% PPV. Nevertheless, there were 2 limitations for the study 
by Sohn et al. First, they focused on a small data set from a par-
ticular specialty (psychiatry). The generalizability of the rules 
for identifying side effects on other specialties was unknown. 
Second, the approach only identified well-defined side effects 
and causative drugs with limited indication words and patterns, 
whereas the complicated or indirect description of side effect 
might be missed.

Our study was inspired by the work by Sohn et al. However, 
instead of developing a limited set of drug-side effect relation-
ships manually, we attempted to leverage the drug-reaction 
pairs from the FAERS reports, allowing us to obtain more 
comprehensive drug-reaction relationships in a cost-effective 
manner. In addition, the FAERS database is continuously 
updated, and potential drug-reaction relationships are continu-
ously entered. Consequently, it provides a mean for new drug-
reaction relationships to be discovered. The second difference 
from the work by Sohn et al is that we applied named entity 
recognition to identify complicated or indirect DDSSs from 
clinical notes. Our hypothesis was that the NLP technology 
allows us to rule out non–ADR-related sentences that also 
contain drugs and reactions, hence increasing the PPV of ADR 
detection.

Natural language processing has been used in several studies 
in the area of ADR detection.24 Aramaki et al studied patterns 
of ADEs from clinical records, and the results showed that 
7.7% of the clinical records include adverse event information, 
in which 59% (4.5% in total) can be extracted automatically by 
NLP techniques. The finding was encouraging due to the mas-
sive amounts of clinical records.25 Wang et al26 performed an 
NLP-based method to detect ADEs in clinical discharge sum-
maries and applied contextual filtering to improve perfor-
mance. Their evaluation suggested that applying filters 
improved recall (from 43% to 75%) and PPV (from 16% to 
31%) of ADE detection. One limitation for the work by Wang 
et al was that they only studied discharge summaries.

Park et al27 proposed an algorithm for detecting laboratory 
abnormalities after treatment with medications. The PPV of 
the algorithm was between 22% and 75%. Epstein et al28 
developed a high-performance NLP algorithm in Transact-
SQL to identify medication and food allergies and sensitivi-
ties from unstructured allergy registries in EHRs. The 
algorithm was trained on a set of 9445 records and tested on a 
separate set of 9430 records. Positive predictive value for med-
ication allergy matches was 99.9% on both the training and 
the test sets. One limitation of the study by Epstein et al was 
that the lookup tables developed might not be fully portable to 
other institutions.

Pathak et al applied linked data principles and technologies 
to represent patient EHR data as resource description frame-
work. They then identified potential drug-drug interactions for 
cardiovascular and gastroenterology drugs.29 The limitation of 
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the study was that it only used drug prescription data. Because 
a patient could have a prescription without actually taking the 
medication, we used both drug prescription and medication 
administration information in our study. Time window (time 
course, censoring periods) was used to exclude false-positive 
ADRs in the studies.30,31 The limitations for the study by 
Sauzet et al31 included that all patients who were prescribed 
were considered at risk, even if they did not take the drug. 
Other works focused on a specific or a specific type of drug or 
reaction.32,33 As such, the algorithms and the conclusions were 
not generalizable to a larger scope of medications and reac-
tions. Machine learning methods have also been applied to 
detect ADRs from EHR data. Ji et al34 introduced causal asso-
ciation rules to represent potential causal relationships between 
a drug and International Classif ication of Diseases, Ninth 
Revision (ICD-9)–coded signs or symptoms representing 
potential ADRs. In total, 8 out of 50 top drug-symptom pairs 
were validated to represent true causal associations. The PPV 
for the study by Ji et al was 16%.

Harpaz et al35 also applied association rule mining on the 
FAERS reports to identify multidrug ADR associations.  
The algorithm identified 2603 multidrug ADR associations, 
and the PPV was 67%. However, the study focused on the 
FAERS reports, most of which were potential ADR events. 
Lingren36 first identified sentences containing DDSSs from 
clinical notes, after which he applied support vector machines 
to classify the sentences into adverse and non–ADE-related 
sentences. In his work, the PPV for identifying ADEs was 
80.4%. However, the work was performed on the data from 
only 10 patients. Other data mining methods have also been 
used to detect ADRs.37–40 Several studies worked on creating 
annotated corpus of ADR events to facilitate ADR detection 
and evaluation.41–43

Electronic health record data are complex, and a substantial 
portion of the meaningful information (eg, symptoms, treat-
ments, and ADRs) is represented only in narrative text. As 
such, NLP plays an important role in extracting clinical infor-
mation from the EHR data. Natural language processing–
based methods have been applied to a broad range of clinical 
informatics topics, including patient protected health informa-
tion (PHI) identification, medication detection, and clinical 
trial eligibility screening.44-46

Based on existing open-source technologies of the 
Unstructured Information Management Architecture frame-
work and OpenNLP toolkit, Savova et al47 developed an open-
source NLP system, named the clinical Text Analysis and 
Knowledge Extraction System (cTAKES), for information 
extraction from unstructured clinical notes. The cTAKES was 
specifically trained for clinical text, enabling it to automatically 
extract rich linguistic and semantic annotations that can be 
used in clinical research. In our study, cTAKES was used to 
process clinical notes and identify clinical named entities such 
as DDSSs.

Identifying medical conditions from clinical notes is impor-
tant but not sufficient for identifying ADRs. The context 
information around a medical condition is also critical to 
determine an ADR. For instance, approximately half of the 
medical conditions described in clinical notes are negated, 
which could cause false positives in ADR detection.48 
Therefore, the contextual properties for a medical condition 
including negation should also be analyzed. Methods for iden-
tifying negation expressions have been developed in recent 
years.49–53 Chapman et al50,54 developed a regular expression-
based algorithm, NegEx, to search specific expressions (eg, not, 
without, and absence of ) around a phrase to identify negated 
phrases. By evaluating different methods for negation detec-
tion, Goryachev et al55 concluded that the accuracy of regular 
expressions methods (91.9%-92.3%) was higher than that of 
machine learning–based methods (83.5%-89.9%). Based on 
this conclusion, we used the regular expression-based algo-
rithm NegEx to detect negation in the study.

Methods
This study focused on pediatric patients. The institutional 
review board of Cincinnati Children’s Hospital Medical Center 
(CCHMC) approved the study and a waiver of consent was 
authorized (study ID: 2010-3031).

We retrospectively extracted EHR data for 71 909 inpatient 
and emergency department (ED) visits (referred to as “encoun-
ters”) of 42 995 pediatric patients treated at CCHMC between 
January 1, 2010 and August 31, 2012. The collected data 
included structured demographics and medication administra-
tion records, and unstructured clinical notes created during the 
patients’ hospitalization. The medication administration 
records were used to obtain information of medications given 
to a patient during the hospitalization. The free text clinical 
notes were used to retrieve information about medical condi-
tions (eg, DDSSs) for the patient.

The FAERS is a database that collects information of 
adverse events and medication error reports submitted to the 
FDA.12 Some reports were received from health care profes-
sionals (eg, physicians, pharmacists, and nurses), whereas others 
from consumers (eg, patients, family members, and lawyers) 
and manufacturers. We downloaded 10 years (2004-2013) of 
ADE reports from the FAERS. Each report included informa-
tion such as demographics, reported drugs, reactions, patient 
outcomes, report sources, drug therapies, and indications for 
use (diagnoses).

Figure 1 illustrates the overview of the study. Our objective 
was to detect ADRs in the EHR data with the aid of infor-
mation from the FAERS reports. We applied the following 7 
steps (steps 1-7 in Figure 1) to achieve the goal. (1) We first 
preprocessed medications and mapped brand names to 
generic names for both the EHR and the FAERS reports. (2) 
We then identified the most frequent medications from both 
the EHR and the FAERS reports based on frequencies of the 
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medications’ generic names. Because our study was data-
driven, we excluded low-frequency medications. The medica-
tions extracted from the EHR data and the FAERS reports 
were then matched using their generic names. (3) To match 
FDA reactions with DDSSs in the EHR data, we manually 
standardized the reaction terms from the FAERS reports. (4) 
Natural language processing techniques were leveraged to 
identify DDSSs from clinical notes. (5) Given a medication 
taken by the patient, the corresponding FDA reactions were 
considered potential ADR candidates and matched with the 
DDSSs identified from the patient’s clinical notes. A sen-
tence containing any of these reactions was called a DRPS for 
the medication. (6) Given all DRPSs, we performed NLP and 
regular expression techniques (section analysis, sentence-
based postprocessing) to rule out non-ADR DRPSs. The 
remaining sentences were considered ADR-related DRPSs. 
(7) Two independent reviewers manually reviewed the ADR-
related DRPSs generated by the proposed algorithm and 
identified true ADRs. One reviewer had a medical degree. 
The results of the independent reviews were consolidated and 
the disagreements resolved. The algorithm performance was 
then calculated based on the adjudicated reference standard. 
Supplementary Appendix Table 3 clarifies that each step was 
completed manually or automatically.

To clarify steps 1-6, we present an example for identifying 
ADR-related events for oxycodone: from the FAERS reports, 
our algorithm automatically extracted a drug name and 
potentially associated adverse event of “Roxicodone caused 
scratch.” The medication name Roxicodone was then manu-
ally converted to its generic name oxycodone (step 1) using a 

commercial generics-brand drug names database. We also 
manually determined the concept unique identifier (CUI) for 
“scratch” in the Unified Medical Language System (UMLS) 
browser and obtained C1384489 for “scratch” (step 3). 
Assuming that our algorithm identified a sentence of 
“Oxycodone use also makes him itch/scratch” from an EHR 
clinical note that contained the targeted medication oxyco-
done, automated NLP techniques were used to identify and 
convert the DDSS “itch/scratch” to the CUI C1384489 (step 
4). Because the sentence contained the drug-reaction pair (oxy-
codone-C1384489) and the reaction was not negated, the algo-
rithm considered it an ADR-related DRPS (steps 5 and 6).

FDA sources

Because the study focused on pediatric patients, we used the 
FAERS reports that were associated with patients between 0 
and 18 years old. We only used reports submitted by health 
professionals to assure the reliability of the sources. In addition, 
we focused on single-drug ADE (ADE caused by only 1 drug) 
to avoid complex drug interactions. Figure 2 illustrates the data 
preprocessing of the FDA reports. Among the 5 332 243 down-
loaded unique FDA-reported events, 4.0% (212 783 events) 
were recorded as pediatric events. About 18.1% (38 550 events) 
of these pediatric events were reported by a health professional, 
among which, 49.9% were single-drug ADEs. Consequently, a 
total of 19 247 events were single-drug ADEs on pediatric 
patients and were reported by health professionals. These 
events were used as a reference standard of drug-reaction rela-
tions in the automated algorithm.

Figure 1.  Overview of the study. EHR indicates electronic health record; FDA, Food and Drug Administration.



Tang et al	 5

Identifying most frequently used medications

In the FAERS reports and EHR data, the medications were 
recorded using either generic name or brand name. To merge 
brand and generic names (eg, “Tylenol” and “acetaminophen”), 
we mapped each medication to its generic name using the 
Lexicomp Online Database56 (step 1 in Figure 1). The 
Lexicomp Online Database is a commercial database that pro-
vides search for medication information.

Based on their generic names, the top 50 most frequently 
used medications were identified (step 2 in Figure 1). We 
excluded 9 medications from the list due to no FAERS reports 
on the medications. The exclusion resulted in 41 target medi-
cations for the study. We then focused on detecting ADRs for 
the 63 043 encounters (covering 93% of all encounters) in 
which the patients (93.7% of all patients) were given these 41 
medications.

Standardizing DDSSs and reactions in FAERS 
reports

The FAERS reports and the EHR data might have used dif-
ferent descriptions for the same DDSS and reaction. For 
instance, the DDSS of “headache” in the EHR did not match 
the FDA reaction “pain in head,” although they were the same 
symptom and had the same CUI (C0018681).57 To match 
FDA reactions with DDSSs in the EHR data, we converted 
the textual terms from both sources into CUIs corresponding 
to the UMLS58 (step 3 in Figure 1).

For the 41 most frequently used medications, we first 
excluded non–ADR-related reactions from their FAERS 
reports (Supplementary Appendix Table 1). For instance, over-
dose of any medications was excluded because overdose is not 
an ADR.1,59 In addition, some drug-reaction pairs in the 
FAERS reports (eg, levetiracetam—seizures) were excluded 
because they indicated that the medication was used to treat 

rather than cause the reaction. Finally, we manually excluded 
the following types of reactions (Supplementary Appendix 
Table 2): overdose, indications, accidents, reactions mostly rel-
evant for adults, known wrong medication or medication errors, 
and irrelevant or vague description of the reactions. A pediatri-
cian reviewed and confirmed the list of excluded reactions. 
After the exclusions, a total of 2646 unique FDA drug-reaction 
pairs was used in the study. To correctly identify the corre-
sponding CUIs, we manually searched the reactions in the 
UMLS terminology browser60 and extracted the returned 
CUIs. A reaction-CUI mapping dictionary was then created 
for all reaction terms.

Detecting ADRs in clinical notes

In current EHR systems, a substantial portion of the meaning-
ful information (eg, medical conditions) is represented only in 
clinical notes. As such, clinical notes are valuable resource for 
detecting ADRs. In this study, we collected all 2 647 746 clini-
cal notes for the 71 909 encounters. The note data covered 54 
documentation types such as History and Physical (H&P) 
Notes, Discharge Summaries, ED Notes, and Progress Notes. 
On average, there were 37 notes per encounter and the average 
length of a note was 309 words. Every note had a time stamp 
in structure format that recorded its time of filing.

Based on the guideline created by our physician champion, 
we focused on processing 4 types of clinical notes for the tar-
geted encounters: H&P notes, discharge summaries, ED notes, 
and progress notes. We excluded notes from the encounters 
that did not use the targeted medications. In addition, patients 
with more than 1000 notes during their hospitalization tended 
to have diseases that required a significantly larger number of 
medications and had higher possibility to have ADRs caused 
by drug-drug interaction. Our proof-of-concept study did not 
investigate drug-drug interaction and hence we excluded these 

Figure 2.  Data preprocessing on the Food and Drug Administration reports.



6	 Biomedical Informatics Insights ﻿

encounters. Ten (0.02%) of the encounters were excluded under 
this selection criterion. After this processing, 1 168 397 (44.1%) 
of the clinical notes were left for investigation.

We developed an NLP pipeline to process clinical notes and 
identify potential ADR events (steps 4-6 in Figure 1). Figure 3 
illustrates the NLP processes performed. We first applied sec-
tion-based analysis (process 1 in Figure 3) to exclude sections 
that never mentioned ADRs (eg, plan of care sections).  
For the remaining sections, the content was split into sentences 
(process 2), and the mentions of DDSSs were identified from 
each sentence and standardized into CUIs using cTAKES47 
(process 3). The semantic modifiers (eg, negation, hypothetical 
events, and therapies) on the reactions were also detected by 
NLP postprocessing (process 4), and the reactions were con-
verted to the corresponding CUIs. Given each drug-reaction 
pair from the FAERS reports, we searched both the medica-
tion names and the corresponding CUIs in each output sen-
tence (process 5). If the medication and the reaction were 
found in a sentence, the sentence was classified as a DRPS. 
Finally, using the time stamps documented in the medication 
administration records, we filtered out DRPSs written before a 
medication was given. The remaining DRPSs were then con-
sidered ADR-related DRPSs.

Section-based analysis.  Some sections in a clinical note speci-
fied future plans and prescription information (eg, plan of care, 
medications, and instruction). Sentences in these sections 
would never describe an ADR event even if they contained the 
drug-reaction pairs from the FAERS reports. To reduce false-
positive matches, we excluded these sections from the ADR 
detection. In the NLP pipeline, we developed a list of regular 
expressions on section headers to rule out the sections.

NLP of clinical notes.  We split the remaining content into sen-
tences using rules and applied cTAKES to identify and convert 
DDSSs to CUIs. Unlike the reactions extracted from the FAERS 

reports, the DDSSs documented in clinical notes could be modi-
fied by semantic modifiers. For instance, a sentence could contain 
negation that represented the absence of the DDSS (eg, “no over-
night events-pain well controlled with ibuprofen with no nausea/
vomiting”). It could also indicate a hypothetical event that com-
monly existed in discharge instruction and plan of care (eg, “I will 
increase dose of ibuprofen if pain continues”). In addition, some 
sentences describing therapies indicated that the medications 
were used to treat rather than caused the reactions (eg, “pain was 
well controlled by oxycodone”).

We used 3 methods to address these issues and ultimately 
reduce false-positive matches. First, we customized the Java 
implementation (GeneralNegEx)61 of the NegEx algorithm54 
to identify and rule out negated DDSSs. To exclude hypotheti-
cal DDSSs and therapies that often occurred in the instruction 
and plan of care sections, we developed an additional list of 
regular expressions: (1) to exclude sentences with key words 
that indicated plans, hypothetical events, and instructions, etc 
and (2) to identify patterns indicating relations between 
DDSSs and medications and exclude sentences with patterns 
not related to ADRs. Table 1 shows the complete list of regular 
expression patterns in addition to NegEx. After the NLP post-
processing, we searched the drug-reaction pairs in the output 
sentences to identify DPRSs.

Time-window filtering.  Time windows are important because 
an ADR usually happens within a specific time period after the 
medication is given. Using all notes created during an encoun-
ter to detect ADRs could potentially cause false-positive alerts 
(eg, capturing sentences containing drug-reaction pairs before 
a medication was given). Although different ADRs could have 
different time windows even for the same medication, as a 
proof of concept, we used a flexible time window for all medi-
cations. That is, we only analyzed the clinical notes that were 
written after a medication was given and before a patient’s dis-
charge. After the filtering, we considered the remaining DRPSs 
as ADR-related DRPSs.

Table 1.  Regular expression patterns indicating relations between DDSSs and medications.

Clarification Pattern Example

Therapy “for breakthrough” + DDSS, 
DDSS + “improved with “ + medication-name

“Zofran scheduled q8 for breakthrough nausea/retching/vomiting”

Existing symptom “due to” + DDSS, “history of” + DDSS “Scheduled qHS and PRN during day due to drowsiness”

Prescription “scheduled” + medication-name, 
“prn” + medication-name

“Scheduled Ibuprofen for pain”

Hypothetical “for potential” + DDSS, “only use 
when” + DDSS

“Scheduled Ibuprofen for potential pain”

Negation “no” + DDSS, “without” + DDSS “No overnight events-pain well controlled with ibuprofen with no 
nausea/vomiting”

Concatenated DDSSs DDSS/DDSS/DDSS, DDSS and DDSS, 
DDSS or DDSS

“Zofran scheduled q8 for nausea/retching/vomiting, Ibuprofen or 
Morphine PRN pain”
“With continued nausea and vomiting in room, unable to tolerate 
po ibuprofen”

Abbreviations: DDSSs, diseases/disorders and signs/symptoms; qHS, each night at bedtime; po, orally; PRN, as needed.
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Baseline system for identifying ADR-related 
DRPSs

For performance comparison, we generated a set of baseline 
ADR-related DRPSs without using the FAERS reports. In 
this baseline, we used a list of gold standard drugs and DDSSs 
annotations developed in our earlier study as candidate drug-
reaction pairs.62 The drug-reaction set contained 4345 CUI 
represented DDSSs for 29 medications. The combination of 
29 medications and 4345 DDSSs yielded a total number of 
126 005 baseline candidate drug-reaction pairs. The workflow 
of generating ADR-related DRPSs was similar to the work-
flow described in previous sections, except that we used the 
derived drug-DDSS set as candidate drug-reaction pairs 
instead of using drug-reaction pairs from the FAERS reports.

Results
Evaluation metrics

Given the ADR-related DRPSs predicted by the algorithms, 
we assessed the numbers of true-positive and false-positive pre-
dictions via manual chart review. A clinical informatics expert 
with a medical degree and a graduate student independently 
reviewed the targeted sentences to make the decisions. The F 
measure of inter-reviewer agreement was 81.5%. Differences 
were resolved and an adjudicated reference standard was cre-
ated. We used PPV = true positive/(true positive + false positive) 
as the primary evaluation measure. To approximate recall meas-
ure, we calculated the RR between the proposed algorithm and 
the baseline by the following formula:

Relative recall

Total number of true-positive ADRs
identified by o

=
nne system

Union of true-positive ADRs
identified by both systems

Performance of ADR detection with FAERS 
reports

The algorithm identified 2475 ADR-related DRPSs from 
1055 encounters. By removing repetitive sentences, there were a 
total of 1492 unique ADR-related DRPSs. We performed a 
stratified random sampling based on numbers of DRPSs for 
each medication and selected 528 (35.4%) unique ADR-related 
DRPSs for manual review (step 7 in Figure 1). Twelve medica-
tions did not have ADR-related DRPSs and were excluded 
from the evaluation. For the remaining 29 medications, Table 2 
shows the true positives and PPVs achieved for each medica-
tion. In total, 224 DRPSs were marked as sentences associated 
with real ADRs and the overall PPV was 42.4% (95% confi-
dence interval [CI]: [38.2%-46.6%]). The algorithm achieved 
PPVs of greater than or equal to 70% on 2 medications (mor-
phine sulfate and lorazepam), PPVs of greater than or equal to 
60% on 8 medications, and PPVs of greater than or equal to 
40% on 11 medications. The algorithm had PPVs of 0% on 8 
medications. However, the number of reviewed DRPSs on 
those medications was less than 10 (<1.8%). The PPVs for the 
other 11 medications were between 3.6% and 37.5%. Table 3 
shows the true positives and PPVs on note types. The algorithm 

Figure 3.  Overview of the natural language processing processes. ADRs indicate adverse drug reactions; cTAKES, clinical Text Analysis and Knowledge 

Extraction System; DDSSs, diseases/disorders and signs/symptoms; DRPSs, Drug-Reaction Pair Sentences; FAERS, Food and Drug Administration’s 

Adverse Event Reporting System; FDA, Food and Drug Administration.



8	 Biomedical Informatics Insights ﻿

achieved the highest PPV on detecting ADRs from the ED 
notes (80%), followed by progress notes (45.8%), discharge 
summaries (38.1%), and H&P notes (25.9%).

Table 4 shows the algorithm performance on each medica-
tion-note–type pair. There were 68 medication-note–type pairs 
in the evaluation set. Among them, the algorithm achieved 
100% PPV on 9 medication-note–type pairs: acetaminophen, 

midazolam, vancomycin, and lidocaine in the ED notes; hepa-
rin, diphenhydramine, furosemide, and morphine in the dis-
charge summaries; and methadone in the H&P notes. Table 5 
lists the true ADRs identified by the algorithm for each medi-
cation and the frequencies of each reaction.

Finally, Table 6 presents the true-positive ADRs identified 
by the proposed algorithm and the baseline, and the derived 

Table 2.  Algorithm performance for each medication.

Drug name DRPSs TP PPV, % Baseline PPV, %

Morphine sulfate 4 3 75.0 0.0

Lorazepam 10 7 70.0 0.0

Midazolam 3 2 66.7 33.3

Furosemide 9 6 66.7 44.4

Oxycodone 135 86 63.7 4.4

Acetaminophen 27 17 63.0 14.8

Diazepam 5 3 60.0 0.0

Morphine 5 3 60.0 0.0

Methadone 47 21 44.7 12.8

Clindamycin 45 20 44.4 8.9

Vancomycin 48 21 43.8 14.6

Heparin 16 6 37.5 12.5

Lidocaine 3 1 33.3 0.0

Levetiracetam 6 2 33.3 16.7

Amoxicillin 29 9 31.0 6.9

Hydrocortisone 10 3 30.0 0.0

Ceftriaxone 26 6 23.1 0.0

Diphenhydramine 19 4 21.1 15.8

Ketamine 5 1 20.0 40.0

Methylprednisolone 26 2 7.7 11.5

Ibuprofen 28 1 3.6 3.6

Ondansetron 1 0 0.0 0.0

Ranitidine 3 0 0.0 0.0

Lansoprazole 6 0 0.0 0.0

Hydromorphone 1 0 0.0 0.0

Insulin lispro 2 0 0.0 0.0

Epinephrine 7 0 0.0 0.0

Nystatin 1 0 0.0 0.0

Piperacillin and tazobactam 1 0 0.0 0.0

Total 528 224 42.4 8.7

Abbreviations: DRPSs, Drug-Reaction Pair Sentences; PPV, positive predictive value; TP, true positive.
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RRs. The algorithm achieved an overall RR of 83% (95% CI: 
[79.8%-86.2%]), and the RR was more than 75% for 14 of the 
29 medications.

Performance of ADR detection using the baseline

The baseline algorithm identified 93 598 ADR-related DRPSs, 
in which there were a total of 32 778 unique DRPSs. Again, we 
performed a stratified random sampling to obtain 528 ADR-
related DRPSs output by the baseline algorithm. For each 
medication, the number of review cases sampled for the base-
line was identical to the number of reviewed cases randomly 

Table 3.  Algorithm performance for each note type.

Note type Number of 
reviewed DRPSs

TP PPV, %

Progress notes 360 165 45.8

ED notes 5 4 80.0

Discharge summaries 105 40 38.1

H&P notes 58 15 25.9

Abbreviations: DRPSs, Drug-Reaction Pair Sentences; ED, emergency 
department; H&P, history and physical; PPV, positive predictive value; TP, true 
positive.

Table 4.  Algorithm performance for each medication in each note type.

H&P notes, % Discharge 
summaries, %

ED notes, % Progress notes, %

Acetaminophen 66.7 40.0 100.0 66.7

Heparin NA 100.0 NA 28.6

Morphine sulfate NA NA NA 75.0

Midazolam NA NA 100.0 50.0

Ondansetron NA 0.0 NA NA

Diphenhydramine 0.0 100.0 NA 37.5

Furosemide 0.0 100.0 NA 71.4

Lorazepam NA NA NA 70.0

Oxycodone 85.7 68.4 NA 61.5

Ibuprofen 0.0 0.0 0.0 8.3

Ranitidine NA 0.0 NA 0.0

Vancomycin 33.3 21.4 100.0 55.6

Clindamycin 0.0 40.0 NA 50.0

Methylprednisolone 0.0 20.0 NA 5.0

Lansoprazole NA NA NA 0.0

Hydromorphone NA NA NA 0.0

Lidocaine NA 0.0 100.0 0.0

Diazepam NA 0.0 NA 75.0

Insulin lispro NA NA NA 0.0

Hydrocortisone 0.0 50.0 NA 28.6

Epinephrine 0.0 0.0 NA 0.0

Ceftriaxone 25.0 20.0 NA 25.0

Amoxicillin 0.0 37.5 NA 31.6

Methadone 100.0 30.0 NA 47.2

Nystatin NA NA NA 0.0

Piperacillin and 
tazobactam

NA NA NA 0.0

Ketamine 33.3 NA NA 0.0

Levetiracetam 0.0 0.0 NA 50.0

Morphine NA 100.0 NA 33.3

Abbreviations: ED, emergency department; H&P, history and physical; NA, not applicable.
NA indicates that there are no Drug-Reaction Pair Sentences for this medication-note pair and no evaluation is performed.
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sampled for the algorithm leveraging FAERS reports. Based 
on our review, 46 out of 528 ADR-related DRPSs identified by 
the baseline algorithm were true ADRs. The PPV for the base-
line was 8.7% (95% CI: [6.3%-11.1%]). Table 5 presents the 
RRs achieved by the baseline. The overall RR was 17.0% (95% 
CI: [13.8%-20.2%]), and the RR was less than 50% for most of 
the medications.

Discussion
By leveraging the FAERS reports, we developed an NLP-
based algorithm to semiautomatically detect ADRs retrospec-
tively in the EHR data. Our objective was to reduce the cost of 
manual development of drug-ADR pairs and mitigate the 
need to chart review clinical notes in the EHR. The use of 
FAERS reports for detecting ADRs in the EHR data is novel 
and the results are promising. Among a total of 60 085 encoun-
ters that contained 1 168 397 clinical notes and 161 817 736 
sentences, our algorithm identified a total of 2475 sentences 

(from 2089 notes, 1055 encounters) as positive ADR cases. 
Leveraging information from the FAERS reports, the perfor-
mance of ADR detection (PPV = 42.4%, RR = 83.0%) was sta-
tistically significantly better than that of the baseline 
(PPV = 8.7%, RR = 17.0%; P value < .001). In particular, the 
proposed algorithm yielded both better PPV and RR than the 
baseline for most of the medications.

The best PPV is 75% for morphine sulfate and the overall 
PPV is 42.4%. As a like-for-like comparison, the NLP-based 
algorithm developed by Wang et al26 achieved PPV of 31%. 
The NLP algorithm developed by Park et al27 for detecting 
laboratory abnormalities after treatment with medications has 
PPVs between 22% and 75%. The machine learning methods 
built by Ji et al34 and Lingren reached 16% and 80.4% PPV36 
for identifying potential ADRs from EHRs, respectively. Most 
of the existing algorithms for ADR detection focused on cer-
tain medications. In contrast, our method provided a more 
generalizable solution for ADR detection that was not limited 

Table 5.  True adverse drug reactions identified by the algorithm and their frequencies for each medication.

Drug name Reactions and their frequencies

Acetaminophen Vomiting: 6; nausea: 3; pruritus: 2; cholestasis: 1; hepatotoxicity: 1; infection: 1; urticaria: 1; heart rate increased: 1; 
respiratory distress: 1

Amoxicillin Rash: 4; nausea: 3; vomiting: 2

Ceftriaxone Pruritus: 3; chills: 1; cyanosis: 1; vomiting: 1

Clindamycin Exanthem: 15; hypersensitivity: 2; vomiting: 2; nausea: 1

Diazepam Apnea: 2; respiratory depression: 1

Diphenhydramine Agitation: 2; erythema: 1; heart rate increased: 1

Furosemide Hypokalemia: 3; dizziness: 1; heart rate increased: 1; metabolic alkalosis: 1

Heparin Epistaxis: 1; gastrointestinal hemorrhage: 2; hemorrhage intracranial: 1; pleural effusion: 1; retroperitoneal 
hemorrhage: 1

Hydrocortisone Hypertension: 3

Ibuprofen Vomiting: 1

Ketamine Vomiting: 1

Levetiracetam Agitation: 1; insomnia: 1

Lidocaine Hypoesthesia: 1

Lorazepam Somnolence: 5; hallucination: 1; respiratory arrest: 1

Methadone Somnolence: 7; vomiting: 7; apnea: 3; bradycardia: 1; fatigue: 1; blood pressure decreased: 1; muscle rigidity: 1

Methylprednisolone Vomiting: 2

Midazolam Urticaria: 1; respiratory depression: 1

Morphine Hypotension: 1; somnolence: 1; heart rate decreased: 1

Morphine sulfate Depressed mood: 1; nausea: 1; pruritus: 1

Oxycodone Pruritus: 28; vomiting: 18; nausea: 17; constipation: 9; somnolence: 5; anxiety: 1; apnea: 1; convulsion: 1; dizziness: 
1; dyspnea: 1; sedation: 1; confusional state: 2; respiratory depression: 1

Vancomycin Pruritus: 10; hypersensitivity: 5; nausea: 1; red man syndrome: 5
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to certain medications or reactions. Ours is also more future 
proof approach because the FAERS database is constantly 
updated and provides the possibility of semiautomation to 
incorporate new drugs as they are introduced to the consumer 
market. It only requires an automated download of the newly 
reported FAERS drug-reaction pairs and a manual-based or 
script-based conversion of the brand-generic drug names. This 

is either a one-time or minimal continuous investment of funds 
and human resources. Compared with the machine learning 
algorithms that require manual annotation, our approach was 
almost fully automated and hence more cost-effective.

The algorithm performed better on the ED notes and the 
progress notes (Table 3), suggesting that the medication-
reaction pairs found in these notes are more likely to indicate 

Table 6.  Relative recall for the baseline and the proposed adverse drug reaction detection algorithm.

Drug name TP Baseline TP Total TP RRM, % RRB, %

Morphine sulfate 3 0 3 100.0 0.0

Lorazepam 7 0 7 100.0 0.0

Midazolam 2 1 3 66.7 33.3

Furosemide 6 4 7 85.7 57.1

Oxycodone 86 6 88 97.7 6.8

Acetaminophen 17 4 19 89.5 21.1

Diazepam 3 0 3 100.0 0.0

Morphine 3 0 3 100.0 0.0

Methadone 21 6 27 77.8 22.2

Clindamycin 20 4 23 87.0 17.4

Vancomycin 21 7 26 80.8 26.9

Heparin 6 2 8 75.0 25.0

Lidocaine 1 0 1 100.0 0.0

Levetiracetam 2 1 3 66.7 33.3

Amoxicillin 9 2 9 100.0 22.2

Hydrocortisone 3 0 3 100.0 0.0

Ceftriaxone 6 0 6 100.0 0.0

Diphenhydramine 4 3 6 66.7 50.0

Ketamine 1 2 3 33.3 66.7

Methylprednisolone 2 3 5 40.0 60.0

Ibuprofen 1 1 2 50.0 50.0

Ondansetron 0 0 0 0.0 0.0

Ranitidine 0 0 0 0.0 0.0

Lansoprazole 0 0 0 0.0 0.0

Hydromorphone 0 0 0 0.0 0.0

Insulin lispro 0 0 0 0.0 0.0

Epinephrine 0 0 0 0.0 0.0

Nystatin 0 0 0 0.0 0.0

Piperacillin and tazobactam 0 0 0 0.0 0.0

Total 224 46 255 87.8 18.0

Abbreviations: RRB, relative recall for baseline; RRM, relative recall for our method; PPV, positive predictive value; TP, true positive.
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ADR events. This is because the ADR events occurred during 
patients’ hospitalization were usually documented in these 
notes other than H&P notes and discharge summaries. In 
addition, the algorithm achieved 100% PPV on 9 medication-
note–type pairs (Table 4). The promising results show the great 
potential for integrating the algorithm into clinical practice to 
detect ADR events for these medications. Patient-specific cor-
rect ADRs listed in a table similar to Table 5, if shown in the 
EHR, could potentially benefit clinicians. It shows which 
reaction(s) could have been caused by a medication as well as 
the frequency/probability of the reactions on a medication and 
patient-specific basis. This is particularly important as health 
care moves toward personalized medicine.

Error analysis

We performed error analysis for the proposed algorithm by 
reviewing all 304 false-positive ADR predictions. 
Approximately 74% of the errors were due to lack of semantic 
analysis. For instance, the algorithm triggered a false positive 
(vancomycin-nausea) on “his nausea was worse on flagyl, so he 
was switched back to oral vancomycin” due to the miss of clause 
boundaries. In addition, the algorithm enumerated all medica-
tion-reaction pairs from a DRPS without analyzing the syntax 
of the sentence. For instance, the algorithm would detect 4 
ADR-related events from the sentence “patient had vomiting 
last night, now having itching related to oxycodone use, discon-
tinued oxycodone and started ibuprofen”: oxycodone-vomiting, 
oxycodone-itching, ibuprofen-vomiting, and ibuprofen-itch-
ing. Although it captured the correct ADR (oxycodone-
itching), it also caused 3 false positives due to the sentence 
structure. To alleviate this problem in future works, we will 
implement advanced semantic parsing algorithms to analyze 
semantic and temporal relations in sentences.63–65 The omis-
sion of negation, temporal, and hypothetical expression detec-
tion on DRPSs also triggered a notable amount (22.69%) of 
false positives. For example, the algorithm identified an ADR-
related event ibuprofen-allergy from the sentence “Patient also 
gives ibuprofen after Okay’ed by mom (has used in the past 
with no allergy)” due to the miss of the negated expression. 
Finally, the omission of excluding patient allergy section that 
never mentioned ADRs also contributed to 3.31% of the errors. 
In the future, we will add additional regular expression rules to 
these NLP components to improve their functionalities.

Limitations

The utilization of FAERS reports limits the use cases of the 
proposed ADR detection system. Because the FAERS only 
collects reported ADRs, the system could not detect events 
with unknown ADRs. In addition, the FAERS is not a gold 
standard collection of drug-reaction relations. Although we 
restricted the spectrum of FAERS drug-reaction pairs to 

physician-submitted reports only, some of these drug-reaction 
pairs might still be unrelated from a drug-reaction perspective. 
We will leverage sources additional to FAERS reports to 
improve the spectrum and accuracy of ADR detection in future 
studies.

Another limitation of our study is that the severity of the 
reactions was not analyzed. Severe reactions (eg, “severe pain”) 
should be treated immediately, other reactions (eg, “vomiting”) 
need attention and followed up by clinicians, and mild reac-
tions (eg, “a little sleepiness”) might be assigned a low severity 
score and given low priority to be reviewed and clinically fol-
lowed. Future work is in progress to identify severity and attri-
bution of the ADRs to the medications. In addition, the study 
did not consider drug-drug interactions or dosage information. 
The patients were likely to take multiple drugs, and some drugs 
might interact with others and cause ADRs. Although drug 
dosage was collected in the study, we did not leverage it due to 
the complexity and computational power requirements. We 
will study drug-drug interaction and incorporate dosage infor-
mation in future works. Furthermore, we used a fixed time win-
dow to detect ADR events in the study. In reality, different 
ADRs could have different reaction times even for the same 
medication. The PPV would be improved if we would develop 
specific and precise time windows for each drug-reaction pair.

Finally, the study has limitations with respect to algorithm 
evaluation. Selection bias may exist because we only used the 
EHR data from 1 pediatric institution. In addition, we could 
not fully evaluate algorithm recall results because no gold 
standard ADR reports existed for the data set. In future studies, 
we will involve more clinicians and pharmacists to generate 
gold standard sets and perform a more comprehensive evalua-
tion including recall across health care institutions. The PPV-
only evaluation statistics is a limitation but not 
unprecedented,13,66–69 and our study with additional RR statis-
tics would contribute to the body of literature on EHR-based 
ADR detection.

Conclusions
By leveraging drug-reaction pairs from the FDA ADE reports, 
we developed an NLP-based, semiautomated algorithm to 
identify ADRs in the EHR data for the most frequently used 
medications. Using a clinician-generated, reference standard–
based evaluation of real-world clinical data, the proposed algo-
rithm achieved promising performance and showed great 
potential in identifying ADRs accurately. The experimental 
results suggested that leveraging drug-reaction pairs from the 
FAERS improves the performance of EHR-based ADR detec-
tion. The traditional methods to identify ADR in the EHR are 
manual, which are not scalable to handle a set of 161 817 736 
sentences to find approximately 1000 ADRs. However, the 
proposed algorithm, when implemented in the clinical envi-
ronments, could result in a substantial workload reduction for 
clinicians looking for ADRs in patients’ clinical notes.
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Although the study focused on the most frequently used 
medications in an urban tertiary care pediatric institution, the 
algorithm is generalizable to all medications and a wide range 
of institutions with EHRs and clinical notes. Our study will 
pave the way to automate ADR detection in a more cost-effec-
tive manner.
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