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Abstract: New three-ring ester/azomethine homologues series, (E)-4-((4-hydroxybenzylidene)amino)
phenyl 4-(alkoxy)benzoate In, were prepared and their properties were investigated experimentally
and theoretically. FT-IR, NMR, and elemental analyses were used to confirm the chemical structures
of the synthesized compounds. The mesomorphic activities of the planned homologues were eval-
uated using differential scanning calorimetry (DSC) and polarized optical microscopy. All of the
homologous examined were found to have non-mesomorphic properties. Theoretical calculations
using the density functional theory (DFT) were used to validate the experimental data and determine
the most stable conformation of the synthesized compounds. All calculated conformers’ thermal
properties, dipole moments, and polarizability were discussed. The results show that the terminal
alkoxy chain length affects the thermal parameters of the conformers. The correlations between these
parameters’ values and the conformer type were demonstrated. The base component was expected to
be in two conformers according to the orientation of the N atom of imine-linkage. DFT calculations
revealed the more probable of the two possible conformers, and the incorporation of the alkoxy
terminal chain in one position affect its geometrical and mesomerphic characteristics.

Keywords: imine derivatives; thermal parameters; mesomorphic properties; conformational analysis;
DFT

1. Introduction

Schiff bases are important chemical compounds that can be made by reacting an
aldehyde or ketone with a primary amine, resulting in the synthesis of azome-thine (also
known as imine) due to the release of a water molecule [1]. Imines and hydrazones are a
class of organic compounds that have a wide range of applications in a variety of fields,
including biological, analytical, and inorganic chemistry. Due to a wide range of biolog-
ical activities, such as analgesic, antioxidant, antimicrobial, anticancer, anticonvulsant,
antitubercular, anthelmintic, and anti-inflammatory activities, Schiff bases have gained
popularity in the medicinal and pharmaceutical fields [2–15]. Schiff bases are also utilized
as catalysts, organic synthesis intermediates, pigments, dyes, corrosion inhibitors and
polymer stabilizers, [16–18]. Moreover, they influenced the development of coordination
chemistry and were pivotal in the development of inorganic biochemistry and optical
materials [19]. The use of imine derivatives in numerous processes encouraged researchers
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to produce novel heterocyclic/aryl Schiff bases for the creation of new environmentally
friendly technology [20].

Because of their unique mesomorphic capabilities, azomethine/ester homologous
series of liquid crystals (LCs) have been studied extensively to determine the relationship
between chemical structure and mesomorphic properties [21–25]. In general, an organic
compound’s mesophase stability and temperature ranges are determined significantly by
its molecular shape, with even little changes in molecular geometry resulting in significant
changes in mesomorphic behavior [26]. Within the hard core of the molecule, the Schiff
base (azomethine group) is employed as a connecting group. Despite having a stepped
core structure, the azomethine group retains molecular linearity, which makes the molecule
more stable and, in most cases, allows the formation of the mesophase [27].

The phenolic derivatives have extensive importance in many different studies [28]. It
was found that a stronger hydrogen-bonding between phenol and pyridine components in
many complexes can be formed and promotes liquid-crystal behavior. In the case of acids
moieties, a linear dimer is formed [29,30]. However, for phenols the hydrogen-bond com-
plex is not linear and so does not promote liquid crystallinity [31]. The basic symmetrical
and nonsymmetrical configurations of the designed molecule are affected by the number of
aromatic units, the length of terminal chains, the alteration of polar spacers in elongating
wings, and the mesomeric character of the central molecular core [32]. There have also been
reports on the materials with two and three rings, as well as non-symmetrical molecular
shapes and a core unit with one or two different linkages [33,34]. We recently looked into
the thermal stability of symmetrical materials having the azomethine linkage as the central
connecting group, 4-alkoxybenzoyloxy 4’-phenylmethineazophenyloxy 4”-alkoxybenzoate,
in the mesophase [35]. Recently, it has been shown that the possible orientation of atoms in
molecules is employed to modify existing functions, thereby introducing a new geometrical
characteristic to the organic system.

The goal of our work is to study the mesomorphic properties, and geometrical parame-
ters of synthesized three-ring imine derivatives, namely (E)-4-((4-hydroxybenzylidene)amino)
phenyl 4-(alkoxy)benzoate In (Figure 1). The work also includes theoretical analyses using
DFT and experimental observations to explain how the varied orientations of the imine
linkage included within the expected conformers affect these variables. Finally, we intend
to study the effect of the terminal flexible chain on the mesomorphic behavior as well as
geometrical and thermal parameters.

Materials 2022, 14, x FOR PEER REVIEW 2 of 11 
 

 

and polymer stabilizers, [16–18]. Moreover, they influenced the development of coordi-
nation chemistry and were pivotal in the development of inorganic biochemistry and 
optical materials [19]. The use of imine derivatives in numerous processes encouraged 
researchers to produce novel heterocyclic/aryl Schiff bases for the creation of new envi-
ronmentally friendly technology [20]. 

Because of their unique mesomorphic capabilities, azomethine/ester homologous 
series of liquid crystals (LCs) have been studied extensively to determine the relation-
ship between chemical structure and mesomorphic properties [21–25]. In general, an or-
ganic compound's mesophase stability and temperature ranges are determined signifi-
cantly by its molecular shape, with even little changes in molecular geometry resulting 
in significant changes in mesomorphic behavior [26]. Within the hard core of the mole-
cule, the Schiff base (azomethine group) is employed as a connecting group. Despite 
having a stepped core structure, the azomethine group retains molecular linearity, 
which makes the molecule more stable and, in most cases, allows the formation of the 
mesophase [27]. 

The phenolic derivatives have extensive importance in many different studies [28]. 
It was found that a stronger hydrogen-bonding between phenol and pyridine compo-
nents in many complexes can be formed and promotes liquid-crystal behavior. In the 
case of acids moieties, a linear dimer is formed [29,30]. However, for phenols the hydro-
gen-bond complex is not linear and so does not promote liquid crystallinity [31]. The 
basic symmetrical and nonsymmetrical configurations of the designed molecule are af-
fected by the number of aromatic units, the length of terminal chains, the alteration of 
polar spacers in elongating wings, and the mesomeric character of the central molecular 
core [32]. There have also been reports on the materials with two and three rings, as well 
as non-symmetrical molecular shapes and a core unit with one or two different linkages 
[33,34]. We recently looked into the thermal stability of symmetrical materials having the 
azomethine linkage as the central connecting group, 4-alkoxybenzoyloxy 
4’-phenylmethineazophenyloxy 4”-alkoxybenzoate, in the mesophase [35]. Recently, it 
has been shown that the possible orientation of atoms in molecules is employed to mod-
ify existing functions, thereby introducing a new geometrical characteristic to the organ-
ic system. 

The goal of our work is to study the mesomorphic properties, and geometrical pa-
rameters of synthesized three-ring imine derivatives, namely 
(E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(alkoxy)benzoate In (Figure 1). The work 
also includes theoretical analyses using DFT and experimental observations to explain 
how the varied orientations of the imine linkage included within the expected conform-
ers affect these variables. Finally, we intend to study the effect of the terminal flexible 
chain on the mesomorphic behavior as well as geometrical and thermal parameters. 

 
Figure 1. Molecular structure of investigated series In. 

2. Experimental 
Synthesis 

The strategy utilized to construct the title compounds In includes two sequentially 
steps that start with the synthesis of (E)-4-((4-hydroxybenzylidene)amino)phenol 3 [34], 
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2. Experimental
Synthesis

The strategy utilized to construct the title compounds In includes two sequentially
steps that start with the synthesis of (E)-4-((4-hydroxybenzylidene)amino)phenol 3 [34],
by reacting 4-hydroxy aniline 1 with the respective 4-hydroxybenzaldehyde 2. Compound 3
could then be converted to their corresponding targets (E)-4-((4-hydroxybenzylidene)amino)
phenyl 4-(alkoxy)benzoate In through reaction with 4-alkoxybenzoic 4 in dry methy-
lene chloride containing N,N′−dicyclohexylcarbodiimide (DCC) and catalytic amounts of
4−dimethylaminopyridine (DMAP) (Scheme 1).
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The analyses results of products In are listed below:
(E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(hexyloxy)benzoate I6:
Yield: 89.0%; m.p. 124 ◦C, 1H-NMR (600 MHz, CDCl3): δ/ppm: 0.82 (t, 3H, CH3),

1.21–1.42 (m, 6H, CH3(CH2)3CH2CH2O-), 1.74–1.76 (m, 2H, CH3(CH2)3CH2CH2O-), 3.97
(t, 2H, CH3(CH2)3CH2CH2O-), 6.90–6.91 (d, 2H, Ar−H), 7.16–7.21 (d, 4H, Ar−H), 7.72
(d, 2H, Ar−H), 8.08–8.10 (d, 4H, Ar−H), 8.38 (s, 1H, CH=N), 9.90 (s, 1H, OH); FTIR (ύ,
cm−1): 3417 (OH), 2928, 2832 (CH2 Stretching), 1729 (C=O), 1605 (C=N), 1573 (C=C), 1459
(C-OAsym), 1252 (C-OSym). Anal. Calcd. for C26H27NO4 (417.50): C, 74.80; H, 6.52; N, 3.35.
Found: C, 74.71; H, 6.46; N, 3.25%.

(E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(decyloxy)benzoate I10:
Yield: 88.0%; m.p. 87 ◦C, 1H-NMR (600 MHz, CDCl3): δ/ppm: 0.80–0.82 (t, 3H,

CH3), 1.20–1.43 (m, 14H, CH3(CH2)7CH2CH2O-), 1.72–1.77 (m, 2H, CH3(CH2)7CH2CH2O-
), 3.84–4.08 (t, 2H, CH3(CH2)7CH2CH2O-), 6.89–6.91 (d, 2H, Ar−H), 7.16–7.33 (d, 4H,
Ar−H), 7.64 (d, 2H, Ar−H), 8.03–8.08 (d, 4H, Ar−H), 8.40 (s, H, CH=N), 9.92 (s, 1H, OH).
13C-NMR (600 MHz, CDCl3): δ/ppm: 14.14 (CH3), 22.71, 26.00, 29.12, 29.38, 29.58, 29.68,
29.70, 31.95, 68.35 (CH2), 110.64, 114.32, 121.16, 121.51, 121.82, 122.47, 123.24, 132.17, 132.30,
132.49, 132.54, 134.96, 143.03, 149.29, 149.40, 152.03, 159.61, 163.62, 164.25 (Ar-C and C=N),
165.05 (C=O); FTIR (ύ, cm−1): 3423 (OH), 2937, 2835 (CH2 Stretching), 1731 (C=O), 1613
(C=N), 1566 (C=C), 1461 (C-OAsym), 12547(C-OSym). Anal. Calcd. for C30H35NO4 (473.60):
C, 76.08; H, 7.45; N, 2.96. Found: C, 76.13; H, 7.36; N, 2.80%.

(E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(dodecyloxy)benzoate I12:
Yield: 89.8%; m.p. 127 ◦C, 1H-NMR (600 MHz, CDCl3): δ/ppm: 0.79–0.82 (t, 3H, CH3),

1.18–1.570 (m, 18H, CH3(CH2)9CH2CH2O-), 1.73–1.77 (m, 2H, CH3(CH2)9CH2CH2O-),
4.06–4.08 (t, 2H, CH3(CH2)9CH2CH2O-), 6.72–6.91 (d, 2H, Ar−H), 7.33 (d, 4H, Ar−H), 7.46
(d, 2H, Ar−H), 8.04–8.07 (d, 4H, Ar−H), 8.39 (s, 1H, CH=N). 9.90 (s, 1H, OH); FTIR (ύ,
cm−1): 3421 (OH), 2933, 2852 (CH2 Stretching), 1726 (C=O), 1609 (C=N), 1562 (C=C), 1463
(C-OAsym), 1244 (C-OSym). Anal. Calcd. for C32H39NO4 (501.66): C, 76.61; H, 7.84; N, 2.79.
Found: C, 76.59; H, 7.75; N, 2.60%.

(E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(tetradecyloxy)benzoate I14:
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Yield: 91.8%; m.p. 93 ◦C, Yield: 89.8%; m.p. 98.7 ◦C, 1H-NMR (600 MHz, CDCl3):
δ/ppm: 0.79–0.81 (t, 3H, CH3), 1.19–1.41 (m, 22H, CH3(CH2)11CH2CH2O-), 1.72–1.85 (m,
2H, CH3(CH2)11CH2CH2O-), 3.84–3.98 (t, 2H, CH3(CH2)11CH2CH2O-), 6.89–6.90 (d, 2H,
Ar−H), 7.15–7.33 (d, 4H, Ar−H), 7.64 (d, 2H, Ar−H), 8.07–8.09 (d, 4H, Ar−H), 8.37 (s, 1H,
CH=N), 9.93 (s, 1H, OH).13C-NMR (600 MHz, CDCl3): δ/ppm: 14.13 (CH3), 22.70, 25.46,
25.64, 25.99, 29.37, 29.57, 29.60, 29.67, 29.69, 29.70, 31.94, 33.96, 68.35 (CH2), 110.63, 114.32,
121.14, 121.49, 121.82, 122.47, 123.22, 123.28, 132.29, 132.49, 134.97, 143.01, 149.27, 149.41,
152.02, 156.79, 159.61, 163.62, 164.27 (Ar-C and C=N), 165.06 (C=O); FTIR (ύ, cm−1): 3417
(OH), 2920, 2828 (CH2 Stretching), 1726 (C=O), 1602 (C=N), 1575 (C=C), 1466 (C-OAsym),
1246 (C-OSym). Anal. Calcd. for C34H43NO4 (529.71): C, 77.09; H, 8.18; N, 2.64. Found: C,
77.00; H, 8.04; N, 2.52%.

(E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(hexadecyloxy)benzoate I16:
Yield: 90.8%; m.p. 99 ◦C, 1H-NMR (600 MHz, CDCl3): δ/ppm: 0.77–0.81 (t, 3H, CH3),

1.18–1.41 (m, 26H, CH3(CH2)13CH2CH2O-), 1.73–1.77 (m, 2H, CH3(CH2)13CH2CH2O-),
3.82–3.99 (t, 2H, CH3(CH2)13CH2CH2O-), 6.89–6.92 (d, 2H, Ar−H), 7.15–7.39 (d, 4H, Ar−H),
7.46 (d, 2H, Ar−H), 8.02–8.08 (d, 4H, Ar−H), 8.39 (s, 1H, CH=N). 9.95 (s, 1H, OH); FTIR (ύ,
cm−1): 3412 (OH), 2919, 2839 (CH2 Stretching), 1728 (C=O), 1600 (C=N), 1566 (C=C), 1462
(C-OAsym), 1246 (C-OSym). Anal. Calcd. for C36H47NO4 (557.76): C, 77.52; H, 8.49; N, 2.51.
Found: C, 77.39; H, 8.35; N, 2.40%.

3. Results and Discussion
3.1. Mesomorphic Properties Investigations of Series In

The current synthetic series (In) was investigated for its mesomorphic properties.
Table 1 summarizes the results of the transition temperatures and enthalpies as obtained
by DSC measurements. To evaluate the stability of the synthesized compounds, DSC
results from the second heating/cooling cycles were estimated. The second heating scan
was utilized to record all compounds' thermal characteristics. The DSC curve of the
synthesized ester/azomethine homologue I6 through heating and cooling scans is shown in
Figure 2. On heating, the homologous revealed only one endothermic peak corresponding
to the crystal-to-isotropic transition, whereas cooling revealed one reversed exothermic
peak also, as shown in Figure 2. The POM textures also confirmed the DSC data. All
examined compounds of the present series (In) are nonmesomorphic with high thermal
stabilities, as shown in Table 1 and Figure 3. Moreover, the melting points of all prepared
derivatives highlighted in Table 1 and Figure 3 follow a random pattern. In general, the
polarity and/or polarizability of the mesogenic core of the molecule play the most critical
roles in determining mesophase behavior. The length of the terminal group, on the other
hand, has a considerable influence on the kind and stability of the produced mesophases.
Finally, geometrical characteristics such as dipole moment, polarizability, and molecular
architecture are important in the formation of any mesomorphic phases.

Table 1. DSC transition temperatures (◦C) and enthalpy of transition ∆H, kJ/mole for series In.

Compound TCr-I ∆HCr-I

I6 124.3 43.73
I8 90.7 40.29
I10 87.4 42.80
I12 127.7 56.2
I14 93.1 45.20
I16 99.3 54.90

Cr-I = solid to the isotropic liquid phase transition.
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Many properties of linear molecules, such as polarizability, dipole moment, aspect
ratio, and competitive contact between terminal moieties, influence their mesomorphic
properties, as established in the literature. The mesomeric configurations are known to
alter molecular geometry and this has a significant impact on the molecular–molecular
interactions. As shown in our experiments, molecular packing between present investigated
molecules affects the thermal stabilities and this in return led to the non-mesomorphic
properties. This assertion quite agrees with the reports on some phenolic derivatives [35].

3.2. Theoretical Calculations
3.2.1. Computational Details

Each set of the isomers investigated were completely optimized to global minimum
without geometrical restraints by GAUSSIAN 09 program [36]. The state of their conver-
gence was examined via wavenumber calculation which predicted real value for all the
frequencies. Furthermore, the frontier molecular orbitals and the molecular electrostatic
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potential surfaces were obtained from the formatted check (Fchk) file of the optimized
structures. All the density functional theory (DFT) calculations were conducted using the
B3LYP method [37,38] with the basis set of 6–31 G (d,p) which has been found to give
results that are in fair agreement with the experimental data for relatively large molecules
at a comparably cheap cost [39–44].

3.2.2. Relative Stability

Based on the orientation of imine linkage, two possible conformers of isomers can
exist as shown in Figure 4 obtained from the DFT calculation. Moreover, the presence
and the nature of substituents on phenyl could play appreciable role in the stability of
compounds. This assertion could be inferred from the result presented in Table 2, for which
the isomers In series were generally predicted to be more stable than I’n counterparts by
approximately 1 kcal/mol. The –OH substituent and imine linkage are both activating
groups that inductively donate electron to the phenyl system. Their presence together
in the first phenyl part of the compounds would increase the electron pool in the phenyl
system and this could have resulted in a relatively high repulsion, that eventually led to the
lower stability recorded for the I’n isomers. On the part of In isomers, the presence of the
ester substituent, an electron withdrawing group on the second phenyl directly linked with
the imine linkage aided their stability as it decreases the electron density on the phenyl
group. Moreover, the similar relative energy difference calculated for the corresponding
members in In and I’n series suggests that their relative stability is less sensitive to the size
of terminal alkoxy group.
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Table 2. Relative energies for series In and their isomers in kcal/mol.

Isomer I6 I8 I10 I12 I14 I16

In 0 0 0 0 0 0
I’n 0.74 0.71 0.74 0.74 0.74 0.71

3.2.3. Reactivity Parameters

The reactivity of compounds is usually inferred from the HOMO-LUMO energy gap.
The lower this gap the more reactive a molecule would be [40]. In addition, ionization
potential (I.P) and electron affinity (EA) are other parameters that can attest to the reactivity
of compounds [40,41]. These parameters were computed for the understudied isomers
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to determine their reactivity and the results are highlighted in Table 3. The I’n isomers
were predicted to be generally more reactive than their corresponding In isomers owing
to the lower HOMO and LUMO energy gap. The higher energy gap calculated for the
In isomers is consistent with the relative stability as this attests to their higher stability
over the I’n derivatives [41]. On the part of other reactivity indicators, the slightly lower
value of ionization potential but higher value for the electron affinity computed for the I’n
isomers over the corresponding In isomers, suggests that the I’n configurations are both
slightly more basic and acidic that the In derivatives. The I’n isomers being more basic and
acidic than the In conformations is consistent with the reports in literature [41,42]. Analysis
of these reactivity indicators shows that the compound’s reactivity is not significantly
influenced by the length of terminal alkoxide as close values were predicted for the member
of each set of the isomers. In the case compound polarity, the greater dipole moment
together with the isotropic polarizability recorded for the I’n isomers suggests higher
polarity over the In counterparts. [43,44]. On the other hand, the frontier molecular orbitals
study portrayed in Figure 5 showed similar molecular distributions between the two
isomers at the HOMO level as well as that of the LUMO (FMO’s). This could be attributed
to the little difference between the corresponding HOMO and LUMO energy levels for each
member of the two the isomers [40]. On the part of the HOMO, the electron clouds were
evenly distributed over the oxygen atom of –OH group, carbon atoms and the π- system
of the first two phenyl rings as well as the –N=CH– linkage between them. However,
the third phenyl ring and its attached terminal alkyl group were highly electron deficient.
The electron deficiency of alkyl groups could be attributed to the resultant effect of the
O-C=O linkage, which is an electron withdrawal that resonantly stabilizes the phenoxide
ion to which it is attached. This makes the phenoxide more acidic and, as such, causes
electrons withdrawal from alkyl groups. In the case of LUMO, the oxygen atom of –OH
group has lower electron density compared to that of HOMO while the electron clouds are
only distributed over the carbon atoms of the first phenyl ring. Furthermore, the electron
clouds distribution covers carbon atoms and the π- system of the second phenyl ring, the
carbonyl part of the –OCO– between the second and third phenyl rings together with the
carbon atoms of the third phenyl ring. On the part of the molecular electrostatic potential
(MEP) presented in Figure 6, the red cloud above the carbonyl and phenolic oxygen atoms
indicates low electrostatic potential but high electron density. On the other hand, the blue
cloud over the phenolic hydrogen portrays high electrostatic potential with low electron
density [45–49].

3.2.4. Calculated Energies

The magnitude of any of thermodynamic dynamic parameters as well as energy of a
system is size-dependent. This assertion is reflected in the results presented in Table 4 for
which the values of all the calculated parameters increase with the increasing chain length
of terminal alkoxy chain [44–47,49]. Moreover, the similar values predicted for the energy
indicators of the corresponding members of the two isomers is due fact that they have the
same molecular formula but only differ in configurations which do not significantly affect
the energy.

Table 3. Reactivity parameters calculated at B3LYP/6-31G(d,p).

Isomer EHOMO (eV) ELUMO (eV) ∆E (eV) Dipole Moment
(Debye) I.P (eV) E.A (eV)

Isotropic
Polarizability

(Bohr3)

In I’n In I’n In I’n In I’n In I’n In I’n In I’n
I6 −5.533 −5.409 −1.397 −1.506 4.136 3.903 1.842 4.0524 5.533 5.409 1.397 1.506 347.76 350.27
I8 −5.531 −5.409 −1.396 −1.504 4.135 3.904 1.8823 4.0943 5.531 5.409 1.396 1.504 371.19 373.63

I10 −5.544 −5.409 −1.395 −1.504 4.149 3.905 1.854 4.1151 5.544 5.409 1.395 1.504 393.15 396.75
I12 −5.544 −5.409 −1.394 −1.503 4.150 3.905 1.8637 4.1272 5.544 5.409 1.394 1.503 416.11 419.74
I14 −5.545 −5.409 −1.394 −1.503 4.151 3.906 1.8684 4.1342 5.545 5.409 1.394 1.503 438.98 442.66
I16 −5.530 −5.401 −1.396 −1.519 4.135 3.883 1.9253 4.1305 5.530 5.401 1.396 1.519 463.15 466.97
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Table 4. Zero-point energy and thermodynamic parameters for series In, calculated at B3LYP/6-
31G(d,p).

Isomer ZPE (kcal/mol) Thermal (kcal/mol) Enthalpy (kcal/mol) Gibbs (kcal/mol) Entropy (cal/mol.K)

In I’n In I’n In I’n In I’n In I’n
I6 299.466 299.473 317.878 317.865 318.470 318.458 257.610 258.042 204.125 202.637
I8 335.279 335.256 355.383 355.355 355.976 355.947 291.020 291.237 217.865 217.036
I10 371.030 371.035 392.831 392.841 393.423 393.433 324.303 324.401 231.829 231.534
I12 406.805 406.815 430.315 430.327 430.907 430.919 357.429 357.555 246.449 246.064
I14 442.582 442.595 467.801 467.813 468.393 468.405 390.546 390.715 261.100 260.576
I16 478.457 478.409 505.372 505.343 505.964 505.936 423.924 423.811 275.164 275.446

4. Conclusions

New imine homologues series, (E)-4-((4-hydroxybenzylidene)amino)phenyl 4-(alkoxy)
benzoate, were synthesized and examined via experimental and theoretical approaches.
Their thermal and mesomorphic behaviors were investigated using DSC and POM. All
new compounds were found to be non-mesomorphic. DFT theoretical calculations were
based on two conformers of each derivative. The computational study revealed that the
orientation of imine linkage is vital to the isomer stability while their thermal properties
were predicted to be size-dependent.
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