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Abstract: The bidirectional communication between the gastrointestinal tract and the central
nervous system appears to be functionally linked to the intestinal microbiome, namely the
microbiome–gut–brain axis (MGBA). Probiotics with health benefits on psychiatric or neurological
illnesses are generally called psychobiotics, and some of them may also be able to improve sleep by
targeting the MGBA. This study aimed to investigate the effects of a psychobiotic strain, Lactobacillus
fermentum PS150TM (PS150TM), on sleep improvement by using a pentobarbital-induced sleep mouse
model. Compared with the vehicle control group, the oral administration of PS150TM, but not the
other L. fermentum strains, significantly decreased the sleep latency and increased the sleep duration
of mice, suggesting strain-specific sleep-improving effects of PS150TM. Moreover, the ingestion of
diphenhydramine, an antihistamine used to treat insomnia, as a drug control group, only increased
the sleep duration of mice. We also found that the sleep-improving effects of PS150TM are time- and
dose-dependent. Furthermore, the oral administration of PS150TM could attenuate a caffeine-induced
sleep disturbance in mice, and PS150TM appeared to increase the expression of the gene encoding the
adenosine 1 receptor in the hypothalamus of mice, as assessed by quantitative real-time polymerase
chain reaction. Taken together, our results present a potential application of PS150TM as a dietary
supplement for sleep improvement.
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1. Introduction

Insomnia is a common disorder characterized by difficulty falling asleep and hardly maintaining
sleep or waking up too early. Approximately 20–30% of adults have chronic insomnia problems
(i.e., with a duration of at least 1 month), which is the most prevalent sleep disorder in the general
population [1]. It is usually accompanied by psychiatric or physical diseases such as impaired attention,
irritability, restlessness, anxiety, and stress or fatigue during wakefulness [2]. Insomnia also increases
the risk of chronic diseases (e.g., hypertension, diabetes, stroke, and coronary artery diseases) as well
as healthcare costs [3,4]. Although different drugs are used to treat insomnia, most of them are not
recommended for long-term use because of their potential adverse reactions [3,5]. Thus, a search for
alternative ways to treat insomnia is needed. Insomnia and gastrointestinal dysfunction have been
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reported to influence each other, implying a dynamic bidirectional relationship between sleep and
gastrointestinal health [6]. Moreover, a circadian dysfunction is usually accompanied with intestinal
dysbiosis and inflammatory responses, often making it is difficult to determine their causality [7,8].

Probiotics are defined as “live microorganisms which, when administered in adequate amounts,
confer a health benefit on the host” [9]. Dietary-supplemented probiotics are well-known to help to
avoid gastrointestinal infections, improve intestinal functions [10], alleviate allergies, and regulate
immunity [11]. Besides of benefits to children and adults, probiotics supplementation during pregnancy
and in the neonatal period might reduce some maternal and neonatal adverse outcomes [12]. In recent
years, gut microbes have been shown to indirectly interact with the host’s central nervous system
(CNS) through the gut–brain axis (GBA), which is a bidirectional communication system that integrates
neural, hormonal, and immunological signaling between the gut and the brain [13,14]; thus, the
concept of a microbiome–gut–brain axis (MGBA) was established [15]. Furthermore, certain probiotics
identified as “psychobiotics” can modulate the MGBA to bring health benefits to hosts with psychiatric
or neurological illnesses, which holds promise regarding the treatment of insomnia.

In this study, we attempted to identify probiotic strains with sleep-improving effects by using a
pentobarbital-induced sleep mouse model. Numerous strains belonging to different Lactobacillus spp.
were screened. Subsequently, a specific Lactobacillus fermentum strain, PS150TM, was found to have
sleep-improving effects. The strain has previously been demonstrated to have psychotropic properties
by altering the serotonergic pathway during stress conditions in rats [16]. Further experiments
were performed to investigate the strain specificity and potential hypnotic effects of PS150TM on
pentobarbital-induced sleep mice.

2. Materials and Methods

2.1. Bacterial Strain, Media, and Growth Conditions

L. fermentum strains PS150TM, PCC (Sydney, Australia) [17], and ATCC 14931T (the taxonomic type
strain) [18] were inoculated in Lactobacilli Man Rogosa Sharpe (MRS; BD Difco), cultured at 37 ◦C for
18 h. For mouse experiments, the L. fermentum culture was harvested using centrifugation (10,000× g,
10 min), washed twice with sterile phosphate-buffered saline (PBS), and re-suspended with PBS to a
final concentration of approximately 1010 colony-forming units (CFU)/mL.

2.2. Animals

Adult male C57BL/6J mice (6 weeks old) were purchased from the National Laboratory Animal
Center (Taipei, Taiwan). First, the mice were accommodated in the specific pathogen-free room at
the Laboratory Animal Center of National Yang-Ming University. The room was kept at 22 ± 1 ◦C,
55–65% humidity, and under a 12:12 h light-dark cycle. The mice were fed a commercial diet (5010
LabDiet) and sterile water ad libitum. The experiments were performed after 1 week of acclimation.
All experiments were conducted following relevant guidelines and regulations and were pre-approved
by the Institutional Animal Care and Use Committee of National Yang-Ming University (IACUC No.
1070311). All behavioral tests were performed during the light phase.

2.3. Pentobarbital-Induced Sleep Test

Mice were orally administrated 0.2 mL PBS or L. fermentum suspensions via an orogastric tube
daily for different tested days. The pentobarbital-induced sleep mouse experiment was performed as
previously described [19]. Briefly, mice were intraperitoneally injected with pentobarbital sodium (50
mg/kg, Sigma, Saint Louis, MO, USA). When the mice lost their righting reflex after about 30 s, they
were considered to be asleep. The period of time during which mice did not show stereotactic reflection
was measured as sleep latency, and the period of time from falling asleep to exhibiting stereotactic
reflection was measured as sleep duration. The period of time from exhibiting stereotactic reflection to
the recovery of free movement was measured as recovery time [19–21]. Mice injected with pentobarbital
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that did not fall asleep within 15 min were excluded from the experiment. Sacrifice was performed 2 h
after the end of the experiment, and the mouse brain was quickly removed and temporarily put on dry
ice. After that, the brain area of interest was taken out and stored at −80 ◦C. The orally administrated
diphenhydramine hydrochloride (DIPH, 20 mg/mL, Sigma), an antihistamine with sleep aid effects,
was used in the drug control group. Caffeine (15 mg/mL, Sigma) was intraperitoneally injected 30 min
before the pentobarbital-induced sleep test to induce sleep disturbance in mice [21,22].

2.4. Open Field Test

The locomotor activity of the mice was examined using the open field test as previously
described [23]. In brief, each mouse was placed in an arena with Plexiglas walls (25.4 × 25.4 × 38 cm3)
with photobeam sensors to record locomotor activities for 10 min (Tru Scan Activity System; Coulbourn
Instruments, Whitehall, PA, USA). The center area was defined as a region (12.5 × 12.5 cm2) in the
center of the arena. The box was cleaned with 70% ethanol after each test. Increasing time spent in the
central square and the ratio of central to total locomotion are considered indications of anxiolysis [24].

2.5. Genomic DNA Extraction and PCR Analysis of L. fermentum Strains

L. fermentum strains were cultured in MRS broth overnight. Bacterial cells were collected by
centrifugation at 12,000× g for 5 min. The genomic DNA was extracted as previously described [25].
The purity of genomic DNA was evaluated in terms of the A260/A280 ratio with a NanoDrop 1000
spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). To discriminate the three
L. fermentum strains, four PCR-based genomic fingerprinting methods were used, which include
BOX-, (GTG)5-, enterobacterial repetitive intergenic consensus (ERIC)-, and random amplification of
polymorphic DNA (RAPD)-PCR (Table 1). The PCR products were analyzed by electrophoresis using
2% agarose gel with a 1× TBE (tris-borate-EDTA) buffer. The gel was stained with ethidium bromide
and observed under an ultraviolet transilluminator. A 100 bp ladder (Omics Bio, New Taipei city,
Taiwan) was included as a molecular weight marker.

Table 1. Primers used in the present study.

Primer Sequence (5′→3′) Reference

ERIC
ATGTAAGCTCCTGGGGATTCAC [26]
AAGTAAGTGACTGGGGTGAGCG

BOX CTACGGCAAGGCGACGCTGACG [16]

(GTG)5 GTGGTGGTGGTGGTG [27]

RAPD CTCAGGTCGC Present work

For qRT-PCR Sequence (5′→3′) Size (bp) Accession number

A1R-F AGAACCACCTCCACCCTTCT
227 XM_006529079.2

A1R-R TACTCTGGGTGGTGGTCACA

A2AR-F AACCTGCAGAACGTCAC
245 XM_006513093.3

A2AR-R GTCACCAAGCCATTGTACCG

NT5e-F TTACTAAAGCATGACTCTGGTGATCAA
84 NM_011851.4

NT5e-R AACGGCTGGGTAAACTACTTTCATT

GAPDH-F CAATGTGTCCGTCGTGGATCT
208 XM_017321385.1

GAPDH-R GTCCTCAGTGTAGCCCAAGATG

ERIC, enterobacterial repetitive intergenic consensus; RAPD, random amplification of polymorphic DNA; qRT-PCR,
quantitative real-time polymerase chain reaction; A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor; NT5e,
5’ nucleotidase-ecto—enzyme that converts adenosine monophosphate to adenosine; GAPDH, glyceraldehyde
3-phosphate dehydrogenase.

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis

The total RNA in the brain tissue was extracted by using an RNeasy mini kit (Qiagen, Germantown,
MD, USA) [28] and converted into cDNA using a RevertAid First Strand cDNA Synthesis kit
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(ThermoFisher, Waltham, MA, USA). The cDNA samples in each group were diluted 20-fold with
DNase-free water and were subjected to two independent repetitions of real-time PCR with specific
primers (Table 1) and KAPA SYBR FAST ABI Prism (KAPA Biosystems, Woburn, MA, USA) using
the StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The cycling
conditions of qRT-PCR were 95 ◦C for 3 min; up to 40 cycles of 95 ◦C for 3 s, 60 ◦C for 30 s; and the melt
curve stage was 95 ◦C for 15 s, 60 ◦C for 30 s, and 95 ◦C for 15 s. The target threshold cycle (Ct) was
subtracted from the Ct for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to calculate ∆Ct,
and a relative quantification analysis was performed via the 2−∆∆CT method [29].

2.7. Statistical Analysis

Data were analyzed using GraphPad Prism 5.1 (GraphPad Software) and represented as the mean
± standard error of the mean (SEM). For multiple comparisons, we used a one-way analysis of variance
(ANOVA) with Tukey’s post hoc test. A p-value < 0.05 was considered significant in all cases.

3. Results

3.1. Strain-Specific Effects of PS150TM on Pentobarbital-Induced Sleep in Mice

The health benefits of probiotics are generally considered to be strain-specific. To examine if
PS150TM harbors a sleep-improving effect with strain-specificity, a pentobarbital-induced sleep mouse
model was used, and the activity of different L. fermentum strains was evaluated (Figure 1a). Compared
with the vehicle control (Veh) group, the oral administration of PS150TM for 14 consecutive days
significantly decreased the sleep latency (n = 10~12) and increased the sleep duration (n = 10~12)
(Figure 1b,c); the recovery time (n = 4~5) was also decreased, but not significantly (Figure 1d). However,
the other two L. fermentum strains, PCC (a commercial probiotic for gastrointestinal health) and ATCC
14931T (the taxonomic type strain of L. fermentum), did not show any sleep-improving effects. Moreover,
the oral administration of a well-known antihistamine drug used as a sleep aid, diphenhydramine
(DIPH), only showed increased sleep duration, but no improvement in sleep latency or recovery time
was observed on day 14 of our experiment, which is consistent with previous findings [30,31].

To determine whether the L. fermentum strains under investigation have similar genetic
backgrounds, three types of rep-PCR (ERIC, BOX, and (GTG)5) and an RAPD-PCR were performed,
and the PCR products were resolved by DNA electrophoresis. As shown in Figure 2, PS150TM and PCC
appeared to have a similar genetic background, while we observed distinguishable PCR-fingerprinting
profiles between the two strains and ATCC 14931T, especially in the ERIC-PCR profiles, suggesting
two lineages of these L. fermentum strains. It is noteworthy that although PS150TM and PCC appeared
to be classified into the same lineage, only PS150TM showed sleep-improving effects in our experiment.

3.2. PS150TM Improved Pentobarbital-Induced Sleep in Mice in a Time- and Dose-Dependent Manner

To investigate the effects of PS150TM supplementation with different intervention times and daily
dosages on sleep improvement, mice were orally administrated 108 or 109 CFU/day of PS150TM for
14 consecutive days, and the pentobarbital-induced sleep tests were performed on days 1, 4, 7, and
14 (Figure 3). Compared with the vehicle control (Veh) group, the oral administration of PS150TM

of 109 CFU/day significantly decreased the sleep latency (n = 8~10) on days 7 and 14, increased the
sleep duration (n = 8~10) on days 4, 7, and 14, and decreased the recovery time (n = 5~7) on day 14,
suggesting that the intervention time was critical for the sleep-improving effects to occur. However,
treatment with a lower dosage (108 CFU/day) did not affect the sleep pattern of mice. The oral gavage
of DIPH to the drug control group 30 min before the pentobarbital-induced sleep test resulted in
significantly increased sleep duration on all tested days compared with the Veh group (Figure 3b).
Nevertheless, no significant difference in sleep latency or recovery time between the DIPH group and
the Veh group was found (Figure 3a,c).
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Figure 1. Effects of the oral administration of L. fermentum (Lf ) strains on pentobarbital-induced
sleep in mice. (a) The experimental design; mice were orally administrated phosphate-buffered saline
(PBS) or 109 colony-forming units (CFU) of Lf strains, including PS150TM, PCC, and ATCC 14931T,
for 14 consecutive days. On experimental day 14, a pentobarbital (50 mg/kg)-induced sleep test was
performed, and the sleep latency (n = 10~12) (b), sleep duration (n = 10~12) (c), and recovery time (n =

4~5) (d) of mice were recorded. Diphenhydramine (DIPH) (20 mg/kg) was introduced 30 min before
the test. Veh refers to the vehicle control group. Data are expressed as mean ± standard error of mean
(SEM) and were analyzed by one-way ANOVA with Tukey’s post hoc test. * p < 0.05, compared with
the indicated groups.
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Figure 2. PCR-based genomic fingerprinting profiles of L. fermentum strains. Enterobacterial repetitive
intergenic consensus (ERIC)-, BOX-, (GTG)5-, and random amplification of polymorphic DNA
(RAPD)-PCR analyses were performed to discriminate L. fermentum strains. Lanes: 1, PS150TM;
2, PCC; 3, ATCC 14931T. M denotes the 100 bp ladder (Omics Bio).



Nutrients 2019, 11, 2409 6 of 13

Nutrients 2019, 11, x FOR PEER REVIEW 6 of 13 

 

Nevertheless, no significant difference in sleep latency or recovery time between the DIPH group and 

the Veh group was found (Figure 3a,c). 

 

Figure 3. Effects of oral administration of L. fermentum PS150TM with different intervention times and 

doses on pentobarbital-induced sleep in mice. Mice were orally administrated with PBS, 108, or 109 

CFU of PS150TM for 14 consecutive days. Pentobarbital (50 mg/kg)-induced sleep tests were performed 

on experimental days 1, 4, 7, and 14, and the sleep latency (n = 8~10) (a), sleep duration (n = 8~10) (b), 

and recovery time (n = 5~7) (c) of mice were recorded. DIPH (20 mg/kg) was introduced 30 min before 

the test. Veh refers to the vehicle control group. Data are expressed as mean ± SEM (n = 5~10) and 

were analyzed by one-way ANOVA with Tukey’s post hoc test. * p <0.05, compared with the indicated 

groups. 

3.3. Effects of PS150TM on Caffeine-Induced Sleep Disruption in Mice 

To further investigate the potential of PS150TM as a sleep-improving dietary supplement, the 

effects of PS150TM on caffeine-induced sleep disturbance in mice were evaluated. Mice were orally 

administrated PBS or PS150TM (109 CFU/day) for 28 consecutive days and then intraperitoneally 

injected with PBS or caffeine (15 mg/kg), subjected to an open field test for 10 min, and then subjected 

Figure 3. Effects of oral administration of L. fermentum PS150TM with different intervention times and
doses on pentobarbital-induced sleep in mice. Mice were orally administrated with PBS, 108, or 109

CFU of PS150TM for 14 consecutive days. Pentobarbital (50 mg/kg)-induced sleep tests were performed
on experimental days 1, 4, 7, and 14, and the sleep latency (n = 8~10) (a), sleep duration (n = 8~10)
(b), and recovery time (n = 5~7) (c) of mice were recorded. DIPH (20 mg/kg) was introduced 30 min
before the test. Veh refers to the vehicle control group. Data are expressed as mean ± SEM (n = 5~10)
and were analyzed by one-way ANOVA with Tukey’s post hoc test. * p <0.05, compared with the
indicated groups.

3.3. Effects of PS150TM on Caffeine-Induced Sleep Disruption in Mice

To further investigate the potential of PS150TM as a sleep-improving dietary supplement, the
effects of PS150TM on caffeine-induced sleep disturbance in mice were evaluated. Mice were orally
administrated PBS or PS150TM (109 CFU/day) for 28 consecutive days and then intraperitoneally
injected with PBS or caffeine (15 mg/kg), subjected to an open field test for 10 min, and then subjected
to a pentobarbital-induced sleep test. The oral gavage of DIPH (20 mg/kg) was used as a drug control
group (Figure 4a). As shown in Figure 4b, the oral administration of PS150TM to mice, either with or
without the caffeine injection, significantly decreased the sleep latency (n = 13~15) (p < 0.05), while
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no significant effect of caffeine and DIPH was observed. Furthermore, compared with the Veh group,
both the DIPH and the PS150TM groups showed increased sleep duration (n = 13~15) (Figure 4c); the
caffeine injection decreased the sleep duration, which could be attenuated by the supplementation
of PS150TM, but not DIPH, implying the stronger sleep-improving effects of PS150TM. Furthermore,
the supplementation of PS150TM significantly decreased the recovery time only in mice without
caffeine injection (p <0.05), and no other statistically significant differences were found (n = 4~6)
(Figure 4d). These results indicate that the daily supplementation of PS150TM for 28 days attenuated
the caffeine-induced sleep disturbance in mice. Nevertheless, this sleep-improving effect of PS150TM

could not be observed on experimental day 14 (data not shown), supporting the notion that the
sleep-improving effects of PS150TM are time-dependent.
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Figure 4. Effects of oral administration of L. fermentum PS150TM on caffeine-induced sleep disturbance
in mice. (a) Experimental design; mice were orally administrated PBS or 109 CFU of PS150TM for 28
consecutive days and subjected to an injection of PBS or caffeine (15 mg/kg), and a pentobarbital (50
mg/kg)-induced sleep test was performed to evaluate the sleep latency (n = 13~15) (b), sleep duration
(n = 13~15) (c), and recovery time (n = 4~6) (d) of mice. DIPH (20 mg/kg) was introduced 30 min before
the test. Veh refers to the vehicle control group. Data are expressed as mean ± SEM and were analyzed
by one-way ANOVA with Tukey’s post hoc test. * p <0.05, compared with the indicated groups.

3.4. PS150TM Did Not Alter the Spontaneous Locomotor Activity of Mice in the Open Field Test

As shown in Figure 4a, a 10-min open field test was performed to analyze the effects of PS150TM

on the locomotor activity of mice with or without the intraperitoneal injection of caffeine (n = 8~10).
The drug control group of DIPH, orally administrated only on experimental day 28, was also included
in the test. The open field test indicated that, compared with the (Veh + Caffeine) group, the (DIPH
+ Caffeine) group showed increased time spent in the central square (Figure 5a) and increased total
distance (Figure 5b), while no other significant differences were observed. PS150TM did not alter the
locomotor activity of the mice.
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Figure 5. The open field test indicated that the oral administration of DIPH, but not PS150TM, affected
locomotor activity in mice: (a) center square time, (b) total distance. The experimental design is
shown in Figure 4a; a 10-min open field test was performed after the injection of PBS or caffeine (15
mg/kg). PS150TM was orally administrated for 28 consecutive days. DIPH (20 mg/kg), as a drug
control group, was introduced on experimental day 28. Data are expressed as mean ± SEM (n = 8~10)
and were analyzed by one-way ANOVA with Tukey’s post hoc test. * p < 0.05, compared with the
indicated groups.

3.5. Effects of PS150TM on the Expression of Genes Related to Adenosine Signaling in the Basal Forebrain
and Hypothalamus

The inhibitory neurotransmitter adenosine is involved in sleep regulation, and the elevation
of extracellular adenosine appears to be a crucial mechanism to increase sleep duration and
electroencephalography (EEG) slow-wave activity [32,33]. The concentration of adenosine changes
during spontaneous sleep in some sleep-related brain regions, including the basal forebrain, the
preoptic area of the hypothalamus, etc. [33,34]. To explore whether PS150TM alters sleep patterns by
affecting the sleep-related pathways of mice undergoing the pentobarbital-induced sleep test, we used
qRT-PCR to analyze the expression of genes encoding adenosine receptors A1 (A1R) and A2A (A2AR) as
well as NT5e, the nucleotidase that synthesizes adenosine (Figure 4a). As shown in Table 2, compared
with the Veh group, the oral administration of PS150TM for 28 consecutive days significantly increased
the expression of A1R in the hypothalamus (p < 0.05) of the mice that were not subjected to the caffeine
treatment. However, no other significant differences were observed in our experiment.

Table 2. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis of the expression of
genes encoding adenosine receptors and nucleotidase in the basal forebrain and hypothalamus of mice.

Gene
Name

Basal Forebrain Hypothalamus

Veh PS150 Veh +
Caffeine

PS150 +
Caffeine Veh PS150 Veh +

Caffeine
PS150 +
Caffeine

A1R 1.00 ± 0.13 0.91 ± 0.06 0.86 ± 0.17 1.00 ± 0.15 1.00 ± 0.11 1.38 ± 0.19 * 1.08 ± 0.18 1.03 ± 0.11
A2AR 1.00 ± 0.21 0.90 ± 0.46 1.50 ± 0.3 1.39 ± 0.28 1.00 ± 0.14 0.95 ± 0.23 0.88 ± 0.15 0.89 ± 0.22
NT5e 1.00 ± 0.15 0.83 ± 0.19 0.90 ± 0.15 0.97 ± 0.22 1.00 ± 0.06 1.02 ± 0.23 1.09 ± 0.17 1.12 ± 0.23

The experimental design is shown in Figure 4a; the expression of genes was analyzed in the basal forebrain (n = 4~5)
and hypothalamus (n = 6~8) of mice. Data are expressed as mean ± SEM and were analyzed by one-way ANOVA
with Tukey’s post hoc test. * p <0.05, compared with the Veh group.

4. Discussion

Recent studies have correlated the gut microbiome with immune function, nutrient metabolism,
circadian rhythms, and mood disorders [35,36]. Through the MGBA, the gut microbiome influences
not only the digestive, immune, and metabolic functions but also the sleep and mental states of the
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host [37]. To manipulate the gut microbiome for improving host health, probiotics are generally utilized,
mostly for digestive and immune functions [38,39]. There is considerable evidence showing that
probiotics may be effective in reducing stress and anxiety and alleviating low moods [40]. However,
specific probiotic strains that can be used for sleep improvement are rare. Dietary supplementation
of heat-killed Lactobacillus brevis SBC8803 can modulate circadian locomotion and sleep rhythms, as
assessed by an EEG analysis [41]. The oral administration of Japanese sake yeast promotes non-rapid
eye movement (NREM) sleep in mice via the activation of adenosine A2A but not A1 receptors [42].
Moreover, the daily consumption of Lactobacillus casei Shirota or heat-inactivated Lactobacillus gasseri
CP2305 improved stress-related symptoms and sleep quality in exploratory clinical trials [43,44].

In this study, we used a pentobarbital-induced sleep mouse model to identify potential
probiotics with sleep-improving effects, which is the most commonly used method for screening of
sedative-hypnotic agents [45,46]. Numerous strains belonging to L. fermentum and other Lactobacillus
spp. were tested, but only PS150TM showed sleep-improving effects in our experiment. Pentobarbital
is a barbituric acid that activates GABA type A receptors, leads to cellular hyperpolarization within
the CNS, and produces dose-dependent sedation and hypnosis [47]. Sleep latency and sleep duration
obtained in the pentobarbital-induced sleep test are commonly used as indicators for assessing the
sedative and hypnotic effects of dietary supplements (most of them are plant extracts) and drugs
including DIPH, diazepam (a longer-acting benzodiazepine), and 5-ydroxytryptophan (a clinically
effective serotonin precursor) [21,46,48,49]. The administration of caffeine has also been shown to
increase sleep latency and decrease sleep duration in a dose-dependent manner assessed by the
pentobarbital-induced sleep test [50]. Moreover, the hypnotic effect and the interaction of caffeine
with pentobarbital have been studied in 42 medical and surgical patients [51]. To our knowledge, this
is the first study that used the pentobarbital-induced sleep mouse model to evaluate the potential
sleep-improving effects of probiotics; moreover, the caffeine-induced sleep disturbance appeared to be
ameliorated by the supplementation of PS150TM. However, these results are preliminary and need to
be confirmed by further animal and clinical studies.

The dietary supplementation of PS150TM for more than 14 consecutive days appeared to decrease
the sleep latency and increase the sleep duration and recovery time of mice with pentobarbital-induced
sleep. Sleep recovery, measured from the recovery of righting reflex to the beginning of a movement,
reflects the subsequent effects of hypnotics on the CNS [21]. An ideal hypnotic should not affect
awakening after sleep, and PS150TM seemed to have this feature. As shown in Figure 3, on experimental
day 1, the oral administration of PS150TM did not affect the sleep pattern of mice. However, PS150TM

increased the sleep duration from day 4, decreased the sleep latency from day 7, and decreased the
recovery time on day 14. We speculated that PS150TM may need to colonize the gut mucosa and
interact with the host microbiota to gradually regulate the sleep pattern via the MGBA. It is known that
probiotics can alter the gut microbiota by competing for nutrients, producing antimicrobial compounds,
or modulating host immunity [52]. The possibility that PS150TM modulates the host gut microbiota
remains to be investigated. On the other hand, the oral gavage of DIPH, which exerts its hypnotic
effects via the antihistamine pathway [30], only prolonged sleep duration but did not affect sleep
latency or recovery time. Based on these findings, we suggest that PS150TM regulates sleep patterns
differently from DIPH, although the exact mechanism is not yet clear.

Various neurotransmitters, including gamma-aminobutyric acid (GABA), serotonin or
5-hydroxytryptamine (5-HT), adenosine, histamine, and orexin, affect different brain nuclei to regulate
the switch between wakefulness and sleep [2,53]. Although PS150TM has been demonstrated to
prevent the stress-mediated reduction of 5-HT and neurodegeneration in the rat brain, in this study,
the oral administration of PS150TM did not affect the levels of 5-HT or 5-hydroxyindole acetic acid
(5-HIAA) in specific mouse brain areas (striatum, prefrontal cortex, hippocampus, and hypothalamus)
assessed by high-performance liquid chromatography-electrochemical detection (data not shown).
Specific strains of Lactobacillus spp. can produce GABA, the chief inhibitory neurotransmitter in
the mammalian CNS. The ability to synthesize GABA is considered to be an important feature of
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psychobiotics [54]. However, PS150TM did not seem to produce GABA in vitro from its precursor
monosodium glutamate, as assessed by a thin-layer chromatography analysis of its culture supernatant
(data not shown). However, PS150TM appeared to increase the expression of adenosine A1R in
the hypothalamus (Table 2). Adenosine is an inhibitory neurotransmitter that has been proposed
to decrease the activity of orexinergic and histaminergic neurons via A1R in different areas of the
hypothalamus to promote sleep [55–57]. Moreover, the histaminergic output from the hypothalamus
plays an important role in mediating forebrain arousal [58]. Whether or not the sleep-improving effects
of PS150TM are involved in these adenosine A1R-mediated regulations in the hypothalamus awaits
further investigation.

Although its pathogenesis is not fully understood, important features of insomnia include
difficulty initiating or maintaining sleep, and waking up earlier than desired [59]. Many studies have
shown that insomnia is often accompanied by neurophysiological abnormalities and poor health [5].
The use of medications is a dominant approach to treat insomnia, which involves four fundamental
pharmacodynamic categories with key actions related to receptors of GABA, melatonin, histamine, or
orexin/hypocretin [59]. Nevertheless, side effects associated with hypnotics are common [59]. Thus,
the development of alternative treatment strategies with higher safety, including dietary supplements,
is needed. Probiotics, which include strains of Lactobacillus, Bifidobacterium, and Saccharomyces, have a
long history of safe and effective use as dietary supplements. Moreover, emerging evidence has shown
the potential of psychobiotics to improve CNS-related illnesses, particularly in stress-related, anxiety,
and depressive disorders [60]. In this study, we have shown the potential sleep-improving effects
of PS150TM, which has also been demonstrated as a psychobiotic capable of alleviating abnormal
behaviors induced by mild chronic stress in rats [16]. The use of PS150TM as a dietary supplement is
generally considered as safe, since PS150TM is classified as the species L. fermentum, with the qualified
presumption of safety (QPS) status suggested by the European Food Safety Authority [61]. One major
limitation of this study is the non-use of polysomnography; moreover, possible interactions between
pentobarbital and probiotics cannot be excluded. To further understand the sleep-improving effects of
PS150TM, we are now performing EEG and electromyogram analyses to investigate if PS150TM affects
sleep architecture in mice.

5. Conclusions

The present data demonstrate that the psychobiotic strain L. fermentum PS150TM can potentially
bring sleep-improving effects to both normal and caffeine-treated (mimicking short-term insomnia)
mice without affecting their locomotor activities. The potential hypotonic effects of PS150TM are
strain-specific, showing some time- and dose-dependency, and may be involved in the regulation
of the histaminergic system via adenosine A1 receptor. This suggests a new direction for the future
development of novel dietary supplements as sleep aids.
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