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Abstract

Background: Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-related serine/threonine kinase activated by a range of
environmental stimuli including genotoxic stress, growth factors, inflammatory cytokines and antigen receptor triggering.
Being inducibly recruited to membrane-proximal signalling scaffolds to regulate NFAT, AP-1 and NFkB-mediated gene
transcription in T-cells, the function of HPK1 in B-cells to date remains rather ill-defined.

Methodology/Principal Findings: By using two loss of function models, we show that HPK1 displays a novel function in
regulating B-cell integrin activity. Wehi 231 lymphoma cells lacking HPK1 after shRNA mediated knockdown exhibit
increased basic activation levels of Ras-related protein 1 (Rap1), accompanied by a severe lymphocyte function-associated
antigen-1 (LFA-1) dependent homotypic aggregation and increased adhesion to intercellular adhesion molecule 1 (ICAM-1).
The observed phenotype of enhanced integrin activity is caused downstream of Src, by a signalling module independent of
PI3K and PLC, involving HPK1, SKAP55 homologue (SKAP-HOM) and Rap1-GTP-interacting adaptor molecule (RIAM). This
alters actin dynamics and renders focal adhesion kinase (FAK) constitutively phosphorylated. Bone marrow and splenic B-
cell development of HPK12/2 mice are largely unaffected, except age-related tendencies for increased splenic cellularity and
BCR downregulation. In addition, naı̈ve splenic knockout B-cells appear hyperresponsive to a range of stimuli applied ex vivo
as recently demonstrated by others for T-cells.

Conclusions/Significance: We therefore conclude that HPK1 exhibits a dual function in B-cells by negatively regulating
integrin activity and controlling cellular activation, which makes it an interesting candidate to study in pathological settings
like autoimmunity and cancer.
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Introduction

Integrin regulation is essential in mediating homeostatic lympho-

cyte features like adhesion, migration and immune synapse formation

[1–3]. While being kept in an inactive state in resting cells, inside-out

activation signals from the BCR, TCR or chemokine receptors

facilitate the binding of the b integrin chain to talin [4]. As a

consequence, membrane distribution and/or affinity for ligands

inducibly change and concomitant outside-in integrin signalling can

lower antigenic activation thresholds for B- and T-cells [5,6]. Recent

studies propose B-cells to mainly recognize antigen in the form of

immune complexes bound to Fc or complement receptors on e.g.

follicular dendritic cells [7]. If the signals provided in the context of

this interaction exceed a certain activation threshold, arrest of the B-

cell eventually allows the formation of a peripheral supramolecular

activation cluster composed of lymphocyte function-associated

antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins, which

subsequently serve as a docking platform to increase the duration of

the synapse and ensure proper B-cell activation [6,8].

The small GTPase Ras-related protein 1 (Rap1) belongs to the

Ras superfamily and has a pivotal function in lymphocyte integrin

activation [9–11]. By binding downstream effectors like regulator

for cell adhesion and polarization enriched in lymphoid tissues

(RAPL) and Rap1-GTP-interacting adaptor molecule (RIAM),

Rap1 connects to talin [12] and induces lymphocyte polarization

by distributing LFA-1 to the leading edge, which is indispensable

for cellular adhesion and migration [13,14]. In T-cells, the two

constitutively associated adaptor molecules adhesion- and degran-

ulation-promoting adaptor protein (ADAP) and Src-kinase-associ-

ated phosphoprotein of 55 kDa (SKAP55) were shown to be of

critical importance in translating signals from the TCR via Rap1

activation to LFA-1 and VLA-4 integrins [15–19]. Although

ADAP and SKAP55 are not expressed in B-cells, a SKAP55

homologue (SKAP-HOM) broadly expressed in the hematopoietic

system fulfils similar tasks in B-cells and macrophages [20–22].

In the current paper we demonstrate that HPK1, a Ste20-related

serine/threonine kinase triggering the SAPK/JNK pathway [23,24],

constitutively associates with SKAP-HOM in Wehi 231 cells,
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forming a ternary complex of HPK1, SKAP-HOM and RIAM.

Wehi 231 cells lacking HPK1 expression after shRNA mediated

knockdown display substantially increased LFA-1 mediated homo-

typic aggregation and adhesion to ICAM-1. This behaviour is

caused by an upregulation of Rap1-GTP in unstimulated cells,

leading to dysregulated actin dynamics and enhanced focal adhesion

kinase (FAK) activity. We further show that HPK12/2 mice develop

normal bone marrow and splenic B-cell subset counts but exhibit an

increase in B-cell reactivity, suggesting that HPK1 limits the actions

emanating from the SKAP-HOM adaptor complex needed for

proper B-cell activation and adhesion.

Results

HPK1 negatively regulates B-cell adhesion
For the analysis of HPK1 deficiency in B-cells the immature B-

cell line Wehi 231 was chosen as target for RNA interference.

shRNA mediated silencing reduced HPK1 protein expression by

approximately 95% (Figure 1A). While control (co) target cells

showed a wild type like growth behaviour of single cells and small

homotypic aggregates (Figure 1B, upper left), Wehi 231 HPK1

knockdowns (kd) formed large cellular clusters (Figure 1B, lower

left) phenocopying the general growth of proliferating primary B-

cells in vitro. As these cellular interactions are critically dependent

on integrins, we speculated about an impact of HPK1 on integrin

regulation. Blocking aLb2 integrin with an anti-LFA-1 specific

antibody applied to the medium for 17 h completely interfered

with co and kd cell aggregation (Figure 1B, right), suggesting that

increased cellular clustering was caused by augmented LFA-1

activity, whereas the lack of HPK1 had no influence on total

membrane LFA-1 expression as measured by flow cytometry

(Figure 1C). To further monitor the adhesion behaviour of

transfectants under conditions of manually applied shear stress, co

and kd cells were subjected to static adhesion on ICAM-1/Fc

coated plates. Wehi 231 cells lacking HPK1 exhibited a twofold

increase (p,0.001) in adhesion to ICAM-1/Fc compared to co

cells (Figure 2B) and showed a significantly higher percentage

(p,0.001) of spreading cells (Figure 2A).

Figure 1. Homotypic aggregation of HPK1 knockdown Wehi 231 cells. (A) HPK1 protein expression in Wehi 231 wild type (wt), control (co)
and knockdown (kd) cells determined by anti-HPK1 Western blotting. (B) Homotypic aggregation of Wehi 231 kd transfectants compared to
transfection controls; cluster formation was blocked by adding anti-LFA-1 antibody [30 mg/ml] for 17 h into the culture medium (Zeiss Axiovert 135,
scale bar: 50 mm). (C) Flow cytometric analysis (FACS Canto II) of Wehi 231 co and kd cell LFA-1 surface expression; iso, isotype control.
doi:10.1371/journal.pone.0012468.g001
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Inside-out activation of integrins triggered by the BCR was

shown to be regulated by the sequential activation of signalling

mediators including Src family kinases, PI3K, PLCc2, Btk,

guanosine nucleotide exchange factors like e.g. Vav1/2 as well

as small GTPases of the Rho and Ras family [9,25,26]. To

determine if the effect of increased integrin activity observed in the

Wehi 231 kd cells is caused by alterations in the activity of one of

the factors mentioned, we inhibited Src kinases (PP1), PI3K

(Wortmannin) and PLC (U73122) as central membrane proximal

players by the use of pharmacological treatment. Figure 2C

displays the highest inhibitor concentrations applied which still

maintained cellular viability and were assumed to have the

strongest effect on target activity. Wortmannin (100 mM) and

U73122 (1 mM) treated co and kd cells showed a highly significant

difference (WM co: 8.54%61.72%; kd: 27.52%61.95%; U73122

co: 5.91%61.31%; kd: 34.66%64.46%) in adhesion as observed

for DMSO controls (co: 18.18%61.76%; kd: 47.72%62.15%),

suggesting that although PLCc2 and PI3K contribute to overall

adhesion, they are not causative for the observed increase in LFA-

1 activity. Interfering with Src kinase activity (100 nM PP1)

completely abolished adhesion in both co (1.21%60.39%) and kd

(1.31%60.57%) cells, which likely positions the regulatory

function of HPK1 downstream of Src.

HPK1 associates with the SKAP-HOM – RIAM complex
and limits Rap1 activation

In T-cells, the ADAP-SKAP55 adaptor complex was shown to

be of critical importance in T-cell adhesion by transducing signals

from the TCR to integrins [15–19]. SKAP55 is known to interact

with RIAM [18], an adaptor molecule previously shown to

provide a physical link between the small GTPase Rap1 and talin

[12] which binds to the b integrin chain as a central step in

changing integrin affinity [4].

As it remains unclear whether an ADAP homologue in B-cells

exists, we asked if HPK1 links to the SKAP55 homologue SKAP-

HOM expressed in B-cells. Indeed, HPK1 co-immunoprecipitated

with SKAP-HOM in Wehi 231 cells (Figure 3A, upper two

panels), providing a novel physical link to a B-cell adhesion

regulatory module. In addition, as true for SKAP55 in T-cells

[18], SKAP-HOM interacted with RIAM (Figure 3A, third panel).

Because HPK1 and RIAM both physically link to SKAP-HOM

and the observed growth of the Wehi 231 kd cells resembled the

reported behaviour of Rap1V12 transfected cell lines [27], we

investigated Rap1-GTP expression in unstimulated and anti-IgM

(anti m) stimulated transfectants. In unstimulated knockdown cells,

the initial amount of Rap1-GTP was twice as high as in the control

cells, whereas antigen receptor stimulation led to comparable

Rap1-GTP amounts in knockdown and control clones (Figure 3B),

suggesting a negative regulatory role of HPK1 on B-cell adhesion

by limiting Rap1 activation.

Lack of HPK1 affects actin polymerization and focal
adhesion kinase activity

RIAM was shown to interact with Profilin and Ena/VASP

proteins to regulate actin polymerization and cell spreading [28]. We

hypothesized that the increased amount of active Rap1 found in the

kd cells could affect the activity of the downstream adaptor RIAM

and therefore change cellular F-actin levels. Wehi knockdowns

stained for F-actin by the use of Phalloidin-FITC showed a higher

basal F-actin level (Figure 3C) than co cells, a phenotype reported for

Figure 2. HPK1 negatively regulates adhesion to ICAM-1 independent of PI3K and PLC. (A) Left: Phase contrast images showing Wehi 231
co and kd cell spreading on BSA and ICAM-1 (Nikon Eclipse, 206) after 30 min of adhesion; right: percentage of spread, phase dark co and kd cells on
ICAM-1. (B) Percentage of CFSE labelled co and kd cells adhering to BSA or ICAM-1 after manually applied shear stress. (C) Percentage of co and kd
cells adhering to ICAM-1 after pharmacological inhibitor treatment (100 nM Wortmannin, 1 mM U73122, 100 mM PP1); results are representative for
three (A,C) or six (B) independent experiments and are presented as means 6 SD (Student’s t); ns, not significant.
doi:10.1371/journal.pone.0012468.g002
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cells with increased RIAM activity [28], which possibly explains the

enhanced spreading of kd cells. In addition, kd cells exhibited

significantly less de novo actin polymerization upon anti-IgM F(ab’)2

stimulation (Figure 3D) which could be the result of uncoupling the

actin regulatory SKAP-HOM – RIAM complex from coordinated

signals through the BCR.

An additional downstream target of Rap1 activity is the focal

adhesion kinase (FAK). FAK expression was shown for Wehi 231

and A20 cells as well as for activated B-cells, where the protein was

suggested to colocalize with LFA-1 and VLA-4 in a manner

critically dependent on actin dynamics to regulate cell spreading

[29]. In addition, FAK was shown to associate with the Arp2/3

complex, therefore linking integrin signalling directly with actin

polymerization [30]. The loss of HPK1 in Wehi 231 kd cells led to

a constitutive and profound increase in the amount of active FAK

phosphorylated on Y379 (pFAK379), while anti-IgM (anti m)

stimulation had no influence on pFAK379 levels either in co or kd

cells (Figure 3E), which indicates an integrin-mediated FAK

activation mechanism independent of the BCR. Thus, we provide

evidence that through the lack of HPK1, enhanced Rap1 activity

affects actin dynamics and the phosphorylation of the focal contact

component FAK.

Murine B-cell development is largely unaffected by the
lack of HPK1

Recently, HPK12/2 mice were reported to have normal

numbers of B220+ cells and B-cell/T-cell ratios in peripheral

lymphoid organs [31]. In line with these findings, our detailed

analyses of B-cell subsets in the bone marrow showed that mice

lacking HPK1 are only mildly affected and develop largely normal

cell numbers. We observed a slight enlargement of the Hardy

fraction C, composed of B220+CD43+BP1+HSAint. pro-B cells

(Figure 4B) which are known to be in close contact with the

stromal environment via CD44 and VLA-4 to ensure functional

pro-pre-B-cell transition [32]. This leads to an increase in the small

pre- (Figure 4C, Fr.D) and the mature B220+CD432 B-cell

population (Figure 4A). Nevertheless, the slightly increased

cellularity of the mature B-cell fraction in the bone marrow of

HPK12/2 mice did not significantly affect the numbers of

transitional (T1: B220+ CD93+ IgM+ CD232/low, T2: B220+

CD93+ IgM+ CD23+, T3: B220+ CD93+ IgMlow CD23+) and

mature (B220+ CD932)/marginal zone (B220+ CD1d+) B-cells in

the spleen (Figure 5A,B). Interestingly, older HPK12/2 mice

(17 w) exhibited increases in splenic leukocyte numbers compared

to wt mice (Figure 5C). Aged (40 w) HPK12/2 mice showed

reductions of surface IgM density in transitional B-cells (Figure 5D)

which leads to a significant increase in the transitional 3/IgMlow

fraction (Figure 5E), a phenotype that in an attenuated form

reflects the B-cell development observable in anti-HELtg/HELtg

mice [33]. The findings of Shui et al. [31] additionally stated a

stronger overall increase in specific immunoglobulin levels after T-

cell dependent protein antigen administration in HPK12/2 mice,

which was suggested to be the result of cognate T-cell

hyperreactivity. An alternative explanation of the described B-

cell hyperreactivities could be a cell intrinsic defect in limiting

Rap1-dependent integrin activation known to be of critical

importance in refining antigenic activation thresholds.

Altered B-cell reactivity and BCR dynamics in HPK12/2

mice
To assess B-cell reactivity in HPK12/2 mice naı̈ve splenic B-

cells were purified untouched, CFSE labelled and subjected to in

Figure 3. HPK1 associates with SKAP-HOM and negatively regulates Rap1 activation. (A) SKAP-HOM was immunoprecipitated in
unstimulated Wehi 231 co/kd cells and pulldowns were detected for SKAP-HOM, HPK1 and RIAM expression by Western blotting; plots are
representative for four independent experiments. (B) Left: Active Rap1-GTP of untreated and anti-IgM F(ab’)2 (anti m) stimulated co and kd cells was
pulled down with Ral GDS RBD agarose and analysed together with total Rap1 levels by anti-Rap1 Western blotting; quantification of band intensities
was performed by normalizing total Rap1 levels of lysates by densitometric evaluation (ImageJ) and all time points of Rap1-GTP samples were
compared to the control target at t0 = 1; GDP/GTP: negative/positive control; right: graph representative for three independently performed
experiments. (C) F-actin levels (means 6 SD; Student’s t; n = 6) of untreated co and kd cells measured by Phalloidin-FITC flow cytometric staining. (D)
F-actin levels (means 6 SD; Student’s t; n = 6) of anti-IgM F(ab’)2 (anti m) stimulated co and kd cells. (E) Untreated and anti-IgM stimulated FAK
immunoprecipitates of Wehi 231 co and kd cells were detected for total FAK and pFAK379 expression by Western blotting (n = 3); ns, not significant;
pd, pulldown.
doi:10.1371/journal.pone.0012468.g003
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vitro proliferation by the use of different B-cell stimuli. Anti-IgM

(5 mg/ml)/anti-CD40 (10 mg/ml) as well as LPS (25 mg/ml) and

LPS (25 mg/ml)/IL-4 (5 ng/ml) induced proliferation was signif-

icantly increased in HPK12/2 mice (Figure 6A,C and Figure S3),

while anti-CD40/IL-4 stimulation resulted in the weakest

differences, suggesting a negative regulatory effect of HPK1 on

BCR- and TLR-4 mediated B-cell activation operating indepen-

dently on CD40 signalling (Figure 6B and Figure S3). We further

speculated whether the phenotype of altered actin dynamics, as

shown for the Wehi knockdowns, as well as the reported

association of HPK1 with the actin regulatory protein HS1

[34–37], might cause altered actin-mediated BCR uptake kinetics.

Therefore we performed anti-IgM-FITC internalization assays

with primary splenic cells. Splenic IgM+ cells of HPK12/2 mice

displayed an unsignificant tendency (n = 4) for a slower BCR

endocytosis rate (Figure S1A), an effect that became more obvious

by knocking down HPK1 expression in CH27 cells (Figure S1C).

CH27 B- lymphoma cells display a transitional maturation

phenotype (IgM+ IgD+) and, in contrast to Wehi 231 cells,

efficiently internalize antigen receptors upon stimulation. HPK1

kd CH27 cells displayed significantly slower IgM uptake kinetics

after 5 and 10 min on 37uC compared to the co target (Figure

S1B), an effect gradually lost with increasing HPK1 concentration

as CH27 clones with a less efficient knockdown showed

internalization rates insignificantly different from co cells (data

not shown). Thus, we show that while B-cell developmental

processes are largely unaffected by the lack of HPK1, antigen

receptor- and TLR-4-induced proliferation is limited by the action

of HPK1.

Discussion

In this paper we provide evidence for a novel function of HPK1

in regulating B-lymphocyte adhesion. By associating with the

SKAP-HOM – RIAM module, HPK1 limits Rap1-GTP-mediat-

ed signals aiming to upregulate integrin activity upon antigen

receptor triggering (Figure 7). B-cells lacking SKAP-HOM were

reported to be deficient in b1 and b2 integrin-mediated adhesion

and exhibit a mild decrease in anti-IgM induced in vitro

proliferation, while displaying normal membrane-proximal signal-

ling upon BCR triggering and systemic immunoglobulin responses

to T-dependent antigens [22]. HPK12/2 B-cells intriguingly

oppose this phenotype, as in our hands they showed wild type-like

specific serum Ig levels after administration of T-dependent

antigen (Figure S2) but enhanced in vitro proliferation upon anti-

IgM/IL-4 and LPS stimulation. Interestingly, a similar immuni-

zation approach on the C57/BL6 background done by Shui et al.

[31] showed significant differences in all Ig isotype levels

investigated. Our hypothesis is that the negative regulatory

function of HPK1 might vary with the genetic background and

in our study is linked to a rather age-related effect. In this regard

one might speculate whether a biased negative selection in the

bone marrow due to a change in signal quality from the BCR

could possibly lead to a larger pool of autoreactive peripheral T3/

Figure 4. Bone marrow B-cell development of HPK12/2 mice. (A) Total bone marrow of 7 weeks old WT and HPK12/2 mice stained with CD43/
B220 to delineate early and late B-cell fractions; cells were further stained with (B) BP1/CD24 for pro-pre B-cells stages or (C) IgM/IgD for immature/
transitional fractions; right: graphs are representative for 5 independent experiments and results are presented as means 6 SD (Student’s t).
doi:10.1371/journal.pone.0012468.g004
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IgM low B-cells as recently described in mice [33]. The caveat of

the knockout model addressed is that the actions of HPK1 could

be compensated on the cellular level by e.g. additionally affecting

regulatory T-cell function. The involvement of HPK1 in various

signalling pathways implies a complex pattern of regulation which

might partially account for the controversial results gained from T-

cell studies on HPK1-mediated regulation of AP-1 activity and IL-

2 transcription [23,38–41]. This necessitates the generation of cell

specific and inducible knockout approaches to further delineate

the exact nature of regulation in a systemic setting.

Although we found an upregulation of Rap1-GTP levels in cells

lacking HPK1, the question of the guanosine nucleotide exchange

factor responsible for the enhanced Rap1 activation in this setting

is still unclear. A possible way to dampen Rap1 activity could be

the reported association of HPK1 with CrkL [39], which was

shown to bind the Rap1 exchange factor C3G [42] and localizes to

the immunological synapse in a WAVE2 dependent manner [43].

Our results further indicate a function of HPK1 in the indirect

control of cellular F-actin dynamics possibly by limiting the action

of the downstream Rap1 effector RIAM.

Taken together, further studies will be needed to in deep

characterize how HPK1 mediates its negative regulatory function

on both Rap1-mediated B-cell integrin activation as well as

cellular proliferation.

Materials and Methods

Antibodies and reagents
Anti-IgM F(ab’)2 (Zymed), anti-B220-APC (RA3-6B2; BD),

anti-IgM-FITC/PE (R6-60.2; BD), anti-CD43-FITC (S7; BD),

anti-BP1-PE (6C3; BD), anti-HSA-PE-Cy7 (M1/69; Biolegend),

anti-IgD-Biotin (11–26, Southern Biotech), Streptavidin-Cy7

(eBio), anti-CD23-PE (B3B4; BD), anti-CD93-PE-Cy7 (AA4.1;

eBio), anti-CD1d-FITC (1B1; BD), anti-CD16/CD32 (2.4G2;

BD), anti-HPK1 (N19; Santa Cruz), anti-RIAM (Proteintech

Group), anti-SKAP-HOM (C17; Santa Cruz), anti-SKAP-HOM

(Millipore), anti-alpha Tubulin (DM1A; Abcam), anti-FAK (14;

BD), anti-FAK (C903; Santa Cruz), anti-pFAK379 (77; BD), Ral

GDS RBD agarose (Millipore), anti-Rap1 (Millipore), anti-LFA-

1 (M17/4; BD), anti-rat-FITC (BD), goat anti-mouse IgM/

Figure 5. HPK1 deficiency has a late onset effect on splenic leukocyte numbers and surface IgM levels. (A,B) Splenic cells of 7 weeks old
wt and HPK12/2 mice were stained with distinct cell surface markers to delineate peripheral B-cell development (A: mature B220+ CD932, transitional
(T) B220+CD93+, marginal zone B220+CD1d+; B: T1 B220+ CD93+ IgM+ CD232/low, T2 B220+ CD93+ IgM+ CD23+, T3 B220+ CD93+ IgMlow CD23+; graphs:
means 6 SD; Student’s t; n = 5). (C) Total splenic leukocyte counts of 7 and 17 weeks (w) old WT and HPK12/2 mice. (D) Surface IgM levels of aged
(40 w) WT and HPK12/2 mice pre-gated on B220+CD93+ transitional B-cells (graph representative for 4 independent experiments). (E) Percentage of
aged (40 w) wt and HPK12/2 T3/IgMlow cells gated on total transitional B220+CD93+ cells (graphs: means 6 SD; Student’s t; n = 4); iso, isotype control.
doi:10.1371/journal.pone.0012468.g005
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IgG1/IgG2a/IgE-AP (all Southern Biotech), Phalloidin-FITC

(Sigma), recombinant mouse ICAM-1/Fc (R&D), CFSE (Mo-

lecular Probes), PP1 (Sigma), U73122 (Sigma), Wortmannin

(Invivogen).

Mice, cell culture and shRNA mediated RNAi
HPK12/2 mice which carry a neomycin cassette in exon 1

disrupting protein expression were generated in the laboratory of

Friedemann Kiefer (Max-Planck Institute for Molecular Biomed-

icine, Münster), backcrossed to the Balb/C genetic background

.10 generations and were maintained in the animal facility at the

University of Salzburg according to institutional and national

guidelines for animal care and use; Wehi 231 and CH27 cells were

maintained in RPMI 1640, 7.5% FCS (Gibco), 2 mM L-

Glutamine, 50 U/ml penicillin, 50 mg/ml streptomycin and

50 mM 2-ME (all PAA); HPK1 shRNA pLKO.1-puro vectors

(Sigma) were tested by Fugene HD transfection (Roche) for best

performance (Wehi 231: 59-gctgaaactgttcgcttatat-39; CH27: 59-

ccaatgaacaaattcttgctt-39; control target SHC002: 59-caacaagatgaa-

gagcaccaa-39) and stable clones were grown at 0.3 mg/ml (Wehi

231) or 0.4 mg/ml (CH27) puromycin (Sigma).

BCR induced actin polymerization
Assays were performed as described [44]; briefly, cells (16106/

sample) were washed, stimulated for the indicated time points with

anti-IgM F(ab’)2, immediately fixed (3.7% PFA), permeabilized

(0.05% Saponin) and stained with Phalloidin-FITC (0.1 mM);

mean Phalloidin-FITC fluorescence intensities were measured by

flow cytometry and are presented as fold F-actin increases

compared to samples at t = 0.

Static B-cell adhesion, spreading and inhibitor treatment
Static adhesion assays were performed as described [13];

fluorescence of adhering cells is displayed as % remaining

fluorescence after 5 consecutive washing steps [Flrem./Fltot.6100];

for spreading assays, cells were preincubated with PP1 (100 mM),

Wortmannin (100 nM), U73122 (1 mM) or DMSO for 30 min on

Figure 6. HPK1 negatively regulates B-cell proliferation. Naı̈ve splenic B-cells of 7 weeks old WT and HPK12/2 mice were labelled with CFSE
and stimulated with (A) LPS (25 mg/ml) and IL-4 (5 ng/ml), (B) IL-4 and anti-CD40 (10 mg/ml) or (C) anti-IgM F(ab’)2 (5 mg/ml) and anti-CD40 for 72 h;
percentages of proliferating B-cells were determined by gating on live (DAPI2) cell fractions and determining signal cut off by the use of
unstimulated samples; results are representative for 6 independently performed experiments (Student’s t).
doi:10.1371/journal.pone.0012468.g006

Figure 7. Model for HPK1 mediated negative regulation of B-
cell integrin activity. Antigen receptor stimulation triggers the
association of HPK1 with the two central B-cell adaptors SLP-65 [46] and
likely SKAP-HOM, which regulate cellular survival/differentiation and
adhesion. In this context, we suggest HPK1 to act as a dual regulator by
shaping SLP-65 mediated signals and restricting Rap1 activation
required for B-lymphocyte adhesion; SLP-65, Src homology 2 domain-
containing leukocyte protein of 65 kDa; Syk, spleen tyrosine kinase.
doi:10.1371/journal.pone.0012468.g007
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37uC and seeded onto ICAM-1/Fc layers for additional 30 min;

phase contrast images were taken on a Nikon Eclipse microscope

to determine the percentage of spread (phase dark) cells by

counting four random fields.

Immunoprecipitation and Rap1-GTP pulldown
Cells (56106/sample) were lysed in 1% Triton X-100, 10 mM

Tris (pH 7.5), 150 mM NaCl, 5 mM EDTA, 10 mM NaF lysis

buffer supplemented with protease (complete Mini; Roche) and

phosphatase (Phosstop; Roche) inhibitors; lysates were precleared

by centrifugation and subjected to immunoprecipitation for 3 h at

4uC; precipitates were washed, boiled in reducing loading buffer

and separated on 4–12% gradient SDS-PAGE gels (BIORAD);

Rap1-GTP pulldowns were performed with Ral GDS RBD

agarose according to manufacturers instructions (Millipore); for

quantification of Rap1-GTP amounts, co and kd band intensities

were normalized for total Rap1 levels of lysates by densitometric

evaluation (ImageJ) and all time points of Rap1-GTP samples

were compared to the control target at t0 = 1.

BCR internalization assay
BCR internalization was measured as previously described [45].

In brief, cells (16106/sample) were stained on ice with anti-IgM-

FITC (5 mg/ml), shifted on 37uC for various time points and

reactions were stopped by adding an excess of ice cold PBS/3%

FCS; Mean fluorescence intensities (MFIs) of IgM+ cells were

immediately analysed by flow cytometry and are displayed as %

internalized receptor [(2MFIt/MFIt06100)+100].

Naı̈ve B-cell proliferation assay
Splenic naı̈ve B-cells were isolated untouched by depleting

CD43+/CD4+/Ter119+ cells (B-cell isolation kit, Miltenyi); cells

routinely reaching a purity of $98% were stained with CFSE

(5 mM), seeded in triplicates in 96 well plates at a density of 26105

cells/well and were stimulated (25 mg/ml LPS, 5 ng/ml IL-4,

10 mg/ml anti-CD40, 5 mg/ml anti-IgM F(ab’)2) or left untreated

to determine proliferation after 72 h.

Immunization
8 weeks old WT and HPK12/2 mice (7 n each) were

immunized intraperitoneally with 20 mg ovalbumin in alum/

injection on day 0, 14 and 42 and ovalbumin-specific IgM, IgG1,

IgG2a and IgE serum titers were analyzed (d21 and d49 depicted);

control groups received PBS/alum alone, were analysed for equal

ovalbumin unresponsiveness and used as unspecific serum controls

for background subtraction in standard ELISA measurements.

Supporting Information

Figure S1 Altered BCR dynamics in HPK12/2 mice. (A) Anti-

IgM-FITC-induced BCR internalization of WT and HPK12/2

splenic IgM+ cells and (B) CH27 co and kd cells after various time

points on 37uC; MFIs of FITC+ cells were analysed by flow

cytometry and are displayed as % internalized receptor after 5 to

20 min on 37uC [(MFIt/MFIt06100)+100]; graphs (A, B) show

means 6 SD; Student’s t; n = 4. (C) HPK1 protein expression of

CH27 wt, co and kd cells determined by Western blotting; ns, not

significant.

Found at: doi:10.1371/journal.pone.0012468.s001 (0.10 MB TIF)

Figure S2 Balb/C HPK12/2 mice show normal T-cell

dependent antibody responses. Mice (7 n/group) were injected

intraperitoneally with 20 mg ovalbumin emulsified in alum on day

0, 14 and 42 and were analyzed for specific serum titers (d21/d49

depicted). No statistically significant difference (Student’s t) for

IgM, IgG1, IgG2a and IgE could be detected by ELISA

measurement.

Found at: doi:10.1371/journal.pone.0012468.s002 (0.13 MB TIF)

Figure S3 CFSE proliferation controls. Naı̈ve splenic B-cells

were CFSE labelled and stimulated with LPS (25 mg/ml), anti-

CD40 (10 mg/ml) or anti-IgM F(ab’)2 (5 mg/ml) for 72 h to

measure control proliferation.

Found at: doi:10.1371/journal.pone.0012468.s003 (0.10 MB TIF)

Acknowledgments

We would like to thank Mario Gimona for working material and

comments.

Author Contributions

Conceived and designed the experiments: SK. Performed the experiments:

SK DPS NZ. Analyzed the data: SK GA. Contributed reagents/materials/

analysis tools: IP FK. Wrote the paper: SK GA.

References

1. Dustin ML, Springer TA (1988) Lymphocyte function-associated antigen-1

(LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at

least three mechanisms for lymphocyte adhesion to cultured endothelial cells.

J Cell Biol 107: 321–331.

2. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, et al. (1999) The

immunological synapse: a molecular machine controlling T cell activation.

Science 285: 221–227.

3. Marlin SD, Springer TA (1987) Purified intercellular adhesion molecule-1

(ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell

51: 813–819.

4. Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, et al. (2003) Talin binding

to integrin beta tails: a final common step in integrin activation. Science 302:

103–106.

5. Bachmann MF, McKall-Faienza K, Schmits R, Bouchard D, Beach J, et al.

(1997) Distinct roles for LFA-1 and CD28 during activation of naive T cells:

adhesion versus costimulation. Immunity 7: 549–557.

6. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD (2004) LFA-1/

ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell

adhesion and synapse formation. Immunity 20: 589–599.

7. Batista FD, Iber D, Neuberger MS (2001) B cells acquire antigen from target

cells after synapse formation. Nature 411: 489–494.

8. Carrasco YR, Batista FD (2006) B-cell activation by membrane-bound antigens

is facilitated by the interaction of VLA-4 with VCAM-1. Embo J 25: 889–899.

9. Arana E, Vehlow A, Harwood NE, Vigorito E, Henderson R, et al. (2008)

Activation of the small GTPase Rac2 via the B cell receptor regulates B cell

adhesion and immunological-synapse formation. Immunity 28: 88–99.

10. Duchniewicz M, Zemojtel T, Kolanczyk M, Grossmann S, Scheele JS, et al.

(2006) Rap1A-deficient T and B cells show impaired integrin-mediated cell

adhesion. Mol Cell Biol 26: 643–653.

11. Lin KB, Freeman SA, Zabetian S, Brugger H, Weber M, et al. (2008) The rap

GTPases regulate B cell morphology, immune-synapse formation, and signaling

by particulate B cell receptor ligands. Immunity 28: 75–87.

12. Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH (2009) RIAM

activates integrins by linking talin to ras GTPase membrane-targeting sequences.

J Biol Chem 284: 5119–5127.

13. Katagiri K, Maeda A, Shimonaka M, Kinashi T (2003) RAPL, a Rap1-binding

molecule that mediates Rap1-induced adhesion through spatial regulation of

LFA-1. Nat Immunol 4: 741–748.

14. McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR (2004) The Rap GTPases

regulate integrin-mediated adhesion, cell spreading, actin polymerization, and

Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem 279:

12009–12019.

15. Griffiths EK, Krawczyk C, Kong YY, Raab M, Hyduk SJ, et al. (2001) Positive

regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap.

Science 293: 2260–2263.

16. Jo EK, Wang H, Rudd CE (2005) An essential role for SKAP-55 in LFA-1

clustering on T cells that cannot be substituted by SKAP-55R. J Exp Med 201:

1733–1739.

17. Kliche S, Breitling D, Togni M, Pusch R, Heuer K, et al. (2006) The ADAP/

SKAP55 signaling module regulates T-cell receptor-mediated integrin activation

through plasma membrane targeting of Rap1. Mol Cell Biol 26: 7130

–7144.

HPK1 in B-Cell Adhesion

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e12468



18. Menasche G, Kliche S, Chen EJ, Stradal TE, Schraven B, et al. (2007) RIAM

links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-
receptor-mediated integrin activation. Mol Cell Biol 27: 4070–4081.

19. Peterson EJ, Woods ML, Dmowski SA, Derimanov G, Jordan MS, et al. (2001)

Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293:
2263–2265.

20. Black DS, Marie-Cardine A, Schraven B, Bliska JB (2000) The Yersinia tyrosine
phosphatase YopH targets a novel adhesion-regulated signalling complex in

macrophages. Cell Microbiol 2: 401–414.

21. Marie-Cardine A, Verhagen AM, Eckerskorn C, Schraven B (1998) SKAP-
HOM, a novel adaptor protein homologous to the FYN-associated protein

SKAP55. FEBS Lett 435: 55–60.
22. Togni M, Swanson KD, Reimann S, Kliche S, Pearce AC, et al. (2005)

Regulation of in vitro and in vivo immune functions by the cytosolic adaptor
protein SKAP-HOM. Mol Cell Biol 25: 8052–8063.

23. Hu MC, Qiu WR, Wang X, Meyer CF, Tan TH (1996) Human HPK1, a novel

human hematopoietic progenitor kinase that activates the JNK/SAPK kinase
cascade. Genes Dev 10: 2251–2264.

24. Kiefer F, Tibbles LA, Anafi M, Janssen A, Zanke BW, et al. (1996) HPK1, a
hematopoietic protein kinase activating the SAPK/JNK pathway. Embo J 15:

7013–7025.

25. Spaargaren M, Beuling EA, Rurup ML, Meijer HP, Klok MD, et al. (2003) The
B cell antigen receptor controls integrin activity through Btk and PLCgamma2.

J Exp Med 198: 1539–1550.
26. Weber M, Treanor B, Depoil D, Shinohara H, Harwood NE, et al. (2008)

Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to
propagate B cell spreading in response to membrane-bound antigen. J Exp Med

205: 853–868.

27. Katagiri K, Hattori M, Minato N, Kinashi T (2002) Rap1 functions as a key
regulator of T-cell and antigen-presenting cell interactions and modulates T-cell

responses. Mol Cell Biol 22: 1001–1015.
28. Lafuente EM, van Puijenbroek AA, Krause M, Carman CV, Freeman GJ, et al.

(2004) RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and

mediates Rap1-induced adhesion. Dev Cell 7: 585–595.
29. Tse KW, Dang-Lawson M, Lee RL, Vong D, Bulic A, et al. (2009) B cell

receptor-induced phosphorylation of Pyk2 and focal adhesion kinase involves
integrins and the Rap GTPases and is required for B cell spreading. J Biol Chem

284: 22865–22877.
30. Serrels B, Serrels A, Brunton VG, Holt M, McLean GW, et al. (2007) Focal

adhesion kinase controls actin assembly via a FERM-mediated interaction with

the Arp2/3 complex. Nat Cell Biol 9: 1046–1056.
31. Shui JW, Boomer JS, Han J, Xu J, Dement GA, et al. (2007) Hematopoietic

progenitor kinase 1 negatively regulates T cell receptor signaling and T cell-
mediated immune responses. Nat Immunol 8: 84–91.

32. Miyake K, Weissman IL, Greenberger JS, Kincade PW (1991) Evidence for a

role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med 173: 599–607.

33. Merrel KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, et al. (2006)

Identification of anergic B cells in a wild-type repertoire. Immunity 25(6):

953–62.

34. Nagata Y, Kiefer F, Watanabe T, Todokoro K (1999) Activation of

hematopoietic progenitor kinase-1 by erythropoietin. Blood 93: 3347–3354.

35. Uruno T, Liu J, Zhang P, Fan Y, Egile C, et al. (2001) Activation of Arp2/3

complex-mediated actin polymerization by cortactin. Nat Cell Biol 3: 259–266.

36. Uruno T, Zhang P, Liu J, Hao JJ, Zhan X (2003) Haematopoietic lineage cell-

specific protein 1 (HS1) promotes actin-related protein (Arp) 2/3 complex-

mediated actin polymerization. Biochem J 371: 485–493.

37. Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, et al. (2001) Cortactin

promotes and stabilizes Arp2/3-induced actin filament network formation. Curr

Biol 11: 370–374.

38. Le Bras S, Foucault I, Foussat A, Brignone C, Acuto O, et al. (2004)

Recruitment of the actin-binding protein HIP-55 to the immunological synapse

regulates T cell receptor signaling and endocytosis. J Biol Chem 279:

15550–15560.

39. Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, et al. (1999) Interaction of

hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to

synergistic activation of c-Jun N-terminal kinase. Mol Cell Biol 19: 1359–1368.

40. Liou J, Kiefer F, Dang A, Hashimoto A, Cobb MH, et al. (2000) HPK1 is

activated by lymphocyte antigen receptors and negatively regulates AP-1.

Immunity 12: 399–408.

41. Ma W, Xia C, Ling P, Qiu M, Luo Y, et al. (2001) Leukocyte-specific adaptor

protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to

activate JNK signaling pathway in T lymphocytes. Oncogene 20: 1703–1714.

42. Buday L (1999) Membrane-targeting of signalling molecules by SH2/SH3

domain-containing adaptor proteins. Biochim Biophys Acta 1422: 187–204.

43. Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, et al. (2008) The

WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and

CrkL-C3G-mediated activation of Rap1. J Cell Biol 182: 1231–1244.

44. Niiro H, Allam A, Stoddart A, Brodsky FM, Marshall AJ, et al. (2004) The B

lymphocyte adaptor molecule of 32 kilodaltons (Bam32) regulates B cell antigen

receptor internalization. J Immunol 173: 5601–5609.

45. Geisberger R, Konigsberger S, Achatz G (2006) Membrane IgM influences

membrane IgD mediated antigen internalization in the B cell line Bcl1.

Immunol Lett 102: 169–176.

46. Tsuji S, Okamoto M, Yamada K, Okamoto N, Goitsuka R, et al. (2001) B cell

adaptor containing src homology 2 domain (BASH) links B cell receptor

signalling to the activation of hematopoietic progenitor kinase 1. J Exp Med

194(4): 529–39.

HPK1 in B-Cell Adhesion

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12468


