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The current obesity “epidemic” in the developed world is a major health concern;
over half of adult Canadians are now classified as overweight or obese. Although the
reasons for high obesity rates remain unknown, an important factor appears to be
the role stressors play in overconsumption of food and weight gain. In this context,
increased stressor exposure and/or perceived stress may influence eating behavior and
food choices. Stress-induced anorexia is often noted in rats exposed to chronic stress (e.g.,
repeated restraint) and access to standard Chow diet; associated reduced consumption
and weight loss. However, if a similar stressor exposure takes place in the presence of
palatable, calorie dense food, rats often consume an increase proportion of palatable food
relative to Chow, leading to weight gain and obesity. In humans, a similar desire to eat
palatable or “comfort” foods has been noted under stressful situations; it is thought
that this response may potentially be attributable to stress-buffering properties and/or
through activation of reward pathways. The complex interplay between stress-induced
anorexia and stress-induced obesity is discussed in terms of the overlapping circuitry and
neurochemicals that mediate feeding, stress and reward pathways. In particular, this paper
draws attention to the bombesin family of peptides (BBs) initially shown to regulate food
intake and subsequently shown to mediate stress response as well. Evidence is presented
to support the hypothesis that BBs may be involved in stress-induced anorexia under
certain conditions, but that the same peptides could also be involved in stress-induced
obesity. This hypothesis is based on the unique distribution of BBs in key cortico-limbic
brain regions involved in food regulation, reward, incentive salience and motivationally
driven behavior.
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INTRODUCTION
The worldwide prevalence of obesity has doubled since 1980
and we have entered what is being called a “tsunami of obe-
sity.” According to the 2008 Statistics Canada report, 61% of
adult Canadians were overweight or obese, contributing to and/or
exacerbating outcomes of various health conditions including
cardiovascular disease, type II diabetes, sleep apnea, as well as
many psycho-social disorders (Stein and Colditz, 2004).

While the causes of the obesity epidemic are complex, stress
has been identified as an important factor. Increased rates of
obesity have been accompanied by a concomitant rise in per-
ceived stress in North America. In humans, greater reported
stress is associated with greater desire to eat, including binge
eating (Warne, 2009). Further, high levels of perceived stress
correlate with weight gain and obesity, as women who self-
identify as high-stress responders to a laboratory stressor, have
significantly greater BMI and sagittal diameters, than low-stress
responders (Tomiyama et al., 2011). Similarly, students who self-
identify as stress-eaters have higher levels of stress hormones
like cortisol, during stressful periods, such that the elevated
cortisol may be associated with their increased desire to eat
(Epel et al., 2004).

While increased indices of stress in society are a tempting
explanation for the obesity epidemic, it may be deceptively
simple, as stress appears to affect feeding in a bidirectional man-
ner. In humans, stress causes increased food intake in one subset
of the population and conversely causes decreased food intake in
another; why some people lose weight and other gain weight is
not yet well understood (Stone and Brownell, 1994; Epel et al.,
2004). Stress-induced anorexia is also commonly seen in ani-
mal research, where rats fed a standard chow diet lose weight or
decrease food intake in response to chronic stress (e.g., repeated
restraint or variable stressors) (Martí et al., 1994; Harris et al.,
1998; Pecoraro et al., 2004). Indeed stress severity can alter Chow
intake, such that the greater the severity of the stressor, the
greater the suppression of Chow intake (Torres and Nowson,
2007; Maniam and Morris, 2012). However, there is also evidence
of rodents that alternatively increase food consumption or gain
weight in response to chronic stress, in particular, repeated social
defeat (Foster et al., 2006; Tamashiro et al., 2007a,b). It bears not-
ing that the stressor paradigms used by researchers, vary widely in
terms of duration, intensity and nature (i.e., systemic, neurogenic,
psychosocial etc.), making it exceedingly challenging to categorize
the varied feeding responses.
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Beyond the nature of the stressor itself, the type of food avail-
able appears to vary greatly, potentially contributing to the dis-
crepant findings ranging from stress-induced anorexia to stress-
induced obesity. In rats, while Chow consumption often decreases
following repeated stress, consumption of tasty, calorie dense
“palatable” food (typically high fat/high sugar content) remains
unaffected (Ortolani et al., 2011) and the proportion of palat-
able food eaten relative to standard Chow can increase (Pecoraro
et al., 2004). Additionally, while stress often induces weight loss
in rats fed standard lab Chow, this weight loss can be reversed if
given access to a palatable food diet (Harris et al., 1998; Pecoraro
et al., 2004; Ortolani et al., 2011). Further, our lab has shown that
palatable food consumption exacerbated the effects of a stressed
rat’s ability to handle a glucose load challenge and led to increased
accumulation of visceral fat (MacKay et al., 2011), indicating that
the combination of stressor exposure and access to palatable food
may predispose individuals to developing metabolic syndrome
and/or obesity later in life.

The interactions between feeding regulation and stress must
be complex to produce such varied phenotypes; indeed, feeding
regulation under non-stress conditions involves many interact-
ing signals, and the mechanism(s) becomes increasingly complex
when stress is introduced (Torres and Nowson, 2007; Maniam
and Morris, 2012). It is not surprising, then, that many of the
regulatory systems and circuitry that govern feeding are sensi-
tive to stress. Several neural signals, neuropeptides in particular,
serve dual roles as regulators of both feeding and stress response,
and are thus well-positioned to mediate stress-induced changes
in feeding behavior. These peptides include (but are not limited
to) corticotropin-releasing factor (CRF), leptin, ghrelin, orexin,
neuropeptide Y, melanocortin and cholecystokinin (Crawley and
Corwin, 1994; Dallman et al., 1995; Hanson and Dallman, 1995;
Merali et al., 1998; Koob and Heinrichs, 1999; Ahima and Flier,
2000; Vergoni and Bertolini, 2000; Dhillo et al., 2002; Ueta et al.,
2003; Spinazzi et al., 2006; Stevanović et al., 2007; Kirsz and Zieba,
2011; Barson et al., 2013).

Another family of peptides similarly implicated in both feeding
and stress is the bombesin-like peptides (which will henceforth
be referred to as BBs). Bombesin, a 14 amino acid peptide first
isolated from the skin of the frog Bombina bombina (Erspamer
et al., 1970), originally generated intense interest because of
its potent biological actions in mammals (Panula, 1986). Two
mammalian bombesin homologs were subsequently discovered
including gastrin-releasing peptide (GRP) and neuromedin B
(NMB) (McDonald et al., 1979; Minamino et al., 1983, 1988).
Appropriate receptors have also been identified (Minamino et al.,
1988; Spindel et al., 1990; Battey and Wada, 1991; Jensen et al.,
2008): whereas GRP has a greater affinity for BB2 receptors,
NMB preferentially activates the BB1 receptor subtype (Spindel
et al., 1990; Battey and Wada, 1991; Jensen et al., 2008), and
the BB3 receptor is a structurally related orphan receptor whose
endogenous ligand remains unidentified (Weber et al., 1998).

BBs have long been recognized for their satiety properties as
they are able to shorten meal size and duration of all mammals
tested [for reviews, see (Merali et al., 1999; Yamada et al., 2002)].
Exogenous BB administration also activates the hypothalamic-
pituitary-adrenal (HPA) axis and endogenous BBs are released

during stressor exposure suggesting a role in mediation and/or
modulation of the stress response (Merali et al., 2002). These
facts, which will be expanded upon below, provide the framework
for our first contention; that BBs play a role in stress-induced
anorexia. However, beyond this more obvious role, we also con-
tend that when stressor exposure is combined with a palatable
food diet, the satiety effects of BB are superseded by extra-
hypothalamic (cortico-limbic) BBs that promote obesity. This
contention is based on the following which will be outlined in
detail below: BBs (1) are released in response to not only aversive
events (stressor exposure), but appetitive (food reward) events as
well (Merali et al., 1998); and (2) are specifically localized in key
brain regions involved in both stress and reward circuits, where
they influence motivationally driven behavior (Merali et al., 2004,
2011, 2013; Mountney et al., 2008).

PALATABLE FOOD IMPACTS FEEDING RESPONSE TO STRESS
Palatable food may be distinguished from regular Chow because
it is capable of activating neural reward circuitry. The power-
ful rewarding properties of food have been paralleled to those
of drugs of abuse, and thus overeating has been compared to
addiction (Dagher, 2009; Avena and Gold, 2011). Removal of
a palatable diet can induce withdrawal-like behaviors (Cottone
et al., 2009) and can cause rodents to endure aversive stimuli in
order to regain access to palatable food (Pickering et al., 2009).
Interestingly, stress is implicated in the reinstatement of not only
substance abuse among abstinent drug users but also of failure
among dieters (Adam and Epel, 2007). Stress and food reward
both activate a broad array of neurocircuits involving several
brain regions, including limbic [amygdala, nucleus accumbens
(NAcc)] and cortical areas [anterior cingulate cortex (ACC)]
(Lutter and Nestler, 2009; Dallman, 2010); circuits that often
overlap.

It is noteworthy that the ability of palatable food to acti-
vate reward circuitry is associated with another phenomenon,
whereby access to palatable food can mitigate or dampen the
effects of stressors (Pecoraro et al., 2004; Dallman et al., 2005;
Ulrich-Lai et al., 2010). Access to so-called “comfort food”
appears to diminish the activation of the HPA axis in response
to stress. This is reflected by attenuated release of adreno-
corticotropic hormone (ACTH) and corticosterone following
acute (restraint) stress (Kinzig et al., 2008; Foster et al., 2009;
Christiansen et al., 2011a) and chronic stress (Pecoraro et al.,
2004; Ulrich-Lai et al., 2007; Maniam and Morris, 2010b). In
addition, consumption of palatable food has also been linked to
improved emotional states, as reflected by reduced anxiety- and
depressive-type behaviors (Maniam and Morris, 2010a,b; Ulrich-
Lai et al., 2010). Consistent with these reports, our lab recently
showed that resting and stressor-induced levels of corticosterone
were attenuated in rats with access to the palatable (or comfort)
foods, compared to controls that only had access to Rat Chow (or
“mundane” food). In addition, episodic stressor exposure dur-
ing the juvenile period is also associated with profound long-term
anxiety and this effect is attenuated by access and consumption of
comfort food (MacKay et al., 2011). The ability of comfort food
to dampen the effects of stress appears to be linked to its hedonic
value, as oral consumption of sucrose or non-caloric sweetener
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also provides stress-buffering effects, while intra-gastric gavage of
sucrose does not (Ulrich-Lai et al., 2010).

The increasing levels of perceived societal stress accompanied
by stress-dampening properties of comfort food may, in part,
contribute to the obesity epidemic. It has been suggested that the
stress relief provides negative reinforcement for the consumption
of palatable food (Parylak et al., 2011). The learned association
between comfort food and stress relief may result in the habit-
ual consumption of comfort food in response to stress (Dallman,
2010), particularly given that stress promotes habitual behavior at
the expense of goal-directed behaviors (Schwabe and Wolf, 2009).

FEEDING AND STRESS: OVERLAPPING NEURAL CIRCUITRY
The decision to eat or not to eat is regulated by two parallel
and interacting systems, namely the homeostatic and the non-
homeostatic systems (Kelley et al., 2005; Lutter and Nestler, 2009).
The homeostatic system includes classic hypothalamic and brain-
stem pathways that govern energy balance in response to nutrient
availability (Suzuki et al., 2010). The hypothalamus is a key region
where many feeding circuits converge, (Benarroch, 2010; Maniam
and Morris, 2012; Sinha and Jastreboff, 2013); this region is also
known to participate in the mediation of the stress response.
Stress activates the HPA axis, causing cascading release of CRF
from the hypothalamus, ACTH from the anterior pituitary, and
finally glucocorticoids (GCs) from the adrenals. It is notewor-
thy that these essential stress signals also have effects on feeding;
in fact, central administration of CRF inhibits feeding (Arase
et al., 1988), while central administration of GCs promotes feed-
ing (Dallman et al., 2007). Within the hypothalamus, the arcuate
nucleus contains two populations of neurons; one that stimulates
feeding and one that inhibits feeding (Benarroch, 2010; Suzuki
et al., 2010). These neurons project to the lateral hypothala-
mus, which communicates with reward circuitry (to be further
discussed later), and the paraventricular nucleus of the hypothala-
mus (PVN) where CRF-producing neurons initiate the HPA axis
cascade of stress response (Suzuki et al., 2010; Pandit et al., 2011).
The hypothalamic nuclei are also responsive to several feeding
signals, including insulin, leptin, and GCs (Dallman et al., 2006;
Maniam and Morris, 2012; Sinha and Jastreboff, 2013). It is wor-
thy of note that BBs, (particularly GRP) and their receptors as
well as BB3 receptor mRNA are highly localized in the hypothala-
mus at key feeding sites including the PVN and arcuate nucleus
(Battey and Wada, 1991; Ladenheim et al., 1992; Zhang et al.,
2013).

The homeostatic pathways are then embedded in a much
larger neural circuitry referred to as the non-homeostatic, or
cortico-limbic, system (Kelley et al., 2005; Lutter and Nestler,
2009); this is supported anatomically as many hypothalamic
nuclei receive inputs from several relevant cortico-limbic regions
(Benarroch, 2010; Berthoud, 2011; Stanley et al., 2011). The non-
homeostatic system coordinates metabolic needs with external
factors including external challenges, habits, and pleasurable feel-
ings, and enables consumption of palatable foods well beyond
the point when energy demands have been met (Kampe et al.,
2009; Zheng et al., 2009; La Fleur et al., 2010). The limbic
circuitry is known for its involvement in emotion (Davidson
and Irwin, 1999), but cortico-limbic circuitry also mediates

the rewarding aspects of food, including “liking,” which is
the pleasure associated with actual food consumption, and
“wanting,” which is the motivation to obtain food (Berridge,
1996).

As stipulated earlier, within the cortico-limbic circuitry are
sites involved in feeding, stress and reward. The NAcc appears
to be a critical region in feeding, especially of palatable food
(Kelley et al., 2005; Alsiö et al., 2010; Miner et al., 2010).
Indeed, food reward is capable of eliciting dopamine (DA) release
from the NAcc in the same way as do addictive drugs such
as cocaine and amphetamine (Hernandez and Hoebel, 1988;
Pandit et al., 2011). Parenthetically, stress also elicits DA release
from the NAcc (Abercrombie et al., 1989; Deutch and Cameron,
1992; Kalivas and Duffy, 1995), and stress-induced DA release
from the NAcc is absent in rats that cannot produce GCs
(Rougé-Pont et al., 1998). Importantly, extremely high densi-
ties of both BB1 and BB2 receptors are localized at the NAcc
(Ladenheim et al., 1992). In contrast, only low to moderate lev-
els of BB3 receptor mRNA are expressed at this site (Zhang et al.,
2013).

The amygdala is activated by both pleasant and aversive tastes
(O’Doherty et al., 2001b) and contains two nuclei of interest,
namely the basolateral amygdala (BLA) and the central amyg-
dala (CeA). Both nuclei are implicated in stress (Davis and
Whalen, 2001) as well as reward circuitry (Ahn and Phillips, 2002;
Carelli et al., 2003), particularly in the conditioning of reward
cues (Mahler and Berridge, 2009; Jones et al., 2010), includ-
ing food-related cues (Petrovich et al., 2009; Petrovich, 2011).
Within the amygdala, a moderate density of BB1, BB2, and BB3

receptor mRNA are expressed at the CeA (Ladenheim et al.,
1992), whereas BB2 receptor mRNA is highly expressed in the
lateral amygdala (part of the BLA complex) (Shumyatsky et al.,
2002).

The ACC, which is innervated by the hypothalamic arcuate
nucleus via the lateral hypothalamus (Kampe et al., 2009), is
involved in emotion (Shackman et al., 2011) as well as higher
order processes such as decision-making (Rosenbloom et al.,
2012), self-awareness (Allman et al., 2010), attention (Weible,
2013), and reward (O’Doherty et al., 2001a; Berthoud, 2011).
Imaging and electrophysiological studies further support involve-
ment of the ACC in food reward as it is responsive to the
sensory or hedonic properties as well as the palatability of food
(O’Doherty et al., 2001b; Verhagen et al., 2003; Rolls, 2005).
We recently showed that activation of GRP receptors in the
ACC elicits GRP, but not CRF, release at the BLA, suggesting
a functional pathway between these two regions utilizing BBs
(Merali et al., 2013). It is of interest to note that there is a
population of specialized neurons within the ACC of humans
and primates, that selectively express NMB and GRP (Allman
et al., 2010); the so called von economo neurons (VENs) are
involved in consciously motivated behavior. While they are not
as clearly delineated in the brains of lower mammals, NMB and
GRP mRNA, are expressed in a restricted population of neu-
rons in the ACC of rodents (Allman et al., 2011) thought to
be homologous to VENs in humans and represent an intrigu-
ing target for investigation with respect to ingestion-related
processes.
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FEEDING AND STRESS: OVERLAPPING NEURAL
MODULATORS
Beyond the overlapping circuitry between stress and feeding,
there are also overlapping neurochemical signaling systems.
Indeed, it is increasingly being recognized that many of the pep-
tides involved in the regulation of food intake also seem to
influence the stress response. Such peptides thus are well posi-
tioned to play a role in stress-induced changes in feeding behavior,
including stress-induced anorexia or stress-induced obesity. For
example, cholecystokinin, a satiety peptide involved in meal ter-
mination (Moran, 2006) activates the HPA axis (Antonijevic et al.,
2000; Karlsson et al., 2005) and is also a powerful panicogenic
agent (Zwanzger et al., 2012). Conversely, the orexigenic pep-
tide neuropeptide Y, suppresses HPA activity and has anxiolytic
properties (Antonijevic et al., 2000; Karlsson et al., 2005). In addi-
tion, both orexin and ghrelin which promote food intake or leptin
which suppresses food intake all stimulate the HPA axis (Ahima
and Flier, 2000; Asakawa et al., 2001; Spinazzi et al., 2006; Barson
et al., 2013; Uchida et al., 2013). Likewise, BBs appear to have
a dual function in feeding and stress responses, which will be
further discussed below.

BBs IN FEEDING AND STRESS: POTENTIAL ROLE IN
STRESS-INDUCED ANOREXIA
BBs influence a wide range of biological processes including
thermoregulation, itch sensation, smooth muscle contraction,
cell growth, endocrine response as well as numerous behavioral
effects (Schjoldager et al., 1991; Itoh et al., 1995; Shumyatsky
et al., 2002; Mountney et al., 2008; Merali et al., 2011, 1999;
Su and Ko, 2011; Saito et al., 2013). However, this family of
peptides, which is distributed throughout the gastrointestinal
tract and brain, are widely recognized for their ability to influ-
ence digestion and food intake. As the name of one mammalian
form, GRP, implies, BBs dose dependently stimulate gastrin and
gastric acid secretion when administered peripherally (Knigge
et al., 1984; Hildebrand et al., 2001), however, when injected
into the brain, BB and GRP are potent inhibitors of gastric acid
secretion (Martinez and Taché, 2000). On a behavioral level,
both systemic and central administration of BBs suppress food
intake and evoke behavioral and physiological responses akin
to spontaneous satiety (Kulkosky et al., 1982; Smith and Gibbs,
1984; Merali et al., 1999). Bombesin is the most potent at sup-
pressing food intake (due to activation of both BB1 and BB2

receptors), followed by GRP and then NMB (Sayegh, 2013).
The satiety effects of exogenously administered BBs will not be
outlined in further detail as they have been well described in sev-
eral review papers (Gibbs and Smith, 1988; Merali et al., 1999;
Yamada et al., 2002; Majumdar and Weber, 2011; Sayegh, 2013).
Additional evidence for a role of BBs in the regulation of food
intake comes from studies showing changes in peptide levels
or mRNA expression in different metabolic states. For example,
our lab has shown changes in tissue levels of immunoreactive
(ir)-BBs at specific gut and brain regions in response to food
ingestion and deprivation (Merali and Kateb, 1993; Plamondon
and Merali, 1997). During a spontaneous meal ingestion, lev-
els of ir-BBs increased significantly at hypothalamic structures
including the PVN, arcuate nucleus and dorsomedial nucleus

(Plamondon and Merali, 1997). Moreover, interstitial levels of
BBs (assessed using push-pull perfusion) at the PVN were higher
before meal ingestion and after the meal, as compared to those
noted during food ingestion (Plamondon and Merali, 1994).
More recently it was shown that food deprivation decreased
GRP mRNA expression at the PVN, while a melanocortin
agonist increased GRP mRNA at this site (Ladenheim et al.,
2009).

The use of knockout strategy has further revealed that a lack
of BB3 receptors results in hyperphagia, leptin and insulin resis-
tance, glucose metabolism dysregulation and the development of
late onset obesity (Ohki-Hamazaki et al., 1997). Moreover, treat-
ment with a novel synthetic BB3 agonist results in weight loss and
increased metabolic rate in mice and dogs (Guan et al., 2011),
supporting evaluation of the BB3 receptor as a potential therapeu-
tic target for obesity (Zhang et al., 2013). It is also noteworthy that
mice lacking BB2 receptors eat more food during a meal than wild
type mice and gain more weight over the long term, consistent
with a role for this receptor subtype in satiety (Ohki-Hamazaki
et al., 1997; Ladenheim et al., 2002). In contrast, mice lacking the
BB1 receptor showed no alterations in food intake or body weight
gain (Ohki-Hamazaki et al., 1999), however, human genetic stud-
ies support a strong association between polymorphisms on the
NMB gene and increased adiposity and obesity (Bouchard et al.,
2004; Spálová et al., 2008; Pigeyre et al., 2010). Interestingly, in
adolescence, the association between the polymorphism on the
NMB gene and obesity was exacerbated in families of lower socio-
economic status (Pigeyre et al., 2010). High fat diets, low physical
activity and exposure to chronic stress are more prevalent in fam-
ilies of low socio-economic status (James et al., 1997; Baum et al.,
1999).

BBs are also implicated in the mediation of the stress response.
BBs are located in all major nodes of the HPA axis including the
PVN, the anterior pituitary and the adrenal gland in addition
to other stress responsive regions (Merali et al., 2002). Central
administration of BBs activates both the HPA axis and the sym-
pathetic branch of the autonomic nervous system as reflected by
increased release of ACTH, corticosterone, norepinephrine and
epinephrine; these effects are blocked by pretreatment with com-
petitive and specific BB receptor antagonists (Brown et al., 1979,
1988; Gunion et al., 1989; Carver-Moore et al., 1991; Olsen et al.,
1992; Malendowicz and Nussdorfer, 1995; Okuma et al., 1996; Au
et al., 1997; Garrido et al., 1998, 1999; Malendowicz, 1998).

Considerable evidence suggests that BBs exert some of these
effects via activation of CRF neurons. For example, pretreat-
ment with a CRF receptor antagonist can block the endocrine,
sympathetic and behavioral effects of central GRP administra-
tion (Garrido et al., 1998, 2002; Kent et al., 2001b). Moreover,
we reported that central BB administration stimulates the release
of CRF from the median eminence (the primary source of CRF
release during HPA activation) translating into an increased
availability of this peptide downstream at the anterior pituitary
(Kent et al., 2001a). Interestingly, there is also recent evidence
of co-localization of BB3 and CRF receptors within the hypotha-
lamus, including at the PVN and dorsomedial nucleus, yet the
functional significance of this overlapping circuitry remains to be
determined (Zhang et al., 2013).
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Moreover, the BB systems are stress responsive as site-specific
alterations in the endogenous levels of BBs and BB receptor densi-
ties are observed in response to acute stressor (restraint) exposure,
including increased BBs at the hypothalamus and increased BB
receptors at the PVN (Kent et al., 1998). Finally, we observed
that acute restraint elicits the release of both CRF and BBs at the
CeA (Merali et al., 1998), whereas chronic restraint exposure is
associated with elevated interstitial levels of GRP at the anterior
pituitary (Merali et al., 2009).

Taken together, these results suggest that under normal, non-
stressful conditions, BBs have satiety effects. Given that BBs
are released in response to stressor exposure (both acute and
chronic), this peptidergic system is likely involved in stress-
induced anorexia. Logically, then, weight gain associated with
some models of stress (i.e., chronic psychosocial stress) may be
linked to a decreased ability to respond to BBs’ satiety effects,
which is supported by the finding that obese women are less sen-
sitive to BB-induced satiety than lean women (Lieverse et al.,
1998), and this is also consistent with the obesity seen in BB
receptor knockout mice. We could speculate that reduced sen-
sitivity to BB may be the result of stressor-induced alterations
in BB signaling leading to down-regulation of BB receptors at
feeding relevant sites, attributable to prolonged release and expo-
sure to BBs. Indeed, we have observed enhanced interstitial level
of BBs at the anterior pituitary (located downstream of the
hypothalamus) in response to chronic stressor (14 once daily
restraint sessions) exposure (Merali et al., 2009), which could pro-
vide a mechanism for a stress-induced down-regulation of BB
receptors. In support of this contention, we recently observed
reduced mRNA expression of BB2 receptors at the PVN follow-
ing chronic corticosterone exposure (unpublished finding; see
Figure 1). Moreover, sustained BB exposure (via chronic infu-
sion) resulted in a down-regulation of BB receptors at the PVN
and a tolerance development to the feeding suppressant effects of
BB (Plamondon et al., 1998).

BBs IN INCENTIVE SALIENCE AND REWARD PROCESSES:
POTENTIAL ROLE IN STRESS-INDUCED OBESITY
It was originally thought that the classic feeding regulators acted
predominantly on homeostatic systems to control energy balance;

FIGURE 1 | Mean ± SEM (fold change) of mRNA expression of BB2 at

the PVN in placebo or corticosterone pellet (100 mg, 21 day slow

release) implanted rats. Chronic corticosterone exposure resulted in a
significant reduction in BB2 mRNA expression at the PVN. ∗Significantly
different from placebo at p < 0.05.

however, increasing evidence suggests that food intake is a much
more complex process, involving a much broader array of func-
tions. In keeping with the contention of dual roles in feeding
and stress, several years ago we reported that both appetitive
(palatable food; graham crackers) and aversive (restraint stress)
stimuli provoked in vivo release of BBs and CRF at the CeA,
with a parallel rise in circulating corticosterone levels (Merali
et al., 1998) (see Figure 2). To explain similar neurochemical
responses to both aversive and appetitive stimuli, we suggested
that rather than evoking fear and anxiety, these so-called “sati-
ety/stress peptides” may serve to draw attention to biologically
significant events (or cues) such as those associated with food
availability as well as those posing physical threat. This would be
akin to dopaminergic responses that might act in a similar capac-
ity (Richardson and Gratton, 1996; Wickelgren, 1997). Indeed,
dopaminergic neurons within the prefrontal cortex and NAcc,
once thought to be exclusively involved in reward, were subse-
quently found to be responsive to stressors or stimuli with a
negative valence (Horvitz, 2000). These observations led to the
suggestions that dopaminergic signals contribute to specific cog-
nitive functions and/or arousal (Richardson and Gratton, 1996;
Horvitz, 2000). With time, this idea of stressor-induced increased
incentive salience became a cornerstone to Dallman’s “comfort
food theory of obesity”(Dallman et al., 2005; Dallman, 2010). Her
work showed that chronic stressor exposure elicits high levels of
GCs and increases synthesis of CRF at stress/reward-responsive
cortico-limbic sites like the CeA, which in turn enhances both the
drive to consume as well as the salience of palatable foods (Foster
et al., 2009). Once consumed, comfort foods themselves activate
reward centers to subsequently reduce HPA activity.

Like BBs, the CRF family of peptides potently suppress
food intake, and have been implicated in stressor-induced
decreases in food intake (Dunn and Berridge, 1990; Koob and
Heinrichs, 1999). However, beyond satiety effects, CRF has also

FIGURE 2 | Release of BBs at the CeA as measured by in vivo

microdialysis in response to (A) restraint stress exposure (20 min hand

restraint on two separate occasions called stress 1 and stress 2) or (B)

presentation and ingestion of a palatable snack where microdialysis

samples were collected continually and pooled every 30 min for 5 h.

The quantity of food ingested during the 30 min bin was noted and the
30 min period before meal initiation was considered the preprandial period,
and the 30 min sample preceding this was considered the baseline. Both
stressor exposure and ingestion of a palatable snack elicited a significant
increase in the release of BBs (and CRF) at the CeA accompanied by a
parallel increase in plasma corticosterone levels. ∗,∗∗Significantly different
from baseline at p < 0.05 and p < 0.01, respectively. ††Significantly
different from stress 1 at p < 0.01.
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been implicated in reward pathways and incentive salience. For
instance, increase in the release of CRF or its mRNA expression
is provoked by natural rewards and incentive cues, at relevant
cortico-limbic sites including the ACC and CeA (Merali et al.,
2004; Foster et al., 2009). Moreover, CRF at the NAcc ampli-
fies positive motivation for cued rewards by magnifying incentive
salience (Peciña et al., 2006) and injection of CRF at this site
elicits conditioned place preference for the chamber paired with
CRF; the conditioning is dependent on CRF-induced DA release
in this region (Lemos et al., 2012). Finally, in humans, low dose
CRF administration increased palatable food consumption in a
cortisol dependent manner (George et al., 2010).

Despite the provocative data, BBs involvement in incentive
salience and reward has yet to be fully investigated. Given the sim-
ilarities between BBs and CRF, and the fact that many of BBs stress
effects appear to be mediated by CRF (as described above), we
expect that BBs may similarly affect reward processes. As men-
tioned earlier, like CRF, BBs are released at the CeA in response to
both stressor exposure and ingestion of a palatable snack (Merali
et al., 1998). Notably, rats exposed to high chronic (14 days) doses
of corticosterone (via systemic pump implants) show exagger-
ated stressor-provoked GRP (and CRF) release at the CeA and
medial prefrontal cortex (which encompasses the ACC) (Merali
et al., 2008) (see Figure 3). These findings are consistent with
the notion of a sensitized BB release at cortico-limbic structures
under stressful conditions (characterized by high GC levels).

In further support of the contended role of BBs’ in motiva-
tion/reward, these peptides appear to interact with DA at key
reward structures. DA is the neurotransmitter most closely associ-
ated with reward processes (Wise, 2004, 2006; Covey and Howard,
2011; Volkow et al., 2011), and has been implicated as one
of the mediators of food reward processes (Wise et al., 1978;
Bassareo and Di Chiara, 1999; Volkow et al., 2011). Our lab has
shown robust meal-related fluctuations in levels of BBs at the

FIGURE 3 | Interstitial levels of (A) immunoreactive (ir) -CRF or (B)

ir-GRP (expressed as a percentage of baseline values) at the CeA under

basal conditions and following exposure to an airpuff stressor (5

airpuffs; 5 s puff/min) in placebo or corticosterone pellet (100 mg, 21

day slow release) implanted rats. Chronic corticosterone exposure
potentiated the stressor-elicited release of CRF and GRP. ∗Significantly
different from respective baseline sample at p < 0.05. †Significantly
different from (sample-matched) placebo control condition at p < 0.05.

NAcc (Plamondon and Merali, 1997). Microinjection of BBs at
the NAcc elicits a marked increase in locomotor activity that is
blocked by pretreatment with a D1 receptor antagonist, impli-
cating BBs’ capacity to modulate dopaminergic activity within
this structure (Schulz et al., 1984; Johnston and Merali, 1988).
Blockade of D1 and/or D2 receptors also attenuates the central
BB-elicited increase in locomotor activity and grooming (Piggins
and Merali, 1989; Merali and Piggins, 1990). Additionally, BBs
increased DA synthesis in the dorsal striatum, olfactory tubercles,
and hypothalamus (Widerlöv et al., 1984) and increased the activ-
ity of tuberoinfundibular and tuberohypophysial DA neurons
(Manzanares et al., 1991).

It is also noteworthy that BBs interact with the inhibitory
neurotransmitter GABA. The GABAergic system is critical for
the regulation of both reward (Wirtshafter and Stratford, 2010;
Welberg, 2012), and stress (Herman et al., 2004), and is thought
to be tied to motivational aspects of feeding (Truong et al., 2002;
Takagi et al., 2003). Injection of GABAA or GABAB agonists
at the NAcc shell produces profound hyperphagia in satiated
rats (Stratford and Kelley, 1997; Basso and Kelley, 1999; Baldo
et al., 2005). Moreover, chronic stress increased expression of the
GABA-producing enzyme glutamic acid decarboxylase (GAD65)
at the anterior hypothalamus but decreased GAD65 expression
at the dorsal hypothalamus, effects reversed by palatable diet
(sucrose) consumption (Christiansen et al., 2011b). GABA is
also a key signal in reward pathways, as both a GABAA ago-
nist and amphetamine injected at the NAcc shell increase the
breaking point of lever pressing for food reward (Wirtshafter
and Stratford, 2010), suggesting the rodents will “work harder”
to attain reward. GRP infusion increases GABA efflux at the
ventral hippocampus, an effect blocked by a BB2 receptor antag-
onist (Andrews et al., 2000). Moreover, GABAergic interneu-
rons at the lateral amygdala abundantly express BB2 receptors
(Shumyatsky et al., 2002), and application of GRP stimulates
these interneurons to enhance inhibition of principal neurons
(Cao et al., 2010). GRP application also facilitates GABA release
at the ACC and amygdala (Cao et al., 2010). While the rela-
tionship between BBs and GABA at the amygdala is thought to
modulate learned fear (Shumyatsky et al., 2002), their interac-
tions in reward pathways, potentially at the NAcc, have yet to
be fully elucidated and present an intriguing avenue for further
investigation.

Taken together, BBs act at reward sites, potentially through
modulation of DA and/or GABA functioning. As such, the nec-
essary “hardware” is available to support a role for BBs in reward
processes. Additionally, our lab now has preliminary evidence
indicating that microinjection of BBs at the NAcc elicits DA
release at this site. Moreover, like for CRF, injection of BBs at
the NAcc is capable of eliciting conditioned place preference
(manuscript in preparation). Thus, we hypothesize that, like CRF,
BBs may act to increase the incentive salience associated with food
reward. It has been suggested that the combination of GCs and
CRF may act to associate the feeling of stress with the relief of
stress by palatable food (Dallman, 2010). Similarly, BBs’ ability to
increase incentive salience, through GCs, and/or through interac-
tions with DA or GABA, could strengthen a learned association
between stress and palatable food, to enhance the rewarding
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properties of palatable food and to promote palatable food
consumption.

In the realm of addiction research, which may also apply
to excessive palatable food intake, an alternate, more common
view for CRF, is that rather than increasing incentive salience or
reward, it actually decreases reward (increases the threshold for
reward). Indeed, behavioral consequences of stressor exposure
and CRF release are typically characterized by increased anxi-
ety and anhedonia (Cottone et al., 2009; Koob, 2013). Therefore,
increased intake of drugs of abuse or palatable food during stress
may provide a means to counteract the negative aversive (allo-
static) state (Cottone et al., 2009; George et al., 2012; Koob, 2013).
Likewise it may be argued that under stress, BBs increase the
“hedonic threshold” resulting in the need for increased palat-
able food consumption to achieve reward. While this remains a
possibility, the ability of BBs (and CRF) to increase conditioned
place preference when injected into the NAcc cannot be explained
within this framework. Also inconsistent with this theory, is the
ability of BBs to improve emotional states. For example, central
administration of GRP (injected i.c.v or localized at the CeA, BLA
or ACC), attenuated the fear potentiated startle (FPS) response
as well as the expression of learned fear (as seen by reduced lev-
els of freezing) in response to contextual cues (i.e., in the context
in which animals had previously been exposed to shock), and to
a tone that had previously been paired with a shock (Mountney
et al., 2006, 2008; Merali et al., 2011). Moreover, mice lacking BB2

receptors exhibit depressive-like behaviors (Monje et al., 2011).
Overall, therefore, based on evidence presented, we main-

tain the hypothesis that activation of BBs within cortico-limbic
circuitry may, under certain circumstances, increase incentive
salience/reward which may ultimately lead to weight gain/obesity.
In suggesting this hypothesis, it is recognized that at first blush,
it appears incompatible with the observed link between BB
receptor knockout models (BB2 and BB3) and eventual weight
gain/obesity. However, it should be emphasized that BB receptor
knockout strategy impacts all receptors and related circuitry. In
the case of CRF, research has shown that whereas the impact of
chronic stressor exposure (or chronic GC exposure) predictably
down-regulates hypothalamic CRF (particularly at the PVN),
it “paradoxically” up-regulates or sensitizes the CRF system at
cortico-limbic sites such as the CeA (Swanson and Simmons,
1989; Makino et al., 1994, 1999; Cook, 2002). Likewise it is
possible that the food/stress elicited changes in specific circuits

endowed with BB receptors may respond differentially; an effect
not functionally captured through knockout strategy.

CONCLUSIONS
In sum, we propose a dual function for BBs in stress and feed-
ing. Most obvious is a role for BBs in stress-induced anorexia.
Exogenous administration of BBs potently suppress food intake
and BBs are released centrally in response to stressor exposure
(both acute and chronic). Weight gain associated with some mod-
els of chronic stress could be linked to an inability to respond
to satiety signals, including those of BBs. As previously alluded,
there is evidence of BB receptor down-regulation (at feeding rel-
evant brain sites) following prolonged corticosterone exposure or
chronic BB administration (Plamondon et al., 1998) which could
be a mechanism for reduced sensitivity to the satiety effects of BBs
(disinhibition).

While increased BB signaling within feeding relevant homeo-
static circuitry may contribute to stress-induce anorexia or con-
versely, an impairment of BB signaling within this same circuitry
may promote stress-induced obesity (under some circumstances),
we further propose that increased BB signaling within cortico-
limbic circuitry may also contribute to stress-induced obesity.
It is when stressor exposure is combined with a palatable food
diet, that we believe this second scenario becomes relevant. BBs
are uniquely distributed within key cortico-limbic brain regions
linked to reward; most notably at the Nacc, ACC, and amyg-
dala. Moreover, we now have direct evidence that BBs, at the
NAcc, induce conditioned place preference which strongly sup-
ports their involvement in reward-mediated processes. It is our
contention that release of BBs at these cortico-limbic structures
may serve to increase incentive salience and/or reward associated
with palatable food; indeed future studies directly linking BB-
induced reward/incentive salience with increased palatable food
consumption need to be carried out to fully validate this hypoth-
esis. Through their interaction with GCs, DA and/or GABA, BBs
may enhance the rewarding/stress buffering properties of palat-
able food and/or strengthen a learned association between stress
and palatable food, which may in turn further promote palatable
food consumption ultimately leading to obesity.
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