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Abstract: Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the
Middle East that can affect humans and ruminant livestock. Currently, there are no approved
vaccines or therapeutics for the treatment of severe RVF disease in humans. Tilorone-dihydrochloride
(Tilorone) is a broad-spectrum antiviral candidate that has previously shown efficacy against a wide
range of DNA and RNA viruses, and which is clinically utilized for the treatment of respiratory
infections in Russia and other Eastern European countries. Here, we evaluated the antiviral activity of
Tilorone against Rift Valley fever virus (RVFV). In vitro, Tilorone inhibited both vaccine (MP-12) and
virulent (ZH501) strains of RVFV at low micromolar concentrations. In the mouse model, treatment
with Tilorone significantly improved survival outcomes in BALB/c mice challenged with a lethal
dose of RVFV ZH501. Treatment with 30 mg/kg/day resulted in 80% survival when administered
immediately after infection. In post-exposure prophylaxis, Tilorone resulted in 30% survival at
one day after infection when administered at 45 mg/kg/day. These findings demonstrate that
Tilorone has potent antiviral efficacy against RVFV infection in vitro and in vivo and supports further
development of Tilorone as a potential antiviral therapeutic for treatment of RVFV infection.

Keywords: Tilorone-dihydrochloride; Rift Valley fever virus; Bunyavirales; Phenuiviridae; Viral
Hemorrhagic fever; broad-spectrum antiviral

1. Introduction

Rift Valley fever virus (RVFV) is a mosquito-borne RNA virus of the Phenuiviridae
family (order Bunyavirales) endemic to Sub-Saharan Africa and is the causative agent
of Rift Valley fever (RVF) [1,2]. RVF is most commonly a disease of domestic ruminants
such as cattle, goats, and sheep, primarily presenting as an acute fever [3]. In particularly
susceptible species, such as sheep, it causes fetal malformation and abortion storm in
pregnant animals and has high newborn mortality rates up to 100% [3]. Along with
regular outbreaks in livestock, RVF causes spillover events into human populations [4–8].
Most human cases of RVF present as a self-limiting febrile illness. However, a small
percentage of patients progress to more severe manifestations such as hemorrhagic fever,
retinitis or encephalitis [9–12]. The emergence of RVFV into new regions such as Egypt,
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the Arabian Peninsula, Madagascar, and the Comoros has brought attention to the risk
for even wider spread into non-endemic areas [13]. As RVFV has the potential to cause
serious agricultural and health problems, it has been classified as a Category A Priority
Pathogen by the National Institutes of Allergy and Infectious Diseases in the United States,
a Blueprint Priority Disease by the World Health Organization, as well as an overlap select
agent by the Centers for Disease Control & Prevention and United States Department of
Agriculture [14,15].

Despite the severe outcomes of past and current RVF outbreaks, no FDA-approved
vaccines or therapeutics for humans are available and the current treatment strategy is
mainly supportive care. The broad-spectrum antiviral Ribavirin was proposed to be of
benefit in severe RVF cases; however, an efficacy trial undertaken during the 2000 outbreak
in Saudi Arabia was terminated due to adverse effects [16]. In addition, results from studies
in animal models suggest that treatment with Ribavirin increases the risk of delayed-onset
neurologic complications [16]. Although many robust animal models are available for RVFV,
only a limited number of antivirals have been evaluated in vivo thus far and demonstrated
varying efficacy [17].

Tilorone-dihydrochloride (Tilorone, 2,7-Bis[2-(diethylamino)ethoxy]-9H-fluoren-9-
one) is a broad-spectrum antiviral that was identified over 50 years ago, and is used
clinically in Russia, Ukraine, Kazakhstan, Belarus, Armenia, Georgia, Kyrgyzstan, Moldova,
Turkmenistan, and Uzbekistan [18]. Tilorone is utilized to treat a variety of viral disease
indications, such as influenza, acute respiratory viral infection, viral hepatitis, and viral en-
cephalitis and is included on a list of essential medicines of the Russian Federation [19–23].
In addition to its clinical application, Tilorone has demonstrated in vitro and in vivo effi-
cacy against a wide range of viral families, such as filoviruses, flaviviruses, coronaviruses,
and alphaviruses [18,24–27]. Most recently, it demonstrated in vitro activity against SARS-
CoV-2 in the nanomolar range [27]. Tilorone was initially thought to act through activation
of innate immunity signaling pathways, particularly those involved in production of inter-
feron (IFN) [19,28], although recent investigations have suggested its potential mechanism
of action to include binding to viral surface glycoproteins and lysosomotropism [18,27,29].
In this study, we assessed the ability of Tilorone to inhibit RVFV infection, and could
demonstrate that it interferes with RVFV in the low micromolar range and has protective
efficacy in a lethal mouse model.

2. Materials and Methods
2.1. Cells and Viruses

Vero CCL81 cells and A549 cells were purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA). Vero CCL81 cells were grown and maintained in
minimal essential media (MEM) and A549 cells were maintained in Dulbecco’s minimal
essential media (DMEM), both supplemented with 10% Fetal Bovine Serum (FBS) at 37 ◦C
under 5% CO2. During viral infections, FBS concentration was lowered to 2% and 1%
penicillin/streptomycin (Corning) was added.

Pathogenic RVFV wild-type strain ZH501 and the original live-attenuated vaccine
strain MP-12 were used in in vitro and in vivo studies, respectively (obtained from Drs
C.J. Peters and John Morrill, University of Texas Medical Branch, UTMB). Viral titers were
determined by plaque assay. Briefly, Vero CCL81 cells were infected with serial 10-fold
dilutions of virus containing samples for one hour and then overlaid with tragacanth
(0.8%)/MEM, supplemented with 2% FBS and 1% penicillin/streptomycin. After three
days, the overlay was removed and cells were stained with 0.2% crystal violet diluted
in 10% neutral buffered formalin for at least 20 min at room temperature. Plates were
washed with water, dried, plaques enumerated and viral titers reported as plaque forming
units per mL (PFU/mL). All work with infectious RVFV ZH501 virus was conducted in
the Robert E. Shope or Galveston National Laboratory biosafety level 4 (BSL-4) laboratories
at the UTMB.
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2.2. Compounds

Tilorone dihydrochloride was obtained from Sigma-Aldrich (St. Louis, MO, USA). For
in vitro experiments, Tilorone was diluted in cell culture media. For in vivo experiments,
Tilorone dilutions were prepared in 20% Solutol (Kolliphor HS 15).

2.3. In Vitro Virus Yield Reduction Assay

Vero CCL81 or A549 cells were infected with RVFV MP-12 or RVFV ZH501 at a
multiplicity of infection (MOI) of 0.1 for one hour at 37 ◦C and 5% CO2 with frequent rocking
every 15 min. Virus was then removed, cells washed with DPBS and overlaid with fresh
media supplemented with 2% FBS and 1% penicillin/streptomycin and half-log dilutions
of Tilorone (100 to 0.032 µM). Cell culture supernatant aliquots were collected at 24 h post-
infection (HPI) and titrated. Virus yield reduction was calculated as percent reduction of
viral titers compared to untreated controls. Cellular cytotoxicity of Tilorone was determined
in the absence of viral infection using a neutral red based in vitro toxicology assay kit
(Sigma-Aldrich; St. Louis, MO, USA). All experiments were performed in triplicate wells.

The 50% effective concentration (EC50) was determined as the concentration at which
viral titers were 50% of the untreated controls at the respective time point and the 50% cell
cytotoxic dose (CC50) was the Tilorone concentration leading to 50% cell cytotoxicity. Both
values were calculated using regression analysis (Graphpad Prism V8). The selectivity
index (SI) was calculated using the formula SI = CC50/EC50.

2.4. In Vitro Time of Addition Experiments

Vero CCL81 or A549 cells were infected with RVFV MP-12 or RVFV ZH501 at an MOI
of 0.1 as described above. At 1 HPI, inoculum was removed, cells washed with DPBS, and
fresh media added. Tilorone was added at −1, 0, 1, 6, and 12 HPI and supernatant was
sampled at 24 HPI. Viral titers were determined via plaque assay. All experiments were
performed in biological triplicates.

2.5. Mouse Efficacy Studies

Six-to-eight week-old female BALB/c mice (Envigo) were utilized for antiviral efficacy
studies. Mice were challenged with 100 PFU of RVFV ZH501 by intraperitoneal (IP)
injection and the viral dose verified by standard plaque assay. In the first experiment,
animals (n = 10 per group) received either 30 mg/kg/day or 60 mg/kg/day of Tilorone in
100 µL via IP injection, with treatment continuing daily for 9 days after initiation. Dosing
began either 24 h before or immediately after infection on the day of challenge. In the
second experiment, animals (n = 10 per group) were dosed once daily with 45 mg/kg/day
for a 9-day period, with dosing beginning immediately after infection, 1 day post-infection
(DPI), 2 DPI, or 3 DPI. In each experiment, a virus only control group (n = 10) received the
solutol vehicle solution for a 9-day dosing period, beginning immediately after infection.

In all studies, animals were monitored daily for clinical signs of disease for 21 DPI.
Once animals reached a moribund state, they were euthanized. Body weights were taken
daily for the first 10 days and then every 3rd day until end of study. In both studies,
terminal bleeds were collected from moribund animals to determine viremia by plaque
assay. Tissues (brain and liver) were collected from survivors at termination of the study
and homogenized in TRIzol (Life Technologies, Carlsbad, CA, USA) to evaluate for presence
of RVFV genome. For the second experiment, tissues (brain, liver) from vehicle-treated
animals and survivors were collected and one half of the tissues either processed in TRIzol
(Life Technologies) or fixed in 10% Neutral Buffered Formalin for histopathological analysis.
For each manipulation (viral infection or drug administration), animals were anesthetized
with isoflurane (Piramal, Mumbai, India).

2.6. Animal Ethics Statement

All procedures were conducted under animal protocols approved by the UTMB
Institutional Animal Care and Use Committee and complied with USDA guidelines in an
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AAALAC-accredited lab. Animals were housed in microisolator caging equipped with
HEPA filters in the BSL-4 laboratories at UTMB.

2.7. qRT-PCR

qRT-PCR was utilized to qualitatively evaluate presence of viral RNA in tissue sam-
ples. RNA was extracted from tissues homogenized in TRIzol reagent using Direct-zol
RNA Miniprep kits (Zymo Research, Orange, CA, USA). qRT-PCR assays were run using
QuantiFast RT-PCR mix (Qiagen, Hilden, Germany) using primer and probes targeting the
RVFV L gene (TIB MOLBIOL). qRT-PCR was performed using the following cycle: 10 min
at 50 ◦C, 5 min at 95 ◦C, and 40 cycles of 10 s at 95 ◦C and 30 s at 60 ◦C using a BioRad
CFX96 real time system.

2.8. Histopathological Analysis

Formalin fixed tissues were embedded in paraffin at the UTMB Research Histopathol-
ogy Core. Embedded tissues were sectioned and stained with haematoxylin and eosin
(H&E). Images were obtained using an Evos XL Core microscope (Life Technologies).

2.9. Statistical Analysis

All statistical analysis was completed using Prism (GraphPad Software, San Diego,
CA, USA). Dose–response curves were developed using nonlinear regression. Comparisons
of viral titers in time of addition assays were subjected to a two-way repeated measure
analysis of variance (ANOVA) with a Tukey post-test. Survival curves were compared
using the Mantel-Cox log-rank test. Serum titers were compared using a one-way ANOVA.

3. Results
3.1. Tilorone Inhibits Rift Valley Fever Virus Replication In Vitro

To determine the potential antiviral efficacy of Tilorone for RVFV, we employed virus
yield reduction assays. Initial assays were performed using the vaccine strain RVFV MP-12
in both Vero CCL81 and A549 cells, respectively. Due to the previous reports that Tilorone
might act through activation of IFN-related innate immunity signaling pathways [19,28],
we chose to evaluate its antiviral activity in both, type-I IFN-deficient Vero CCL81 and
type-I IFN-competent A549 cells. Cytotoxicity at the highest concentration tested was
minimal at 24 HPI for both cell types with a CC50 > 100 µM (Table 1). With increasing
incubation times for 48 and 72 HPI, cytotoxicity increased and was higher in A549 cells
compared to Vero CCL81 cells. Next, the effects on RVFV replication were determined at
24 HPI after addition of Tilorone. For both cell lines, Tilorone treatment resulted in reduced
viral titers in a dose-dependent manner (Figure 1). Analysis of the dose–response curves
resulted in EC50 values for RVFV MP-12 of 0.67 µM in Vero CCL81 cells and 1.41 µM in
A549 cells (Figure 1A,B). The Selective Index (SI) values were >149 in Vero CCL81 and >71
in A549 cells, respectively (Table 2). We then confirmed the activity of Tilorone against the
pathogenic RVFV ZH501 strain (Figure 1C,D). Here, the EC50 values were 6.45 µM in Vero
CCL81 and 6.31 µM in A549 cells, respectively, with SI values of >16 in both Vero CCL81
and A549 cells (Table 2). These data demonstrate that RVFV is sensitive to treatment with
Tilorone, with EC50’s that are consistent with those described for other viruses [18].

Table 1. Tilorone-induced cytotoxicity in cell culture.

Cell Line Time [HPI] CC50 [µM]

Vero CCL81
24 >100
48 30.76
72 34.86

A549
24 >100
48 11.23
72 6.64
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Figure 1. In vitro dose-response of Tilorone against RVFV. Vero CCL81 cells (A,C) or A549 cells (B,D)
were infected with RVFV MP12 (A,B) or RVFV ZH501 (C,D) at an MOI of 0.1 for 1 h. Cell culture
media with serial 10-fold dilutions of Tilorone was added at 1 h post infection (HPI). Reduction in
virus yield was determined by plaque assay in cell culture supernatant collected at 24 HPI. Data is
representative of two individual experiments, each with three biological replicates.

Table 2. In vitro antiviral efficacy of Tilorone against RVFV.

RVFV Strain Cell Line EC50 (µM) EC90 (µM) SI 1

MP12
Vero CCL81 0.67 3.08 >149

A549 1.41 8.87 >71

ZH501
Vero CCL81 6.45 17.78 >16

A549 6.31 31.62 >16
1: SI value is defined as SI = CC50/EC50; CC50 value listed in Table 1.

3.2. Delayed Treatment Efficacy of Tilorone on Rift Valley Fever Virus Infection In Vitro

Next, the inhibitory effect of Tilorone on RVFV replication was determined in a post-
exposure treatment scenario. Vero CCL81 or A549 cells were infected with RVFV MP-12 and
Tilorone at 50 µM added at varying times of infection (−1 to 12 HPI). This concentration
was chosen, because a near 100% inhibition was achieved in the dose–response curves
(Figure 1A,B). Virus titers were then determined at 24 HPI (Figure 2). In RVFV MP-12-
infected A549 cells, viral titers at 24 HPI were close to or below the limit of detection of the
plaque assay when Tilorone was added up to 6 HPI. In contrast, untreated cells displayed a
titer of ~3.5 × 104 PFU/mL. Addition of Tilorone at 12 HPI resulted in significantly reduced
titers below 103 PFU/mL (Figure 2A). Similar trends were observed at 24 HPI in Vero
CCL81 cells. The delayed treatment antiviral activity of Tilorone on RVFV replication was
then confirmed for the pathogenic strain ZH501 (Figure 2B). In A549 cells, initiation of
treatment with 50 µM up to 6 HPI reduced viral titers to around 103 PFU/mL at 24 HPI,
compared to ~3 × 106 PFU/mL in untreated cells (Figure 2B). As observed with RVFV
MP-12, treatment at 12 HPI still significantly reduced RVFV ZH501 titers compared to
untreated cells, although to a lesser extent than earlier treatment. In Vero CCL81 cells, a
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time-dependent antiviral effect could be observed with 50 µM (Figure 2B). Pre-treatment
reduced RVFV ZH501 titers to approximately 104 PFU/mL compared to 107 PFU/mL in
untreated cells. While this reduction in titer became less pronounced for each subsequent
time of addition, even addition at 12 HPI significantly reduced viral titers by at least one
log. Overall, these results demonstrate that while Tilorone is most effective at inhibiting
RVFV replication when added within 6 HPI, delaying treatment in vitro for up to 12 HPI
still leads to a significant reduction in viral load.
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Figure 2. Delayed treatment in vitro efficacy of Tilorone against RVFV infection. A549 cells or Vero
CCL81 cells were infected with RVFV MP12 (A) or ZH501 (B) at an MOI of 0.1 and treated with
50 µM of Tilorone at the time points indicated. Virus titer in cell culture supernatant was evaluated
by plaque assay at 24 h after infection. The dotted line represents the limit of detection in the plaque
assay. * p < 0.05, ** p < 0.01, **** p < 0.0001.

3.3. Administration of Tilorone Reduces RVFV-Induced Mortality in the BALB/c Mouse Model

Encouraged by the observed ability of Tilorone to inhibit RVFV replication, we evalu-
ated the antiviral efficacy in the BALB/c mouse model for RVFV ZH501. The maximum
tolerated dose (MTD) in BALB/c mice was previously investigated by Ekins et al. and
found to be 100 mg/kg of body weight in a single dose IP injection [24]. The MTD study
found that doses of 10, 50 and 100 mg/kg were associated with 100% survival although
adverse events including ruffled fur and hunched posture were noted even at the lower
dosages. In this study, it was demonstrated that once daily dosing of 50 mg/kg/day
for 8 consecutive days resulted in 90% survival in Ebola virus (EBOV)-infected mice [24].
Based on these findings, we decided to evaluate Tilorone at a high (60 mg/kg/day) and
a low (30 mg/kg/day) dose. Groups of 10 BALB/c mice (female, 6–8 weeks old) were
infected with RVFV ZH501 via the IP route with 100 PFU. Treatment with Tilorone was
performed via the IP route, once daily for a total of 9 doses and was initiated either at
24 h prior to infection (−24 HPI pre-treatment), or immediately after infection (0 HPI
co-treatment). A virus control group received vehicle solution only. Figure 3A shows that
infected animals receiving vehicle solution uniformly succumbed to disease by 9 DPI. The
two groups given 30 mg/kg/day showed 80% survival when given immediately after
infection and 40% survival when given 24 h prior to infection (Figure 3A). It should be
noted that one mouse in the 30 mg/kg/day in the −24 HPI pre-treatment group did not re-
cover from anesthesia after the pre-treatment dosing was administered, reducing the group
size to a total of 9 animals. In the 60 mg/kg/day groups, 40% of mice dosed at 24 h prior
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to infection survived, while no survivors were detected in the 0 HPI co-treatment group
(Figure 3A). This unexpected result is presumably due to drug toxicity from a non-optimal
dosing regimen and might require further investigation. Clinical adverse observation in the
30 mg/kg/day groups was minimal and late-onset, consisting primarily of scruffy coat and
lethargy, and began only 9 days post infection for the co-treatment group and 11 DPI for the
pre-treatment group. Non-survivors from the 30 mg/kg/day groups maintained low clini-
cal scores until immediately before developing severe disease. Severe disease symptoms
were primarily neurological symptoms characteristic of late-onset RVFV disease, such as
rear leg paralysis and ataxia. On the other hand, the 60 mg/kg/day groups displayed some
signs of drug toxicity from the repeated dosing. Here, pre-treatment with 60 mg/kg/day
led to observation of scruffy coat even before inoculation with RVFV, a clear indication of
drug-mediated toxicity. For both 60 mg/kg/day groups, the scruffy coat was maintained
throughout the entire 9-day course of Tilorone treatment, regardless of survival outcome.
More severe symptoms began as early as 2 days and included hunching and lethargy,
similar to vehicle treated mice. On days 8 and 9 PI, a number of clinical symptoms were ob-
served, including those characteristic of RVFV infection (e.g., irregular breathing, lethargy,
and orbital tightening), as well as those not typically associated with RVFV infection
(e.g., diarrhea and distended abdomen). During necropsy of non-survivors, it was noted
that the distended abdomen was filled with a cloudy liquid and intestine was enlarged
and pale. These abdominal symptoms could result from drug-related toxicity. Control
mice receiving vehicle solution and mice receiving 60 mg/kg/day Tilorone immediately
after infection rapidly started losing weight, with minimal weight loss in all other groups,
supporting the hypothesis of toxicity caused by non-optimal dosing (Figure 3B). Serum
samples were collected at the time of termination from moribund vehicle-treated control
mice, as well as from non-survivors from each treatment group, and viremia was evaluated
by plaque assay (Figure 3C). Average viremia levels in the vehicle-treated animals were
1.4 × 106 PFU/mL. In contrast, no viremia was detected in any of the collected terminal
samples from the three treatment groups that demonstrated significant increases in survival,
even though these samples were from the non-survivors in their respective groups. On the
other hand, in the 60 mg/kg/day 0 HPI co-treatment group, 4 out of the 5 animals had
viremia between 2.5 × 102 and 1.7 × 104 PFU/mL (Figure 3C). Additionally, the brain and
liver of all 8 survivors in the 30 mg/kg/day dosing group (0 HPI co-treatment group) were
evaluated for the presence of viral genome using a qualitative positive/negative RT-PCR
assay and no viral RNA could be detected (data not shown). These findings indicate that
Tilorone is capable of suppressing viral replication and promoting clearance of RVFV in the
mouse model.
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Figure 3. In vivo antiviral efficacy of Tilorone at different doses against RVFV infection in BALB/c
mice. Mice (n = 10/group) were infected with 100 PFU RVFV ZH501 via the intraperitoneal (IP) route.
Treatment with either 30 mg/kg/day or 60 mg/kg/day of Tilorone was initiated either 24 h before
infection or immediately after infection. Tilorone or vehicle solution was administered once daily
via the IP route for 9 days after initiation of treatment. (A) Survival of animals receiving Tilorone or
vehicle. (B) Percent weight change of animals receiving Tilorone or vehicle. (C) Terminal viremia for
euthanized moribund animals receiving Tilorone or vehicle. * p < 0.05, *** p < 0.001, **** p < 0.0001.

3.4. Tilorone Has Limited Window of Therapeutic Efficacy against Lethal RVFV Infection in
BALB/c Mice

Due to the observed toxic side effects with the 60 mg/kg/day groups, we performed
a follow-up study in which the antiviral efficacy of Tilorone was evaluated at 45 mg/kg. In
addition, we also sought to determine the therapeutic window of efficacy of Tilorone. As in
the first study, groups of 10 BALB/c mice were infected with RVFV ZH501 via the IP route
with 100 PFU. Dosing with Tilorone was performed via the IP route, once daily for a total of
9 dosings, and treatment with 45 mg/kg/day was initiated at 0, 1, 2, or 3 DPI. As expected,
all non-protected vehicle-treated animals succumbed to disease by 9 DPI (Figure 4A).
Similar to the previously described experiment, treatment administered immediately after
infection resulted in 70% survival (Figure 4A). At this dosing concentration, no toxicity was
observed compared to the previously tested 60 mg/kg groups. Delayed administration
showed a reduced protective efficacy, with 30% protection and delayed onset of disease
when dosing was initiated at 1 DPI. In the 2 DPI group, survival was reduced to 10%, and
no protection was observed at 3 DPI. Non-protected mice and mice receiving Tilorone
treatment 2 or 3 DPI rapidly started losing weight, while weight loss in all other groups
was reduced (Figure 4B). In the 0 and 1 DPI treatment groups, no viremia was detected in
terminal blood from moribund animals. Contrastingly, viremia was detected in several
blood samples from the 2 and 3 DPI treatment groups (Figure 4C). Tissues from moribund
animals of the vehicle group, as well as from survivors were collected in TRIzol and
evaluated for the presence of viral genome. Like in the previous study, no viral RNA was
detected in any survivor, while viral RNA was detectable in all vehicle-treated mice (data
not shown).
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Figure 4. Therapeutic efficacy of Tilorone against RVFV infection in BALB/c mice. Mice
(n = 10/group) were infected with 100 PFU RVFV ZH501 via the intraperitoneal (i.p.) route. Treat-
ment of Tilorone was initiated immediately after infection, 1 DPI, 2 DPI, or 3 DPI. Tilorone at
45 mg/kg/day or vehicle was administered once daily via the IP route for 8 consecutive days after
initiation of treatment. (A) Survival of animals receiving Tilorone or vehicle. (B) Percent weight
change of animals receiving Tilorone or vehicle. (C) Terminal viremia for euthanized moribund
animals receiving Tilorone or vehicle. *** p < 0.001.

3.5. Histopathological Evaluation

To determine pathological changes in Tilorone-treated mice, liver and brain tissues
from the 45 mg/kg treatment study were collected from moribund animals and survivors
and H&E staining performed (Figure 5). In vehicle-treated animals, pathological changes
were found in livers. One mouse showed enlarged ballooned hepatocytes throughout
the lobule with moderate infiltration of mononuclear and polymorphonuclear cells in the
sinusoid, which is likely associated with hepatocellular regeneration after the stage of acute
liver injury (Figure 5A). Two other mice in the vehicle-treated group showed necrotic or
apoptotic changes, characterized by pyknosis, karyorrhexis, or karyolysis of hepatocytes
in throughout hepatic lobes, whereas little infiltration of inflammatory cells was found
in necrotic lesions. (Figure 5B). In Tilorone-treated survivors, indistinguishable histology
in liver sections between treatment groups were observed. Although most parts of liver
sections were normal (Figure 5C), extramedullary hematopoiesis such as erythroid cells or
megakaryocytes were occasionally found (Figure 5D,E). Although rare, mild infiltration of
neutrophils was also observed (Figure 5F).
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Figure 5. Histopathological changes reduced in Tilorone-treated mice. Formalin fixed tissues were
embedded in paraffin and processed for H&E staining. Images represent livers of vehicle control
and tilorone-treated mice. (A) Ballooned hepatocytes in vehicle-treated control mice at late stage.
(B) Hepatocyte necrosis in vehicle-treated control mice. (C) Normal liver from Tilorone-treated
survivor. (D) Erythroid cells in liver from Tilorone-treated survivor. (E) Megakaryocyte in liver from
Tilorone-treated survivor. (F) Neutrophil infiltrate in liver from Tilorone-treated survivor.

4. Discussion

Rift Valley Fever is primarily a severe disease of ruminant livestock but can also
cause moderate to severe illness in humans. Since the first report of the disease among
livestock in Kenya in 1915, RVFV has expanded its range outside of Africa to include Saudi
Arabia, Yemen, Madagascar, and the Comoros [10,30–33]. Additionally, the range of the
mosquitoes capable of carrying and transmitting the virus now includes the Americas
and Europe [15,34,35]. While most human cases are mild and self-limiting and do not
require intensive care, there are currently no therapeutics available for treatment of the
more severe manifestations. Due to its potential to cause significant economic losses in
the livestock industry and morbidity in humans, RVFV is categorized as an HHS/ USDA
select agent and requires higher biocontainment facilities (biosafety level 3 enhanced or 4).
The restrictions in handling infectious RVFV might have been a contributing factor in the
dearth of antiviral therapeutics that have been evaluated until now. Some of these that have
shown efficacy in animal models include the nucleoside analog Ribavirin and nucleotide
analog Favipiravir [36,37]. Ribavirin demonstrated partial protection (70% survival) after
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subcutaneous infection in the murine model, although not after aerosol infection in the
same model [37]. On the other hand, Favipiravir treatment led to 92% survival after aerosol
infection in the Wistar-Furth rat model [36,38].

While not FDA approved, Tilorone-Dihydrochloride is approved and regularly used
for treatment of influenza in several eastern European countries, indicating it is safe for
use in humans [18,21]. While Tilorone has never been evaluated for safety and efficacy
to meet current FDA standards, it should be noted that Tilorone analogs have undergone
numerous clinical trials in Russia and have a track record of safe usage in humans outside
the US [19–23]. A machine learning computational screen identified Tilorone as a potential
inhibitor of EBOV, and it was found to be 90–100% effective in the mouse model, depend-
ing on the dosing conditions [24]. This promising result renewed interest in Tilorone in
the US and it has been investigated for activity against a variety of viruses, including
SARS-CoV-2 [27].

In this present study, we sought to evaluate the antiviral efficacy of Tilorone, in both
in vitro and in vivo models, for RVFV. In vitro, Tilorone displayed antiviral activity in
the low micromolar range. For the vaccine strain RVFV MP-12, the EC50 were 0.67 µM
and 1.41 µM for Vero CCL81 and A549 cells, respectively, while higher concentrations
were required for inhibition of the wildtype strain ZH501 with 6.45 µM and 6.31 µM,
respectively. Previously, screening by another group showed little to no efficacy of Tilorone
against RVFV ZH501 in Vero 76 cells [39]. This might have been due to different assays.
At first glance, these differences in antiviral efficacy between IFN-competent A549 cells
and IFN-deficient Vero cells against wildtype RVFV ZH501 may appear to be related to
the capacity for IFN induction. Tilorone was indeed initially identified in 1970 as an IFN
inducer and a number of early studies indicated this activity as a potential mechanism
of action [19,28,40]. However, the fact that antiviral activity can still be observed in Vero
CCL81 cells indicates that Tilorone might function through an additional mechanism of
action, in addition to IFN induction. Indeed, recent studies revealed that varying antiviral
efficacy of Tilorone between cell types is consistent with its activity against other viruses
and that observed differences in efficacy do not always correlate with IFN competency.
For example, Tilorone is effective against EBOV in HeLa cells, which are IFN-competent,
but not in Vero 76 cells [18]. For SARS-2 coronavirus (SARS-CoV-2), antiviral activity was
demonstrated in A549-ACE2 cells and Vero 76 cells, and to a lesser extent in Caco-2 and
Calu-3 cells, but interestingly not in Vero E6 cells [27]. Tilorone also inhibited replication
of MERS-CoV and Chikungunya virus in Vero 76 cells, although other cell lines were not
tested for these viruses [41]. Due to the fact that Vero cells are IFN-deficient, Tilorone might
display additional mechanisms of viral inhibition contributing to widely differing efficacies
of Tilorone against different viruses across different Vero lineages. Ultimately, for wildtype
RVFV ZH501, the slightly higher EC50 values determined in IFN-competent A549 cells over
IFN-deficient Vero CCL81 cells suggests that a partial role for innate immune activation
could be a contributing factor as a mechanism of action.

Lysosomotropism has been described as a mechanism of action for broad-spectrum
antivirals [42]. Tilorone is an amphiphilic cationic compound with demonstrated lyso-
somotropic activity, which may be an important factor in its mechanism of action [39].
It has been found to increase lysosomal pH and inhibit the ATP-dependent acidification
of lysosomes in fibroblasts, which are important characteristics of lysosomotropic com-
pounds [43]. Biochemical or metabolic differences across different cell lines could explain
altered responses to Tilorone’s lysosomotropism and contribute to differences in antiviral
activity across cell types. Another proposed mechanism of action is direct antiviral activity
through receptor binding. Tilorone has been experimentally verified to strongly bind the
EBOV glycoprotein, potentially helping block viral entry [29]. It also binds the SARS-CoV-2
spikeprotein receptor-binding domain (RBD); however, neutralization was less than 50% in
a VSV pseudotype assay, suggesting that RBP binding may not be important for Tilorone’s
antiviral activity against SARS-CoV-2 [27]. It seems likely that some combination of these
mechanisms acts synergistically to result in antiviral activity, but future studies are required
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to further elucidate the exact mechanisms of action by which Tilorone interferes with
RVFV infection.

In vitro time of addition assays demonstrated that delayed treatment up to 6 h can
significantly reduce RVFV replication to levels near the limit of detection of the plaque
assay protocol. Delaying treatment by 12 h still significantly reduced virus titers com-
pared to untreated controls. These results indicate that Tilorone might be used in both,
prophylactic and therapeutic approaches. One observation that was noted, is that Tilorone
caused cytotoxic effects in both cell types by 48 and 72 h after treatment (Table 1). Further
evaluation on the potential effect of Tilorone-induced cytotoxicity on viral replication needs
to be evaluated in future experiments.

Due to the requirement for high containment facilities for use of pathogenic RVFV
ZH501, a limited number of antiviral compounds have been evaluated in vivo [17]. In this
study, Tilorone was found to provide 80% protection and delaying time to death in the
lethal BALB/c mouse model of RVFV ZH501 infection. The first study examined doses of
30 and 60 mg/kg/day, doses which were examined and found efficacious to some extent
in the mouse model against EBOV [24]. Here, a 30 mg/kg dose of Tilorone given daily
and beginning either 2 or 24 h after EBOV infection led to 100% survival in both groups.
Similar trends were observed in our data, in which the greatest survival was seen after
a 30 mg/kg/day dose of Tilorone initiated immediately after infection although it is still
unclear why pre-treatment with 30 mg/kg/day resulted in only 40% survival, compared
to 80% survival when administered immediately after infection. For the 60 mg/kg/day
groups, increased survival was observed after initiation of treatment 24 h before infection,
rather than concurrent with infection. As in the case of the EBOV study, signs of drug
toxicity from repeated dosing in the 60 mg/kg/day dose groups was found in the present
study. It was postulated that results were due to drug toxicity from a nonoptimal dosing
regimen leading to drug accumulation and may not completely reflect a lack of efficacy [24].
We adjusted dosing to 45 mg/kg/day to investigate the window of efficacy, and results
indicated that initiation of treatment within 24 h after infection lead to some level of efficacy,
whereas survival was reduced to 10% the later treatment was initiated. No significant
difference in viremia between the 2 and 3 DPI Tilorone and vehicle groups was found,
suggesting lack of viral inhibition in these treatment groups. Additionally, no viral RNA
was detected in tissues for any survivors and no replicating virus was detected in serum
samples from groups with significant survival across both in vivo studies. While there
were also some non-survivors in both untreated and treated groups in which viremia was
not detected, this is not unexpected due to the biphasic nature of RVFV infection in mice.
In early stages of infection, viral titers in blood and liver are typically high [44]. However,
in those mice that survive the initial phase of infection, virus is cleared from the blood
and infection is characterized by neuroinvasion [44]. Our observations in non-survivors
of all groups that succumbed later in disease mirror this. For example, the non-survivors
for which no viremia was detected in sera were those that succumbed later in infection
and those for which viremia was detected, succumbed earlier. In future studies, it will be
valuable to collect sera at timepoints throughout the course of infection, particularly early
in infection, to analyze the effects of Tilorone treatment on viral titers at peak viremia.

Due to potential drug toxicity and tolerability concerns, optimization of the dosing
regimen will require further investigation. However, up to 80% survival are encouraging
and demonstrate equal or improved efficacy compared to other antivirals evaluated in
the RVFV mouse model [38,45]. Treatment with 200 µM Favipiravir (or T-705) led to 80%
survival in BALB/c mice with ≤40% survival for all other conditions tested, including
combination treatment with Ribavirin [38]. Optimization of dosing conditions of Ribavirin
provided up to 80% survival in Swiss Webster mice [46]. Pretreatment with BCX4430
led to up to 60% survival in the C57/BL6 model and Rapamycin treatment provided
up to 50% survival in BALB/c mice [45,47]. Differences in mouse species and routes
of infection and dosing conditions between these studies make it somewhat difficult to
directly compare antiviral efficacy, but overall, Tilorone could be further considered for
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future development as a potential therapeutic for treatment of RVFV. Drug toleration
issues in mice, with administration through the IP route may also not be reflective of
those in humans. In counties where Tilorone derivatives are utilized as therapeutics in
patients, administration is performed through the oral route, which, in addition to species
differences, could contribute to better toleration [18].

5. Conclusions

Altogether, the results presented here demonstrate the in vitro and in vivo efficacy of
Tilorone-Dihydrochloride against RVFV infection. Our data are providing a foundation for
additional studies regarding the optimization of doses, routes of administration, as well
as timing of treatment after infection. In addition, combinatorial treatment with antiviral
compounds that display a different mechanism of action and that have shown efficacy
against RVFV, should be considered.
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