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Abstract

Summary: Gene fusions can generate immunogenic neoantigens that mediate anticancer immune responses.
However, their computational prediction from RNA sequencing (RNA-seq) data requires deep bioinformatics expert-
ise to assembly a computational workflow covering the prediction of: fusion transcripts, their translated proteins
and peptides, Human Leukocyte Antigen (HLA) types, and peptide-HLA binding affinity. Here, we present NeoFuse, a
computational pipeline for the prediction of fusion neoantigens from tumor RNA-seq data. NeoFuse can be applied
to cancer patients’ RNA-seq data to identify fusion neoantigens that might expand the repertoire of suitable targets
for immunotherapy.
Availability and implementation: NeoFuse source code and documentation are available under GPLv3 license at
https://icbi.i-med.ac.at/NeoFuse/.
Contact: francesca.finotello@i-med.ac.at
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Neoantigens are tumor-specific peptides arising from the expression
of mutated genes in cancer cells. Class-I neoantigens, recognized as
‘non-self’ by CD8þ T cells, can elicit strong anticancer immune
responses. Besides being major determinants of response to immune
checkpoint blockers, neoantigens are at the basis of other cancer
immunotherapies like personalized cancer vaccines and adoptive T
cell therapy (Lee et al., 2018).

To date, most efforts have been directed at identifying neoantigens
generated from missense somatic mutations (Finotello et al., 2019).
However, tumor-specific gene fusions, splicing isoforms, and
expressed human endogenous retroviruses can also be a source of neo-
antigens (Smith et al., 2019). A recent study in patients with head and
neck cancer demonstrated that gene fusions generate immunogenic
neoantigens that can mediate the response to immune checkpoint
blockers in tumors with low mutational burden (Yang et al., 2019).

Computational strategies for the identification of fusion neoantigens
from RNA sequencing (RNA-seq) data have been proposed recently
(Rathe et al., 2019; Richman et al., 2019; Zhang et al., 2017).
However, all of them build upon pre-analysis with third-party tools to
first predict fusion transcripts from tumor RNA-seq and, thus, deep bio-
informatic expertise for the assembly of a full computational workflow.

Here, we present NeoFuse, a user-friendly pipeline for the pre-
diction of fusion neoantigens from tumor RNA-seq data. NeoFuse is
available as Singularity (https://sylabs.io) and Docker (https://www.
docker.com) images to simplify installation and analysis.

2 The NeoFuse pipeline

NeoFuse takes single-sample FASTQ files of RNA-seq reads as input
and predicts putative fusion neoantigens through five analytical
modules based on state-of-the-art computational tools (Fig. 1). Both
single- and paired-end data can be used, but we advise using the lat-
ter to increase sensitivity and accuracy of fusion detection. The first
module performs class-I Human Leukocyte Antigen (HLA) typing at
4-digit resolution using OptiType (Szolek et al., 2014), which is one
of the best performing methods for this task (Finotello et al., 2019).
The second module predicts fusion peptides using Arriba (https://
github.com/suhrig/arriba), considering both fusion junctions and 3’
out-of-frame sequences. We chose Arriba because it outperformed
competitor prediction methods in the DREAM Somatic Mutation
Calling–RNA Challenge (https://www.synapse.org/SMC_RNA).
Moreover, it computes a confidence score reflecting the likelihood
that a fusion is caused by a tumor-specific genomic rearrangement
and is not due to technical artifacts. The third module uses
MHCflurry (O’Donnell et al., 2018) to predict binding affinity of fu-
sion peptides to HLA types, quantified as half maximal inhibitory
concentration (IC50) and percentile rank. The fourth module lever-
ages STAR (Dobin et al., 2013) and featureCounts (Liao et al.,
2014) to quantify gene expression levels as transcripts per million.
Finally, the fifth module selects a reduced set of peptides represent-
ing putative fusion neoantigens by considering their binding affinity
and confidence score. Moreover, it annotates each neoantigen with
IC50, percentile rank, confidence score, binding HLA type,
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expression of fusion and HLA genes and information about the pres-
ence of a premature stop codon that might cause nonsense-mediated
decay of the fusion transcript.

NeoFuse is available as ready-to-use Singularity and Docker
images containing all the necessary software and dependencies. This
allows running the pipeline in an isolated environment, preventing
conflicts with other programs in the hosting environment. Local in-
stallation of the images is performed automatically by the NeoFuse
bash script depending on the user’s choice (‘–docker’ or ‘–singular-
ity’ option). Although not distributed as part of NeoFuse,
netMHCpan (Jurtz et al., 2017) can be used for peptide-HLA bind-
ing prediction instead of MHCflurry, provided that a local installa-
tion is available (see online documentation).

3 Applications

To assess the performance of the gene fusion prediction module, we
tested Arriba and other state-of-the-art tools on two benchmark
RNA-seq datasets (Supplementary Fig. S1). When used with the ‘-c
M’ parameter setting to select fusions with medium and high confi-
dence scores, Arriba together with STAR-Fusion (Haas et al., 2017)
resulted the best performer in terms of validated fusions identified,
while also limiting the total number of called fusions. More aggres-
sive or conservative solutions could be obtained using the ‘-c L’ or
‘-c H’ options, respectively. The analysis of each dataset with Arriba
took, on average, 6 min on a high performance computing node (HP
XL230a in Apollo 6000) utilizing 10 cores (Intel E5-2699A v4,
2.4 GHz) per sample.

As a test case, we analyzed eight RNA-seq datasets from the
MCF7 breast cancer cell line (Supplementary Table S1), selecting
fusions with medium and high Arriba confidence score and peptides
with an IC50 lower than 500 nM (‘-t 500’ option). On average, we
identified 144 putative neoantigens from 40 gene fusions, with
83.96% of gene fusions characterized by out-of-frame sequences. The
latter result suggests that gene fusions can be a source of neoantigens
whose sequences are extremely different from that of self-peptides.
Fusions shared across all datasets included gene pairs previously vali-
dated experimentally (BCAS4-BCAS3) or identified with computation-
al methods (ABCA5-PPP4R1L, DEPDC1B-ELOVL7) (Picco et al.,
2019). OptiType predicted the correct HLA genotypes for the
SRR1035698 dataset, but called homozygous HLA-B alleles for the
datasets with a low expression (Supplementary Table S2) and, thus,
read coverage of this gene (Supplementary Fig. S2).

4 Conclusions

NeoFuse is a novel computational pipeline to predict fusion neoanti-
gens from tumor RNA-seq data. It is based on state-of-the-art com-
putational tools and is available as ready-to-use Singularity and
Docker images to ease installation and usage, requiring limited bio-
informatic expertise. NeoFuse can be easily applied to RNA-seq
data from patients with different cancer types. Thus, it can be used
to identify fusion neoantigens that can broaden the repertoire of
candidates for therapeutic cancer vaccination and T cell-based ther-
apy and might ultimately extend the clinical benefit of immunother-
apy to patients with low tumor mutational burden. In the near
future, we plan to extend NeoFuse to the prediction of class-II fusion
neoantigens recognized by CD4þ T cells.
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Fig. 1. Schematization of the NeoFuse pipeline: computational modules represented

as dark-grey boxes (with tool names in square brackets) and output files as light-

grey boxes
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