
Application of machine learning in understanding
atherosclerosis: Emerging insights

Cite as: APL Bioeng. 5, 011505 (2021); doi: 10.1063/5.0028986
Submitted: 8 September 2020 . Accepted: 21 January 2021 .
Published Online: 16 February 2021

Eric Munger,1,2,3 John W. Hickey,4 Amit K. Dey,1 Mohsin Saleet Jafri,2 Jason M. Kinser,2

and Nehal N. Mehta1,a)

AFFILIATIONS
1National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
2George Mason University, Fairfax, Virginia 22030, USA
3Johns Hopkins University, Baltimore, Maryland 21208, USA
4Stanford University, Stanford, California 94306, USA

a)Author to whom correspondence should be addressed: nehal.mehta@nih.gov. Tel.: 1-301-827-0483. Fax: 1–301-827-0915

ABSTRACT

Biological processes are incredibly complex—integrating molecular signaling networks involved in multicellular communication and
function, thus maintaining homeostasis. Dysfunction of these processes can result in the disruption of homeostasis, leading to the
development of several disease processes including atherosclerosis. We have significantly advanced our understanding of bioprocesses in
atherosclerosis, and in doing so, we are beginning to appreciate the complexities, intricacies, and heterogeneity atherosclerosi. We are also
now better equipped to acquire, store, and process the vast amount of biological data needed to shed light on the biological circuitry
involved. Such data can be analyzed within machine learning frameworks to better tease out such complex relationships. Indeed, there has
been an increasing number of studies applying machine learning methods for patient risk stratification based on comorbidities, multi-
modality image processing, and biomarker discovery pertaining to atherosclerotic plaque formation. Here, we focus on current applications
of machine learning to provide insight into atherosclerotic plaque formation and better understand atherosclerotic plaque progression
in patients with cardiovascular disease.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0028986

INTRODUCTION

Cardiovascular disease (CVD) including heart attack and stroke
is the leading cause of death worldwide and is usually preceded by
accelerated atherosclerosis.1 Atherosclerotic plaque formation, devel-
opment, and progression are complex and involve many factors
including elevated cholesterol, heightened immune activity, smooth
muscle cell proliferation, and endothelial dysfunction.2 As plaques in
the vessel wall build and progress and become high-risk, they may
rupture and thus the associated arteries may be occluded distally, lead-
ing to impaired flow of oxygen-rich blood to the heart muscle, brain,
and other parts of the body.

With such an impact on our health, substantial resources have
been allocated to study atherosclerosis in large cohorts across multiple
clinical, cellular, and molecular modalities. Consequently, there are a
growing number of clinical and experimental datasets available that
include multiple variables and risk factors known to be associated with

atherosclerosis as well as many additional variables whose impact on
disease is not well established.3 Ideally, the analysis of such datasets
should include the development of both statistical and machine learn-
ing (ML) models that have minimal statistical bias and accurately
account for important prognostic factors. Together, these models can
be used to accurately quantify inferences within the data and forecast
condition states useful for advanced treatment decisions. In fact, in a
recent study designed to assess the benefits of artery-stenting in
patients with atherosclerotic renal artery stenosis, the rigorous statisti-
cal analysis concluded that, when focused on a composite end point,
there was no significant distinction among the treatment regiments.4

However, in a follow-up study designed to compare ML methods
using the same data, 4 of 5 methods tested showed a small but distinct
ability to identify the patients that achieved the same end point.5 This
critical review aims to highlight the successful analysis of well-
characterized datasets through ML methods that are inherently
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capable of minimizing statistical bias with a focus on atherosclerotic
plaque. First, we briefly discuss the complex process of atherogenesis.
Then, we show how ML has been utilized in atherosclerosis and CVD
research and then focus on a recent study exploring the role of ML in
risk stratifying psoriasis patients at high risk of developing coronary
artery disease.6 Finally, we include a discussion of potential biological
insights and the future impact and direction in the application of ML
for novel biomarker discovery in atherosclerosis.

Biology of atherosclerosis

Atherosclerosis is one of the leading causes of mortality and
morbidity in developed countries and is widely recognized as a chronic
inflammatory disease in addition to being a lipid-associated disease.2 It
is a complex disease involving many different immune cell types,
cytokines, chemokines, hemodynamics, and biomechanics of the
vessel walls. Atherosclerosis leads to the formation of plaques that
thicken large and medium-sized arterial walls, narrowing the lumen,
which obstructs blood flow.2,7 Foam cells within plaques activate plate-
lets and endothelium cells, which induces the migration and accumu-
lation of vascular smooth muscle cells (VSMCs) from the media to the
intima (layers of the vessel wall). VSMCs proliferate within the intima
and secrete extracellular matrix macromolecules.8 Subsequently,
VSMCs and leukocytes are activated, which in turn increases inflam-
matory cell infiltration in the atherosclerotic lesion. This process is
accompanied by the eventual apoptosis of VSMCs.8 The combination
of greater inflammatory cell infiltration and apoptotic death together
leading to hypoxia-induced necrosis promotes the development of the
plaque into the late fibroatheromatous lesion with eventual neovascu-
larization. 9 These nascent immature micro-blood vessels are inher-
ently leaky and permit extravasation of erythrocytes into the plaque,
further contributing to necrotic core enlargement. 9 The many accu-
mulating cells, including macrophages and activated endothelial cells,
promote pro-inflammatory cytokines, matrix metalloproteinases
(MMPs), and cathepsins.10 This, along with Interferon-alpha inhibi-
tion of collagen formation by VSMC, weakens the already fragile
fibrous cap, increasing the likelihood of rupture.11 This allows simple
mechanical agitation from blood flow to cause the atherosclerotic cap
covering the inflammation site to rupture, resulting in possible blood
coagulation and thrombosis, which leads to decreased blood flow dis-
tally and thus a vascular event.

Atherosclerotic plaques may stabilize or reduce in size, lipid
content, foam cell content, and macrophage inflammation through a
process known as atherosclerosis regression.12 This process is driven
primarily by the Macrophage Reverse Cholesterol Transport (RCT)
mechanism, allowing for atherosclerotic plaques to eliminate choles-
terol. Enhancing foam cell cholesterol efflux by high-density lipopro-
tein (HDL) particles is considered a primary activator of the RCT
mechanism, which is believed to offer atheroprotection.13

Machine learning and atherosclerosis

Levels of low-density lipoprotein (LDL), apolipoprotein B
(ApoB), HDL, apolipoprotein A1 (ApoA1), and C-reactive protein
(CRP) are significant biomarkers of vascular inflammation and are
critical to almost all inflammatory disease processes including athero-
sclerosis.14 Yet inefficiencies in biomarker identification, prioritization,
and verification complicate the discovery of new biomarkers for

practically all diseases.15 Traditional approaches attempt to analyze the
correlation between a single variable and disease, thus having a narrow
approach. This siloed approach has been exhausted in the past, par-
tially to distinguish biological mechanisms and because only a single
disease-related biomarker could be measured in plasma relatively eas-
ily. However, with an increase in biological metrics and analytes being
sampled, bigger and better-curated datasets across not only patients
but across scales are becoming available. These data typically include
patient history, tissue, and physiological readouts, cell subsets and per-
centages, and molecular information such as the metabolism of these
cells. Machine learning modeling and analysis of such datasets can
provide accurate and clinically practical tools for diagnostics and may
prove to be very effective for the discovery of dynamic proteomic and
metabolic biomarkers in the field of translational medicine (Fig. 1—
machine learning modeling can easily convert raw data into deploy-
able models).

Multiple articles have focused on ML for the role of image proc-
essing. For example, Alberto et al. reported a comparison of the many
methods for characterizing plaque components, plaque morphology,
and arterial wall measurements using optical coherence tomography
(OCT).16 Nils et al. also discussed the application of ML in coronary
artery disease using cardiac computed tomography (CT) images for the
detection and characterization of atherosclerotic plaque.17 An impor-
tant point is that data extracted from the analysis of images as well as
the image itself can be utilized by ML to discover novel relationships.

Recent applications of machine learning analysis
in atherosclerosis research

Beyond clinical risk assessment, the scientific community has rec-
ognized the benefit of mechanistic discovery and prioritizing bio-
markers for diseases. As a result, there has been significant work in
interpreting ML approaches for ranking variables focused on finding
ways to replace the relevance scores with measures that can be inter-
preted using standard methods. To this end, a prior study concluded
that ML methods, while computationally expensive, are capable of
identifying truly relevant biomarkers within datasets with multivariate
interacting variables,18 helping clear the path for ML analysis of
healthcare data (Table 1).

Machine learning analysis for risk stratification

Studies have shown that ML methods may be better for the pre-
diction of cardiovascular events than traditional risk assessment scales
commonly used in clinical practice.23,26,27 In 2017, researchers studied
the ability of ML techniques to classify six cardiovascular outcomes
and compared these results with standard cardiovascular risk scores.19

Using the MESA (Multi-Ethnic Study of Atherosclerosis) dataset that
included 735 variables from imaging and noninvasive tests, question-
naires, and biomarker panels, they applied a random survival forest
method to rank the top-20 predictors of each outcome.19 Interestingly,
imaging, electrocardiography, and serum biomarkers were shown to
be more represented in the top-20 important variables selected when
compared to traditional cardiovascular risk factors in predicting car-
diovascular outcomes.19

More recently, ML approaches are being applied to develop pre-
dictive models to classify individuals who are likely to be diagnosed
with diseases as a result of atherosclerosis.24 Terrada et al. introduce a
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Medical Diagnosis Support Systems (MDSS) after having achieved an
accuracy of 98%.24 In development, the MDSS was assessed using
seven different classification algorithms: Artificial Neural Network
(ANN), K-Nearest Neighbor (KNN), Support Vector Machine (SVM),
Decision Tree (DT), Na€ıve Bayes (NB), Classification Ensemble (CE),
and Discriminant Analysis (DA).24 The MDSS used data from 835
patient medical records who suffer from atherosclerosis, usually
caused by coronary artery diseases (CAD), collected from three data-
bases: the Cleveland Heart Disease, Hungarian, and Z-Alizadeh Sani
databases. 24 The system’s input was a combination of variables
included in the final dataset and resulted in an accuracy rating of 98%,
far more accurate than other approaches.24

While such models represent a significant step forward in
large-scale computational clinical diagnostics for atherosclerotic
diseases, the results highlight the potential of ML as an approach
to clinical analysis as well as some areas where more work is
needed. A system such as the MDSS need not be primarily focused
on any one disease. Indeed, systems such as this can be developed
to efficiently classify and diagnose individuals for many different
diseases. The biggest challenge in the development of such systems
is proper feature selection.24 While Terrada et al. did achieve a sig-
nificant accuracy, the widespread deployment of the system across
other diseases is limited by the use of domain knowledge feature

selection from datasets and feature engineering. The system gener-
ated the appropriate features based on external feature engineering
because the authors had yet to develop a technique to automate
feature selection.24

Machine learning analysis for the characterization
of atherosclerotic plaque formation

Imaging methods have significantly advanced in recent decades,
allowing for early detection and characterization of atherosclerosis.28

Some studies have used ML for the analysis of imaging data to charac-
terize plaque morphology. A more recent study compared the image
segmentation accuracy of three popular ML algorithms, convolutional
neural networks (CNNs), random forest (RF), and support vector
machine (SVM).29 Based on each algorithm’s ability to characterize
the very thin second layer of coronary artery (media), the CNN was
shown to be very effective when applied as a feature extractor and RF
proved to be a very accurate classifier. The system resulted in an over-
all classification rate up to 96% when applied for the recognition and
specification of the media intima from other tissues.29 Of note is the
comparison of both traditional ML methods and deep learning. As
one of the first applications of a deep learning CNN to coronary artery
image segmentation, this offered the opportunity to expand available

FIG. 1. Machine learning modeling converts raw data into efficient and accurately trained models that can be used for patient risk analysis and medical image processing even
when patients exhibit complex comorbidities. Created with BioRender.com.

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 5, 011505 (2021); doi: 10.1063/5.0028986 5, 011505-3

VC Author(s) 2021

https://scitation.org/journal/apb


training datasets. This is because images selected to be manually
curated would only require that a small (8 � 8) pixel patch be manu-
ally curated. Once the CNN learns the features over this small patch
from within the larger image, it can then apply this learned 8� 8 pixel
feature detector to the rest of the image. Thus, more images can be
quickly curated and added to the training set.

Moreover, being able to clinically distinguish plaque pheno-
types macroscopically is critical as it is known there are certain pla-
ques more vulnerable to rupture.30 Molecularly, vulnerable
plaques are characterized by an intact thin fibrous cap, necrotic
core, neovascularization, and a reduced volume of smooth muscle
cells (SMCs).31 Macrophages in the fibrous cap release matrix met-
alloproteinases (MMPs), which, along with high shear stress, pro-
mote weakening of the cap.31 Additionally, microcalcification, iron
accumulation within the fibrous cap, and macrophage cell death
contribute to the weakening of the fibrous cap.31 Upon rupture,
the contents of the necrotic core come into contact with circulating
blood, and the coagulation cascade involving platelets is activated
in response to the exposure of lipids and tissue factors, which were
present in the necrotic core, leading to a thrombus and thus lead-
ing to decreased blood flow and a cardiovascular event.31 This is a
complex process; however, ML methods could be used to extract

valuable feature importance in even complicated clinical processes
and complex datasets.27

Intracoronary optical coherence tomography image
processing

Intracoronary optical coherence tomography (IOCT) is the appli-
cation of light-based intracoronary endoscopic imaging along with
optical coherence tomography to create cross-sectional images of the
artery lumen and wall. Recently, ML guided image processing was
applied to analyze IOCT images to generate an automated system to
characterize atherosclerotic tissue.32 The authors used a supervised
ML algorithm on image pixels to classify each pixel based on textural
features and used those results to estimate the value of the optical
attenuation coefficient.32 The images were then manually curated, and
it was determined that the proposed method obtained an overall classi-
fication accuracy of 81.5%.32 While the training and validation dataset
was relatively small, their work demonstrated that this application of
ML showed potential for clinical use. Additionally, ML-based auto-
mated image segmentation and analysis can be used effectively to
quantify atherosclerosis plaque deposition.33 In this study, ML-based
OCT image segmentation was used to highlight the borders along the
vessel lumen and identify regions of atherosclerotic plaque.33

TABLE I. Recent applications of machine learning methods in understanding atherosclerosis.

References Focus Significant discovery

Ambale-Venkatesh et al.19 Event prediction Machine learning methods applied to deep phenotyped datasets showed
high predictive cardiovascular event accuracy.19

Chen et al.5 Event prediction Machine learning methods can be applied to effectively predict risk in
patients with severe dilated cardiomyopathy.5

Han et al.20 Risk stratification/feature
selection

Machine learning approaches can be used to identify important features
related to quantitative atherosclerosis characterization and patients at
risk of rapid coronary plaque progression.20

Hu et al.21 Risk stratification/feature
selection in comorbidity

Machine learning methods can be used to effectively predict prediabetes
at risk for rapid atherosclerosis progression.21

Huynh-Thu et al.18 Validate machine learning for
biomarker discovery

Machine learning approaches leveraged to explore methods of features
extraction.18

Motwani et al.22 Event prediction Machine learning applied to clinical and Coronary CT data predicted
5-year all-cause mortality better than using clinical or Coronary CT data
alone.22

Munger et al.6 Regression/biomarker discovery Machine learning methods can be effective in identifying the top
predictors of noncalcified coronary burden in psoriasis.6

Quesada et al.23 Risk stratification Machine learning methods demonstrated better predictive capacity for
cardiovascular events and better classification indicators than some tradi-
tional risk scores.23

Terrada et al.24 Diagnostic classification Use of machine learning to develop highly accurate approach toward
facilitating large-scale clinical diagnostics for atherosclerosis.24

van Rosendael et al.25 Risk stratification Risk scoring using machine learning analysis of standard 16 coronary
segment stenosis and composition information has better prognostic
accuracy than current Coronary CT integrated risk scores.25

Weng et al.26 Risk stratification Machine learning shows greatly improved accuracy of cardiovascular risk
prediction.26

Xie et al.27 Clustering/regression Weighted machine learning approaches can improve the accuracy of car-
diovascular diseases disease risk.27
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Coronary computed tomography angiography image
processing

Coronary computed tomography angiography (CCTA) is a non-
invasive imaging technique that leverages radiolabeled compounds
using computed tomography (CT) to depict the structure and content
of the blood vessels including atherosclerotic plaque (Fig. 2). CCTA
has proven an effective method for the characterization of coronary
plaque burden because CCTA provides a characterization of not only
lumen stenosis and arterial remodeling but also plaque subcompo-
nents, including calcified, non-calcified, and high risk features.30 A
recent ML application related to CCTA was based on data from the
PARADIGM (Progression of Atherosclerotic Plaque Determined by
Computed Tomographic Angiography Imaging) registry.20 The
PARADIGM data were collected between 2003 and 2015 as part of a
multi-center effort. At the time of the analysis, 1083 consecutive
patients had undergone serial CCTA and met the inclusion criteria for
the analysis.20 After analysis using ML focused on selecting and rank-
ing each feature’s importance for classifying individuals at risk for
rapid plaque progression, the authors were able to determine that
quantitative atherosclerotic plaque characterization was most influen-
tial. This was followed by qualitative plaque characterization by CCTA
variables and then clinical and laboratory measures.20

Often, studies incorporating CCTA also collect several non-imag-
ing-based circulating biomarkers and clinical data as well. In one of
the first large scale implementations of ML with CCTA data, it was
shown that ML algorithms integrating clinical factors as well as coro-
nary computed tomography angiography (CCTA) data demonstrated

superior prediction of 5-year all-cause mortality than clinical or
CCTA data alone.22 Another study demonstrated that a risk score
developed by using ML algorithms had greater prognostic accuracy for
cardiovascular disease risk stratification from CCTA readings than the
standard CCTA risk scores.25

Application of machine learning in a human disease
model of inflammation

Inflammation is critical to the progression of atherosclerosis.
Psoriasis, a chronic inflammatory skin disease that affects nearly
2%–3% of the global population, is associated with accelerated rates of
atherosclerosis, especially non-calcified coronary plaques.34,35 It is now
well known that atherosclerotic plaque deposition is accelerated by
untreated chronic inflammation in coronary arteries.36 One recent
application of ML used the Psoriasis Atherosclerosis Cardiometabolic
Initiative (PACI) dataset to investigate biomarkers associated with this
elevated cardiovascular risk in psoriasis. A combination of feature
engineering and the application of ML methods has been used to dem-
onstrate the mapping of complex biological data to a specific clinical
outcome and that ML methods can be leveraged to identify top predic-
tors of non-calcified coronary burden in patients with psoriasis.6 The
analysis showed that the top-20 clinically significant biomarkers were
body mass index, visceral adiposity, total adiposity, apolipoprotein A1,
high-density lipoprotein, erythrocyte sedimentation rate, subcutane-
ous adiposity, small low-density lipoprotein particle, cholesterol efflux
capacity, absolute granulocyte count, total cholesterol, waist-to-hip
ratio, apolipoprotein B, very-low-density lipoprotein particle, absolute

FIG. 2. (a) CCTA is used to quantify atherosclerotic plaque in coronary arteries by obtaining a 3D rendering of heart and mapping lipid-rich non-calcified coronary plaque (in
yellow). (b) The Top predictors of non-calcified coronary artery plaque burden are generated using ML.
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monocyte count, high-sensitivity C-reactive protein (hs-CRP), large
very-low-density lipoprotein particle, large medium high-density lipo-
protein particle, large medium very-low-density lipoprotein particle,
and white blood cells (Fig. 2—use of coronary computed tomography
angiography in psoriasis).6 These biomarkers are known to be related
to obesity, dyslipidemia, and inflammation, which are relevant to the
progression of atherosclerosis in this unique cohort.6 Particularly, in
psoriasis patients, systemic inflammation is believed to affect a change
in the inner lining of arteries causing an expression of adhesion mole-
cules by endothelial cells. This change increases the capture and trans-
location of leukocytes into the intima.37 Additionally, high-density
lipoprotein (HDL) is converted to oxidized HDL in inflammatory
states such as psoriasis, thus losing its protective effect.38

This conversion decreases the protective function of HDL, lead-
ing to a more atherogenic profile and decreased cholesterol efflux abil-
ity, all of which promote plaque formation.38 Indeed, patients with
psoriasis are at increased risk of suffering a cardiovascular event com-
pared with the general population, presumably due to accelerated ath-
erogenesis.39 One study demonstrated that severe psoriasis confers an
additional 6.2% absolute risk of a 10-year rate of a major cardiovascu-
lar event.40

This application of ML to atherosclerosis, within the psoriasis
group, gives us a unique perspective and window into studying athero-
sclerosis since people suffering from inflammatory diseases such as
psoriasis have a high prevalence of cardiovascular disease. Because of
the extenuated inflammation, the progression of the disease, altered
molecular networks, disrupted cellular communication, and aggra-
vated skin disease pathophysiology in psoriasis, this biological amplifi-
cation of biomarkers seen in psoriasis could be used to understand the
complex process of atherosclerosis. These boosted biological signals

from a condition that magnifies atherosclerotic disease could increase
the signal to noise ratio to elucidate the key players and their relation-
ships amongst the many biological players and processes known
(Fig. 3—concept of feature extraction from raw data).

Future directions and conclusions

Cumulatively, our review demonstrates that valuable insights can
be extracted when ML is applied to clinical datasets. As a direct result
of the recent application of ML in atherosclerosis, the number of
known molecular, cellular, and physiological factors affecting athero-
sclerosis has dramatically increased. Most of these factors have been
studied individually, leaving questions as to how many of these factors
are interrelated and correlated. Adding environmental factors and
broad lifestyle choices to this type of analysis could be particularly
interesting from an interventional public health point of view. Thus,
ML analysis of broad, well-characterized datasets will lead to a better
understanding of how such factors are interconnected and impact car-
diovascular health.

Furthermore, given that studies show the physiological pathways
involved in atherogenesis are shared by other diseases, studying these
diseases in tandem could be fruitful. A significant complication of ath-
erosclerosis is the fact that there are a few symptoms until a cardiovas-
cular event occurs.41 We imagine a deeper understanding of the
condition could be achieved by using ML to analyze a targeted, well-
characterized dataset of many variables important to atherosclerosis in
combination with other conditions/comorbidities that may serve as
surrogates for gauging the severity of underlying atherosclerosis.

We expect four major areas of advancement from applying ML
to atherosclerosis. First, being able to identify many salient variables

FIG. 3. (i) Psoriasis offers an extenuated view into atherosclerosis. (ii) The biologically meaningful parameters’ signals will be amplified and easier to analyze with machine
learning. (iii) This will enable significant extraction of potential biomarkers that could be used concomitantly and also explored for a biological mechanism for atherosclerosis so
that they can be used as druggable targets. Created with BioRender.com.
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will establish new biomarkers that could be used clinically. In a recent
evaluation of the feasibility of creating a simple and clinically useful
diagnostic panel for heart failure with reduced ejection fraction, the
authors took a combined approach using untargeted metabolomics
and ML.42 It was concluded that the combination of untargeted
metabolomics and ML algorithms was a promising tool for the diag-
nostic workup in heart failure with reduced ejection fraction.42

However, large scale, multi-center studies of the methods are crucial
for conformation and clinical utility of these tools.

Second, the ability to look at many variables simultaneously may
inform us of the actual biological mechanisms and interactions across
many different levels of biology from molecules to tissues. It is known
that biomarkers play a significant role in the management, diagnosis,
prognostication, and screening of diseases such as atherosclerosis.
However, the utility of novel, emerging biomarkers is less established.
Machine learning analysis allows for a multimodal approach that can
simultaneously include many biomarkers, which can help identify
multiple different pathophysiological pathways. This would pro-
vide a more integrated and informed assessment of the state of the
patient, which would provide an improved measurement of risk
compared to traditional risk scores.43 In a recent clinical trial
focusing on the treatment of preserved cardiac function heart
failure patients with an aldosterone antagonist, 49 plasma bio-
markers were measured in 379 trial participants.44 The aim was to
understand the relationship between these biomarkers and the risk
of all-cause death or heart failure-related hospital admission. It
was concluded that a multimarker ML approach was a promising
strategy for accurate risk stratification.44

Third, this may increase our current understanding of the rela-
tionship of multiple diseases and disease states, allowing a better
understanding of complex “multimorbidity” and opening the oppor-
tunity for common interventions. Understanding complex multimor-
bidity is a significant challenge, and as a result, many diseases are
studied in isolation. Machine learning provides tools that can be
applied to overcome the many challenges in multimorbidity, but only
a small percentage have been used for the study of multimorbidity.45

Hu et al. demonstrated that ML can effectively predict prediabetics at
risk for rapid atherosclerosis progression.21

Finally, the information these studies provide will highlight the
pathway of collecting the next set of datasets for further iterations of
ML discoveries. Machine learning techniques are capable of identifying
clinically relevant patterns hidden amongst an abundance of potentially
irrelevant information.46 In a recent review of the application of ML in
autoimmune disorders, the authors established that novel ML methods
were being applied to data on multiple sclerosis, rheumatoid arthritis,
and inflammatory bowel disease. Datasets used often included different
data types in the modeling process.47 This work shows that complex
predictive models may be improved through the integration of specific
data types and that an understanding of the best data to include in
such models may not be the same as the data traditionally collected.

One limitation in the application of ML in current datasets is that
the prospective follow-up data are largely incomplete. We feel that
these prospective data will permit longitudinal analyses across pheno-
types of interest, thereby accelerating understanding of potential bio-
logic pathways. This has made predicting the value of surrogate
endpoints of disease states very difficult. To solve this problem,
researchers will need to continue to fill and expand datasets from

prospective studies while learning to adapt many of the traditionally
reliable ML algorithms to evaluate high dimensional time-series data.
Another limitation is that cross-validation using separate testing and
validation datasets for robust model evaluation is not always an option
because, while many of the best practices of validation, cross-
validation, and independent testing of ML models have been discov-
ered, very few well-characterized datasets related to atherosclerosis are
available. Finally, it is well known that the appropriate application of
these methods in solving complex problems in the domain of natural
language processing or image and speech recognition has been
extremely successful. We and others have successfully applied these
methods on available high-quality datasets to highlight complicated
relationships between multiple diseases. With continued increases in
computing power and the vast expansion of well-characterized time-
series biological and clinical data expected to be available very soon,
now is the time for the application of ML methods to subclinical and
interrelated diseases. In conclusion, here we provide a review of how
ML can accelerate our understanding of atherosclerosis and some of
the key applications of ML to these datasets for characterizing novel
biomarkers of atherosclerotic disease progression. Much larger studies
on well-characterized datasets will be possible as technology and ana-
lytical understanding improve in the future.
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