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Abstract: Oxidative stress is a known contributor to the progression of dry eye disease pathophys-
iology, and previous studies have shown that antioxidant intervention is a promising therapeutic
approach to reduce the disease burden and slow disease progression. In this study, we evaluated
the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in
preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II
antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of
cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted
in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related
factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-
encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against
oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-
associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine
model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle
for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formu-
lations with the goal to minimize instillation frequency may represent future therapeutic options for
dry eye disease and related ocular surface disease.

Keywords: ocular surface disease; dry eye disease; antioxidant; xanthohumol; drug delivery;
PLGA nanoparticles

Pharmaceutics 2021, 13, 1362. https://doi.org/10.3390/pharmaceutics13091362 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-8392-9648
https://orcid.org/0000-0002-6154-5691
https://orcid.org/0000-0002-2528-7525
https://orcid.org/0000-0001-6878-521X
https://doi.org/10.3390/pharmaceutics13091362
https://doi.org/10.3390/pharmaceutics13091362
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13091362
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13091362?type=check_update&version=1


Pharmaceutics 2021, 13, 1362 2 of 18

1. Introduction

Dry eye disease is an umbrella term describing various subtypes of the disease. Dry
eye disease poses a substantial burden on the affected individual and society as a whole.
Existing pharmacologic management for dry eye disease targets T cell-mediated inflamma-
tory pathways and in the United States consists of ophthalmic formulations of cyclosporine
(Restasis® or Cequa™) or the lymphocyte function-associated antigen 1 inhibitor, lifitegrast
(Xiidra®). Both agents are associated with limited efficacy and adverse effects in up to
25% of patients [1–3], highlighting an urgent unmet clinical need for novel efficacious and
well-tolerated therapeutics.

Previous studies have implicated the generation of reactive oxygen species (ROS) and
the ensuing elevated levels of cellular oxidative stress as a key contributor to the patho-
physiology of dry eye disease (reviewed in [4]). Specifically, elevated levels of oxidative
stress have been identified in patients with dry eye disease [5,6], while hyperosmolar
conditions cause oxidative stress in cultured corneal epithelial cells [7]. We have recently
shown significant oxidative DNA damage in the corneal epithelium of mice exposed to
dry eye-inducing conditions of desiccating environment with scopolamine [8]. Similarly,
lacrimal gland dysfunction as a result of mitochondrial oxidative stress produces an ocular
phenotype reminiscent of dry eye disease in mice [9,10].

Notably, a mitochondrially-targeted antioxidant, SkQ1 (Visomitin), exerts anti-inflammatory
effects in human conjunctival epithelial cells in vitro [11], and has shown therapeutic ben-
efit in US Phase 2 clinical trials following approval in Russia in 2011 [12], providing
proof-of-concept evidence supporting the development of therapeutic approaches using
antioxidants to treat dry eye disease.

Major challenges associated with dry eye disease management are low patient satis-
faction and poor compliance with dosing regimens [13]. Therefore, one important drug
development consideration for topical ophthalmic formulations is to enhance ocular surface
retention times that minimize the number of instillations.

In this study, we evaluated the anti-oxidative and anti-inflammatory properties of
xanthohumol in preclinical models for dry eye disease. Xanthohumol is a naturally occur-
ring prenylated chalconoid that is abundantly present in Humulus lupulus, the hops plant.
Xanthohumol promotes the transcription of phase II antioxidant enzymes [14], by stimulat-
ing the dissociation of Kelch-like ECH-associated protein 1 (Keap1) from Nuclear factor
erythroid 2-related factor 2 (Nrf2), the master regulator of the endogenous antioxidant
response. Keap1 is the main negative regulator of Nrf2, targeting it for ubiquitylation and
degradation. The dissociation of Keap1 from Nrf2 results in nuclear translocation of Nrf2
and subsequent activation of gene expression driven by the antioxidant response element.
In addition, xanthohumol exhibits direct ROS scavenging activity due to its chalconoid
structure [15].

Xanthohumol was selected based on the rationale that exploiting its dual mechanism
of boosting the endogenous antioxidant response by relieving Keap1 suppression of Nrf2
translocation and direct ROS scavenging may be advantageous over antioxidants with only
direct ROS scavenging activity.

The objectives of this study were to determine the cytoprotective effects of xanthohu-
mol in human corneal epithelial cells in vitro, and in the mouse desiccating stress/scopolamine
model for dry eye disease in vivo, using both non-formulated and poly(lactic-co-glycolic
acid) nanoparticle (PLGA NP)-encapsulating xanthohumol.

2. Materials and Methods
2.1. Test Articles, Antibodies and Chemicals

Xanthohumol was purchased from Cayman Chemicals (Ann Arbor, MI, USA) and
dissolved in dimethyl sulfoxide at a concentration of 100 µM (Millipore Sigma, St. Louis,
MO, USA) for in vitro experiments. Cyclosporine A for transporter assays was USP grade
(≤99% purity) from Cayman Chemical Company (Ann Arbor, MI, USA). Ophthalmic
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cyclosporine emulsion was pharmaceutical grade, Restasis® (0.05% cyclosporine; Allergan
Plc., Irvine, CA, USA).

The following antibodies were used for immunoblotting experiments: mouse anti-
NFE2L2 (Nrf2; VMA00224; BioRad Laboratories Inc., Hercules, CA, USA; 1:1000 dilution).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as endogenous control
(rabbit anti-GAPDH; sc-25778; Santa Cruz Biotechnology, Dallas, TX, USA; 1:2000 dilution).
Secondary antibodies were horseradish peroxidase-conjugated and obtained from GE
Healthcare (Chicago, IL, USA). Anti-8-OHdG antibody (clone N45.1, 1:200 dilution, Japan
Institute for the Control of Aging, NIKKEN SEIL Co., Ltd., Shizuoka, Japan) was used for
8-OHdG staining on corneal sections.

Unless otherwise specified, analytical grade reagents were obtained from Millipore
Sigma (St. Louis, MO, USA).

2.2. Cell Culture

Human corneal epithelial cells (HCE-T; RIKEN BioResource Research Center, Tsukuba,
Japan; [16]) were cultured as described previously [8,17–19]. Specifically, HCE-T cells were
maintained in standard tissue culture flasks (Techno Plastic Products, MidSci, St. Louis,
MO, USA) in a humidified atmosphere supplemented with 5% CO2 at 37 ◦C. Growth
medium was comprised of DMEM/F12 (1:1) (Thermo Fisher Scientific, Waltham, MA,
USA) with 5% fetal bovine serum (Gemini Bio Products, West Sacramento, CA, USA),
0.5% dimethyl sulfoxide, 5 µg/mL insulin (both from Millipore Sigma), 10 ng/mL human
recombinant epidermal growth factor, and 100 U/mL penicillin–100 mg/mL streptomycin
(both from Thermo Fisher Scientific, Waltham, MA, USA). Cultures of passages 79 to 95,
were used for experiments.

2.3. Cell Viability Assays

To determine the cytoprotective effects of xanthohumol against chemically-induced ox-
idative stress, we conducted 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) uptake and lactate dehydrogenase (LDH) release assays, essentially as previously
described [8]. Briefly, HCE-T cells were seeded in 96-well plates (Techno Plastic Products,
MidSci, St. Louis, MO, USA) at a density of 10,000 cells/well. Once confluent, cells were
pre-treated with xanthohumol (0.1, 0.5, 1 or 5 µM) for 20 h, and subsequently exposed to
a range of tert-butyl hydroperoxide (tBHP) concentrations (5–500 µM) for 6 h. MTT and
LDH assays were performed immediately following tBHP exposure.

For LDH assay, 50 µL of the supernatants were transferred to a new 96-well plate
(Nunc™, Thermo Fisher Scientific, Waltham, MA, USA). An equal volume of LDH assay
buffer (containing 2 mM iodonitrotetrazolium chloride, 3.2 mM β-nicotinamide adenine
dinucleotide sodium salt, 160 mM lithium lactate, 7.5 µM 1-methoxyphenazine methosul-
fate in 0.2 M Tris-HCl buffer, pH 8.2) was added to the wells. Supernatants with assay
buffer were incubated at room temperature in the dark for 1 h. The reaction was stopped
by addition of 50 µL of 1 M acetic acid. Absorbance was measured at λ = 490 nm using a
Cytation 5 imaging plate reader (Biotek, Winooski, VT, USA).

For MTT assay, a 12 mM stock solution of MTT was prepared in Hank’s Balanced Salt
Solution with calcium and magnesium (Lonza, Walkersville, MD, USA) that was stored
frozen until use. On the day of experiments, a 1.2 mM working stock was prepared by
diluting the stock solution in Hank’s Balanced Salt Solution with calcium and magnesium
supplemented with 10 mM 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid and the
pH adjusted to 7.3. Media were aspirated and cells were incubated with 100 µL MTT
working solution for 2 h in a 37 ◦C oven. MTT was aspirated from the cells and cells were
lysed with 100 µL dimethyl sulfoxide while gently shaking. Absorbance was measured at
λ = 570 nm using a Cytation 5 imaging plate reader (Biotek, Winooski, VT, USA).

For both MTT and LDH assays, each experiment (n) is derived from 4–8 technical
replicates per condition; n numbers in the text and figure legends represent the number
of biological replicates. Data were exported to Microsoft Excel (Microsoft Corporation,
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Redmond, WA, USA), normalized to the baseline control condition (no tBHP) and expressed
as fold-change. Cell viability data were fitted in Prism 9.0 software (GraphPad, Inc., La
Jolla, CA) by non-linear regression using a four-parameter logistic equation with variable
Hill slope, as described previously [19]. To determine the half-maximal effect sizes (EC50
and IC50), non-linear regression was performed separately for each biological replicate,
consisting of 4–8 technical replicates.

2.4. Quantitative Immunoblotting

Immunoblotting on HCE-T cell lysates was performed as described previously [17].
Briefly, media were aspirated, and cells were rinsed in phosphate-buffered saline (PBS).
Cells were scraped in ice cold PBS, samples centrifuged at 800 × g for 5 min, supernatants
aspirated, and pellets lysed in CytoBusterTM lysis reagent (Millipore Sigma, St. Louis, MO,
USA) containing protease inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA, USA).
Samples were triturated with a 31-gauge insulin syringe and centrifuged at 16,000× g
for 10 min. Lowry assays [20] were performed on the supernatants to determine protein
sample concentrations.

Samples were diluted to the same protein concentration using CytoBusterTM lysis
buffer, supplemented with sodium dodecyl sulfate loading buffer (Morganville Scientific,
Morganville, NJ, USA) and stored at−80 ◦C until use. Immediately prior to electrophoresis,
samples were denatured in a heat block at 85 ◦C for 5 min. Gels (pre-cast 4–12% NuPage®

Bis/Tris; Thermo Fisher Scientific, Waltham, MA, USA) were loaded with 10 µg of each
protein sample, and electrophoresed at 150 V for 75 min. Wet transfer of proteins from gel
to a nitrocellulose membrane with 0.1 µM pore size (Amersham Protran, GE Healthcare,
Chicago, IL, USA) was performed at 100 V for 90 min in PierceTM Methanol-free Western
Blot Transfer Buffer (Thermo Fisher Scientific, Waltham, MA, USA). The membrane was
blocked in 5% non-fat milk in PBS supplemented with 0.2 % Tween-20 (PBS-T), then
incubated with primary antibody (anti-Nrf2 and anti-GAPHDH, as described above) in
2.5% milk in PBS-T overnight at 4 ◦C on a shaker. Membrane was washed three times
for 10 min each in PBS-T, then incubated with horseradish peroxidase-linked secondary
antibody in 2.5% milk in PBS-T for 1 h at room temperature. Chemiluminescence was
performed using Luminata Forte® (Millipore Sigma, St. Louis, MO, USA) and images
acquired using a ChemiDoc™ XRS+ (Bio-Rad Laboratories, Hercules, CA, USA). Relative
protein expression was quantified by densitometry using Image Lab software (Bio-Rad
Laboratories, Hercules, CA, USA) and normalized to endogenous control GAPDH and to
the control or vehicle condition.

2.5. Generation and Characterization of PLGA NP

Empty PLGA NP were prepared using an oil-in-water single emulsion technique,
essentially as described previously [21]. Briefly, 50 mg of PLGA (85:15; Durect Corp.,
Birmingham, AL, USA) were dissolved in 1 mL dichloromethane and slowly added to
ice-cold polyvinyl alcohol (1% w/v, 10 mL), while vigorously vortexing. The resultant
suspension was emulsified by probe sonication and diluted with 100 mL ice-cold polyvinyl
alcohol. The organic solvent was allowed to evaporate with constant stirring for 3 h at
23 ◦C and the resulting PLGA NP were isolated by centrifugation (25,000× g for 20 min at
4 ◦C) and washed three times with deionized water.

Xanthohumol-encapsulating PLGA NP were synthesized as above, with xanthohumol
(5 mg) added to the initial organic phase (PLGA in dichloromethane). Both empty and
xanthohumol-encapsulating PLGA NP were resuspended in sucrose (10 mL of 5 mg/mL
sucrose in deionized water) and lyophilized. PLGA NP were stored at −80 ◦C until use.

PLGA NP were characterized morphologically by transmission electron microscopy
(TEM). To this end, PLGA NP were suspended at a concentration of 10 mg/mL in physiolog-
ical saline. Carbon-coated 200 mesh copper grids (Electron Microscopy Sciences, Hatfield,
PA, USA) pre-treated with 0.002% Alcian blue in 0.03% acetic acid were floated on top of
30 µL drops of NP suspensions (30 min, room temperature). After washing with diH2O,
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the samples were negatively stained by floating the grid on 50 µL drop of sterile-filtered
uranyl acetate (pH = 7, 5 min, room temperature). Samples were dried for 12 h in a grid
storage box before imaging with a Phillips CM120 transmission electron microscope (TSS
Microscopy, Beaverton, OR, USA) equipped with a BioSprint digital camera (Advanced
Microscopy Techniques, Woburn, MA, USA).

PLGA NP properties were determined by dynamic light scattering using a ZetaSizer
analyzer (Malvern Pananalytical Inc., Westborough, MA, USA).

2.6. Bioanalytical High-Performance Liquid Chromatography (HPLC) Method for
Xanthohumol Detection

Xanthohumol was quantified by high-performance liquid chromatography (HPLC)
using a LaChrom Elite (Hitachi High-Tech Analytical Science, Westford, MA, USA) analyti-
cal system equipped with a model L-2130 pumping station, an autosampler/autoinjector
(model L-2200), a column oven system (model L-2300), a UV-Vis detector (model L-2420)
and subsequently analyzed using EZChrom Elite analytical software. Xanthohumol en-
capsulated PLGA nanoparticles were dissolved in dimethyl sulfoxide (4.5 mg/mL) and
the liberated xanthohumol resolved on a HiChrom Ultrasphere 5 µm C18 reverse-phase
column (4.6 mm × 25 cm) at a flow rate 1.0 mL min−1. Xanthohumol was eluted from the
column using a non-linear gradient of acetonitrile balanced with 0.05 N formic acid over a
total run time of 25 min at 23 ◦C as follows: 20–50% acetonitrile (0–3 min); 50–70% acetoni-
trile (3–6 min); 70–100% acetonitrile (6–15 min); 100% acetonitrile (15–20 min); 100–20%
acetonitrile (20–25 min). When analyzed at 370 nm, xanthohumol eluted as a single peak
with a retention time of 11.6 min. The eluted xanthohumol was identified by comparison
of the retention time and the UV spectra with that obtained using pure standard (Cayman
Chemicals, Ann Arbor, MI, USA) injected under identical chromatographic conditions.
The quantity of liberated xanthohumol was determined using a 9-point linear (r2 = 0.99;
LOD = 1 pmol) calibration curve ranging from 0–10 nmols xanthohumol standard prepared
in dimethyl sulfoxide.

2.7. Desiccating Stress/Scopolamine Model for Experimental Dry Eye Disease

All animals were treated in accordance with the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research and the European Commission Directive
86/609/EEC for animal experiments, using protocols approved and monitored by the
Animal Experiment Board of Finland (protocol number ESAVI-10756-2020, approved
5/19/2020). C57BL/6JRj mice were purchased from Janvier Labs (Le Genest-Sainte-Isle,
France). Mice were housed at a constant temperature (22 ± 1 ◦C) and in a light-controlled
environment (lights on from 7 a.m. to 7 p.m.) with ad libitum access to food and water.
Male mice (9 weeks of age) were used for experiments.

Dry eye disease-like pathology was induced by exposure to a combination of des-
iccating stress in SiccaSystem® cages (K&P Scientific LLC, Forest Park, IL, USA) and
transdermal administration of scopolamine (Scopoderm®; Glaxo Smith Kline, Middlesex,
UK), as described previously [8,22]. Briefly, each 1 mg scopolamine patch was punched
into 14 smaller pieces, each containing approximately 70 µg of scopolamine. Each mouse
was administered a transdermal patch in each ear (total 140 µg). The presence of patches
was checked daily, and patches were replaced every 72 h.

The SiccaSystem® cages allow animals to be exposed to a desiccating environment of
5–15% humidity with 15 L/min airflow. In this study, mice were exposed to desiccating
stress/scopolamine for a total of 26 days; test articles (empty PLGA NP, xanthohumol-
encapsulating PLGA NP, or cyclosporine) were administered twice daily (8 a.m. and 5 p.m.)
by topical instillation (10 µL) into both eyes starting on day 16 for a period of ten days.

Tear volume was quantified using phenol red-coated threads (ZoneQuick®; FCI Oph-
thalmics, Pembroke, MA, USA) [8,22]. The thread was placed in the lateral canthus for
30 s, and a blinded investigator measured the wet length of the thread (in mm) using a
ruler. Tear volumes were measured on day 0 (baseline), 15, and 26 (before euthanasia) of
the study.
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Corneal fluorescein staining measurements were performed on day 15 and on day 26,
essentially as described previously [8,22]. Briefly, 2 µL of 0.2 % liquid sodium fluorescein
was pipetted into to the conjunctival sac in both eyes of each animal. Fluorescence retained
on the ocular surface was imaged using a fluorescent microscope (Leica Microsystems,
Buffalo Grove, IL, USA).

Animals were randomized and assigned to treatment groups based on the corneal
fluorescein score on day 15, such that the median and interquartile range of fluorescein
scores were similar between groups at the onset of treatment (day 16). Scoring of fluores-
cent images was performed by two blinded investigators based on established criteria [16].
To determine the pharmacologic efficacy of xanthohumol-encapsulating PLGA NP, fluores-
cence intensity was quantified from images using Fiji software [23].

2.8. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) Staining

On study day 26, after corneal fluorescein imaging, mice were euthanized by tho-
racotomy following intraperitoneal administration of 75 mg/kg ketamine and 1 mg/kg
xylazine. 8-OHDG staining was performed as described in detail previously [8]. Briefly,
excised corneas were fixed in 4% paraformaldehyde in PBS and cryoprotected in serial
sucrose solution (10%, 20%, 30% w/v in PBS) and cryosections of cornea were labeled
with an anti-8-OHdG antibody (clone N45.1, 1:200 dilution, Japan Institute for the Control
of Aging, NIKKEN SEIL Co., Ltd., Shizuoka, Japan). 8-OHdG immunoreactivity was
quantified by measuring density of nuclei in the corneal epithelial layer. Density of eight
randomly-selected nuclei in three regions of approx. 100 µm2 was measured using Fiji
software [23]. Values were averaged to obtain the mean for that eye.

2.9. Data Analysis and Statistics

All data were analyzed with the investigator blinded for treatment group. Data are
presented as mean ± standard error of mean (SEM) or as median ± interquartile range
or 25th/75th percentile. Data were analyzed using unpaired Student’s t-test (8-OHdG
staining), Kruskal-Wallis ANOVA (effect sizes of tear volume measurements) or two-way
ANOVA. Homoscedasticity tests were performed by computing the nonparametric correla-
tion between the absolute values of the residuals and the Y value of the curve. Differences
between groups on homoscedastic data sets were subsequently determined using Šidák’s
multiple comparisons test as appropriate. When computing a repeated measures two-way
ANOVA (i.e., for tear volume measurements), differences between groups were determined
by Tukey’s multiple comparisons test. Differences were considered statistically significant
at the p < 0.05 level. Statistical analysis was performed using GraphPad Prism 9 software
(GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Xanthohumol Exerts Cytoprotective Effects against Chemically-Induced Oxidative Stress in
HCE-T Cells

In order to determine the cytotoxicity of xanthohumol, human corneal epithelial
(HCE-T) cells were exposed to a concentration range of xanthohumol (10 nM–100 µM) and
incubated for 48 h. Dimethyl sulfoxide vehicle was kept constant at 0.1% weight/volume
for all xanthohumol concentrations. Cell survival and proliferation were assessed by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake and lactate
dehydrogenase (LDH) release assays. Xanthohumol concentrations up to 10 µM had
no effect on MTT absorbance (p < 0.001, n = 3; Figure 1A) or LDH release (p < 0.001,
n = 3; Figure 1B), when compared to the dimethyl sulfoxide vehicle condition. Higher
concentrations of xanthohumol exerted dose-dependent cytotoxicity, resulting in almost
complete loss of cell viability at 100 µM (p < 0.001, n = 3; Figure 1).
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proliferation and survival. Concentrations of 50 µM and 100 µM resulted in a reduction of MTT absorbance by 94.4 ± 1.2%
and 98.8 ± 0.5%, respectively (n = 3); (B) Similarly, xanthohumol concentrations greater than 10 µM resulted in a statistically
significant increase in LDH release (2.6 ± 0.2-fold at 50 µM and 3.5 ± 0.2-fold at 100 µM; n = 3). Data are shown as
mean ± SEM. *** p < 0.001. Xn = xanthohumol.

Based on the results from cytotoxicity assays, we selected four sublethal concentrations
of xanthohumol (0.1 µM, 0.5 µM, 1 µM and 5 µM) to determine the cytoprotective and
antioxidant effects against exogenously-applied tert-butyl hydroperoxide (tBHP)-induced
oxidative stress. HCE-T cells were exposed to xanthohumol for 20 h, and subsequently
exposed to a concentration range of tBHP (5–500 µM) for 6 h prior to performing MTT
and LDH assays (Figure 2). For these studies, dimethyl sulfoxide vehicle was used at a
concentration of 0.005% weight/volume.
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Figure 2. Xanthohumol exerts dose-dependent cytoprotective effects against tBHP-induced oxidative stress in HCE-T
cells. (A) Xanthohumol (0.1–5 µM) caused a right-shift of dose-response curves for tBHP in the MTT assay, suggestive of
cytoprotection. Data were fitted using a four-parameter dose response curve. (B) Similarly, xanthohumol (0.1–5 µM) resulted
in a right-shift of the LDH response. Data were normalized to the no tBHP control for each condition. (C) Quantification
of the IC50 values from the MTT assay revealed an approximately 2.2-fold increase in the presence of 5 µM xanthohumol
(15.2 ± 0.5 µM vs. 33.3 ± 3.4 µM, p < 0.01, n = 4). (D) In the LDH assay, xanthohumol (5 µM) increased the EC50 for tBHP
from 13.4 ± 0.4 µM to 100.0 ± 11.7 µM (p < 0.001; n = 4). Data were analyzed by two-way ANOVA with Šídák’s multiple
comparisons test and are shown as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. Xn = xanthohumol.
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Xanthohumol resulted in a dose-dependent protection against oxidative stress, as
evident by a right-shift in the IC50 curves for tBHP in the MTT assay (Figure 2A). Similarly,
xanthohumol caused a right-shift in the EC50 curves for tBHP in the LDH assay (Figure 2B).
Specifically, the IC50 for tBHP in the MTT assay was 15.2 ± 0.5 µM in the control condition.
1 µM and 5 µM xanthohumol resulted in a statistically significant increase in the IC50 values
for tBHP to 25.6 ± 3.2 µM (p < 0.05, n = 4) and 33.3 ± 3.4 µM (p < 0.01, n = 4; Figure 2C),
respectively.

Similarly, xanthohumol (5 µM) increased the EC50 value for tBHP in the LDH assay
from 13.4 ± 0.4 µM to 100.0 ± 11.7 µM (p < 0.001; n = 4; Figure 2D).

Dimethyl sulfoxide vehicle alone (0.005% weight/volume) did not result in any statis-
tically significant reduction in cell viability in response to tBHP insult (Figure 2).

3.2. Xanthohumol Elicits Significant Increase in Nrf2 Protein Levels in Human Corneal
Epithelial Cells

Xanthohumol is a well-known activator of the endogenous antioxidant system that
acts by stimulating the dissociation of Keap1 from Nrf2. In order to demonstrate the ability
of xanthohumol to elicit this effect in corneal epithelial cells, we performed a time course
analysis of Nrf2 protein levels after exposure to xanthohumol in HCE-T cells.

Nrf2 protein levels peaked after 6 h of xanthohumol (5 µM) and were 5.0 ± 1.7-fold
higher than in vehicle-treated cells (1.0 ± 0.2; n = 3, p < 0.01; Figure 3).
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Figure 3. Xanthohumol increases protein levels of Nrf2 in human corneal epithelial cells. (A) Quan-
tification of immunoblots revealed a statistically significant 5-fold increase of Nrf2 in xanthohumol-
treated cells compared with vehicle after 6 h incubation. Data were analyzed by two-way ANOVA
with Šídák’s multiple comparisons test and are shown as mean ± SEM from three separate exper-
iments. ** p < 0.01. (B) Representative examples of Nrf2 immunoblots from xanthohumol-versus
vehicle-treated cell lysates are shown. GAPDH was used as endogenous control. Xn = xanthohumol.

Together with results from the cell viability assays presented in Figure 2, our data
suggest that xanthohumol can exert antioxidant effects in human corneal epithelial cells.

3.3. Xanthohumol-Encapsulating PLGA NP Are Cytoprotective against Oxidative Stress in
HCE-T Cells

We next generated xanthohumol-encapsulating PLGA NP using an 85:15 ratio of
poly-lactic and poly-glycolic acid, based on previously established release parameters [21].
Nanoparticle formulations were resuspended in saline and their properties analyzed by
Dynamic Light Scattering using a ZetaSizer (Malvern Pananalytical Inc., Westborough,
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MA, USA). Encapsulation efficiency of xanthohumol was 13.1 ± 0.06%, as determined
by bioanalytical detection of xanthohumol by HPLC against a standard curve of purified
xanthohumol. Xanthohumnol eluted as a single peak at 11.6 min retention time.

Empty and xanthohumol-encapsulating PLGA NP were similar in size and size dis-
tribution, averaging ~200 nm (Figure 4; Table 1). Similarly, the polydispersity index was
below 0.05 for both PLGA NP formulations, suggesting a unimodal size distribution and
absence of aggregation (Table 1). The surface charge of PLGA NP was negative, in line
with previous observations [21] (Table 1).
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Table 1. Properties of PLGA NP formulations.

Parameter Empty PLGA NP Xn PLGA NP

Size (nm) 201.9 ± 0.1 191.0 ± 0.8
Polydispersity Index (PDI) 0.045 ± 0.009 0.029 ± 0.007

Zeta (ζ) potential (mV) −21.6 ± 0.3 −24.8 ± 0.2
Encapsulation efficiency N/A 13.1 ± 0.06%

To assess the cytotoxicity of PLGA NP and release of xanthohumol, we performed
cell viability assays in HCE-T cells analogous to the experiments described above. HCE-
T cells were seeded in 96 well plates and incubated with increasing amounts of empty
and xanthohumol-encapsulating PLGA NP for 48 h. The concentration of xanthohumol
represents the total amount of xanthohumol present in the NP applied to the cells. In
the control condition, cells were exposed to an equivalent amount (milligrams) of empty
PLGA NP.

Increasing concentrations of xanthohumol-encapsulating PLGA NP exerted a dose-
dependent toxicity as evident by a decrease in MTT absorbance (n = 3–5, p < 0.001;
Figure 5A) and a concomitant increase in LDH release (n = 3–5; p < 0.001; Figure 5B). In con-
trast, increasing amounts (matching the NP amount of each Xn NP dose) of empty PLGA
NP did not exert any cytotoxicity (Figure 5A,B). Differences were statistically evaluated by
two-way ANOVA with Šídák’s multiple comparisons test, indicating that concentration of
10 µM or higher resulted in statistically significant cytotoxicity in HCE-T cells.
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Figure 5. Cytotoxicity of xanthohumol-encapsulating PLGA NP in HCE-T cells. (A) Xanthohumol-encapsulating PLGA
NP resulted in dose-dependent cytotoxicity in HCE-T cells as shown by MTT assay. Concentrations ≥10 µM exerted a
statistically significant effect on cell proliferation and survival after 48 h incubation when compared to matching amount
of empty PLGA NP (n = 3–5, p < 0.001); (B) Similarly, xanthohumol concentrations of >10 µM resulted in a statistically
significant increase of LDH release (n = 3–5, p < 0.001). Data were analyzed by two-way ANOVA with Šídák’s multiple
comparisons test and are shown as mean ± SEM. *** p < 0.001. Xn = xanthohumol.

Next, we tested the ability of xanthohumol-encapsulating NP to protect HCE-T cells
from exogenously-applied oxidative stress. We incubated HCE-T cells with either empty
or xanthohumol-encapsulating (5 µM) PLGA NP for 20 h, prior to exposing HCE-T cells to
a dose-range of tBHP (25–125 µM) for 5 h. Xanthohumol-encapsulating PLGA NP caused a
statistically significant shift in the dose-response to tBHP (n = 3, p < 0.01; Figure 6A), with
IC50 values for tBHP increasing from 16.6 µM (interquartile range: 14.1–18.9 µM) to 21.2
µM (interquartile range: 17.9 µM to 24.1 µM. Similarly, EC50 for tBHP values derived from
the LDH release assay increased significantly from 17.9 µM to 22.4 µM (n = 3, p < 0.01;
Figure 6B).
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Figure 6. Xanthohumol-encapsulating PLGA NP showed cytoprotection against tBHP-induced
oxidative stress in HCE-T cells. (A) Xanthohumol-encapsulating PLGA NP (5 µM) caused a right-
shift of the dose-response curves for tBHP in the MTT assay, shifting the IC50 value by 4.6 µM (n = 3,
p < 0.05). (B) Similarly, xanthohumol-encapsulating PLGA NP (5 µM) resulted in a right-shift of the
LDH response, increasing the EC50 value by 4.5 µM (n = 3, p < 0.01). Data are shown as mean ± SEM
and were fitted using a four-parameter dose response curve. Data were analyzed by two-way
ANOVA followed by Šídák’s multiple comparisons test. * p < 0.05, ** p < 0.01. Xn NP = xanthohumol-
encapsulating PLGA NP.

Based on these data, we have identified a safe dose of xanthohumol-encapsulating
PLGA NP in HCE-T cells and confirm that xanthohumol delivered via PLGA NP can
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exert antioxidative effects in human corneal epithelial cells. In the next set of experiments,
we tested the efficacy of xanthohumol-encapsulating PLGA NP in a preclinical dry eye
disease model.

3.4. Xanthohumol-Encapsulating PLGA NP Reverse Ocular Surface Damage in the Desiccating
Stress/Scopolamine Model for Dry Eye Disease

We used the mouse desiccating stress/scopolamine model to test the efficacy of
xanthohumol-encapsulating PLGA NP. Mice were exposed to SiccaSystem® cages for a
period of 15 days without intervention. Subsequently, mice were treated twice daily (8 a.m.
and 5 p.m.) by topical instillation of either empty PLGA NP, xanthohumol-encapsulating
PLGA NP or cyclosporine. In this study, we did not include a separate vehicle control group,
as we have previously determined that empty PLGA NP do not exert any cytoprotective
effects compared with 0.9% saline solution (data not shown).

First, we quantified tear volumes, at baseline, before start of topical treatments on day
15 and at the end of the study on day 26. We observed a statistically significant reduction
of tear volumes on Day 15 suggestive of successful induction of dry eye disease pathology
(from 4.7 ± 0.3 mm to 2.0 ± 0.1 mm, n = 60 eyes, p < 0.001). Two-way ANOVA analysis
revealed a statistically significant effect of time (p < 0.001), but not treatment (p = 0.29),
and tear volumes showed a similar statistically significant increase of tear volumes from
day 15 to day 26 (p < 0.05 for all treatment groups using Tukey’s multiple comparisons
test; Figure 7A). Effect sizes for each treatment, determined by calculating the difference
between tear volume and day 15 and day 26, did also not differ between treatment groups
(Kruskal–Wallis ANOVA, p = 0.86; Figure 7B).
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Figure 7. Xanthohumol PLGA NP do not affect tear volumes. (A) Tear volumes decreased significantly as a result of
the exposure to the desiccating stress/scopolamine environment (n = 20, *** p < 0.001 for all groups); all treatments
significantly increased tear volumes (n = 20, * p ≤ 0.05 for all groups), as determined by two-way ANOVA. Data are shown
as mean ± SEM. (B) Comparison of effect sizes determined by calculating the difference in tear volume between day 25
and day 16 did not show any statistically significant differences (n = 20, p = 0.86, Kruskal–Wallis ANOVA). Data are shown
as box and whisker plot, indicating the median (line), with the box extending from the 25th to 75th percentiles. Whiskers
represent the range, while filled circles are individual data points from a single eye. Xn = xanthohumol.

In order to determine possible effects on corneal damage, we performed corneal fluo-
rescein staining, again before start of topical treatments on day 15 and at the end of the
study on day 26 (Figure 8A). Corneal fluorescein staining was quantified by determining
the fluorescence intensity of fluorescein on the cornea. Empty PLGA NP did not signifi-
cantly affect corneal fluorescein staining (p = 0.21; Figure 8B). In contrast, xanthohumol-
encapsulating PLGA NP (p < 0.05) and cyclosporine (p < 0.01) treatment resulted in a
statistically significant reduction of corneal fluorescein staining.
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Figure 8. Xanthohumol-encapsulating PLGA NP reduce corneal fluorescein staining in the mouse desiccating
stress/scopolamine model for dry eye disease. (A) Representative examples of corneal fluorescein staining from day
15 and day 26. Scale bar: 1 mm. (B) Quantification revealed a statistically significant reduction of corneal fluorescein
staining by xanthohumol-encapsulating PLGA NP and cyclosporine, while empty PLGA NP had no significant effect on
fluorescein staining (n = 18–20 eyes per group), as determined by Mann–Whitney test. * p < 0.05, ** p < 0.01. Data are shown
as mean ± SEM. Xn = xanthohumol.

3.5. Topically-Delivered Xanthohumol-Encapsulating PLGA NP Reduce Oxidative DNA Damage
in Corneal Epithelial Cells In Vivo after Induction of Dry Eye Disease by Desiccating
Stress/Scopolamine

In previous studies, we have shown that the desiccating stress/scopolamine model
results in a significant amount of oxidative DNA damage that can be prevented by an-
tioxidant treatment [8]. In order to determine the efficacy of xanthohumol-encapsulating
PLGA NP, we stained corneal sections for 8-hydroxy-2′ deoxyguanosine (8-OHdG) and
quantified immunoreactivity in corneal epithelial cells. Empty PLGA NP-treated eyes
showed significant nuclear 8-OHdG immunoreactivity, as quantified by nuclear staining
intensity; in contrast, xanthohumol-encapsulating PLGA NP showed a visible reduction in
8-OhdG staining intensity (Figure 9A). Quantification revealed a statistically significant
reduction in 8-OHdG staining by 49.3 ± 7.3% (n = 9–10 per group; p < 0.01; Figure 9B).
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Figure 9. Xanthohumol-encapsulating PLGA NP reduce 8-OHdG immunoreactivity in corneal
epithelial cells. (A) Representative examples of 8-OHdG immunoreactivity in corneal epithelial cells
in empty and xanthohumol-encapsulating PLGA NP-treated eyes. (B) Quantification of nuclear
intensity of staining revealed a statistically significant reduction of 8-OHdG staining by xanthohumol-
encapsulating PLGA NP compared to empty PLGA NP. Data were analyzed by unpaired t-test and
are shown as box and whisker plot, indicating the median (line), with the box extending from the
25th to 75th percentiles. Whiskers represent the range, while filled circles are individual data points
from a single eye (n = 9–10 per group); the mean is indicated by a plus (+) sign. ** p < 0.01. Scale bar:
10 µM. Xn = xanthohumol.
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This marked reduction in oxidative stress-associated DNA damage in corneal epithe-
lial cells was not associated with marked changes in the histopathological properties of
the cornea (Table 2). Specifically, epithelial and stromal thickness were not significantly
affected by xanthohumol-encapsulating PLGA NP treatment.

Table 2. Histopathological properties of corneal tissue.

Parameter Empty PLGA
NP Xn PLGA NP Statistics

Thickness, corneal epithelium (µm) * 35.5 ± 3.3 30.8 ± 2.2 n = 10, p = 0.24
Thickness, corneal stroma (µm) * 178.9 ± 12.9 159.4 ± 7.8 n = 10, p = 0.21
Number of epithelial cell layers ** 5 (4; 5.5) 4 (4; 5) n = 10, p = 0.24

* Data are shown as mean ± SEM, or ** median (25th percentile; 75th percentile).

4. Discussion

Our data provide strong in vitro and in vivo evidence that the natural compound,
xanthohumol, can exert cytoprotective and antioxidative effects in preclinical models
for dry eye disease. Specifically, xanthohumol and xanthohumol-encapsulating PLGA
NP were cytoprotective against oxidative stress injury in human corneal epithelial cells.
Furthermore, xanthohumol-encapsulating PLGA NP delivered topically reduced severity
of corneal fluorescein staining and 8-OHdG labeling in the cornea, suggestive of reduced
corneal damage and corneal oxidative DNA damage, respectively.

Previous studies have implicated increased cellular levels of oxidative stress in ocular
surface disease. For example, lacrimal gland dysfunction can cause hyperosmolarity of the
tear film [24], eliciting the generation of oxidative stress in human corneal epithelial cells [7].
Reactive oxygen species can activate nuclear factor-κB (NF-κB) [25], which regulates the
endogenous antioxidant system, but also pro-inflammatory signaling through toll-like
receptor 4 [26]. In our previous studies, we have shown that exposure to the desiccating
stress/scopolamine model for dry eye disease causes significant increases in oxidative
stress-mediated corneal damage [8], extending previous reports of apoptosis and damage
to the corneal epithelium [25]. Therefore, the desiccating stress/scopolamine model for
dry eye disease is a useful model to investigate the effects of antioxidants and antioxidant
formulations on the ocular surface.

We used HCE-T cells as in vitro model to determine toxicity and efficacy of xantho-
humol and xanthohumol-encapsulating PLGA NP (Figures 1–3, 5 and 6). While HCE-T
cells are widely used, especially as they form a stratified epithelium with barrier properties
and a characteristic morphology ([27]; for review, see [28]), HCE-T cells also display ge-
nomic abnormalities suggestive of some genetic drift [29], which must considered when
interpreting in vitro findings derived from this cell line.

Our mouse model for dry eye disease is based on a well-established paradigm that
employs low-humidity air flow and concurrent scopolamine administration to induce
dry eye disease in wild-type mice [30]. We have previously refined the model and its
quantitative readouts used to assess dry eye disease severity for determining the efficacy
of novel anti-dry eye disease therapeutics, including antioxidants [8]. The magnitude of
changes, as well as the response of the positive control, ophthalmic cyclosporine (Restasis),
were similar to those previously reported for this model [8,22,30].

Exposure to the desiccating stress environment with concomitant scopolamine admin-
istration resulted in a statistically significant reduction of tear volumes (~60%), showing
successful induction of ocular surface disease (Figure 7A). In this study, all groups showed
a statistically significant increase in tear volumes at the end of the 10-day treatment pe-
riod, however, no statistically significant differences between vehicle, xanthohumol and
cyclosporine-treated eyes were observed (Figure 7B). This suggests that the increase is
primarily caused by lubrication of the cornea and tissues of the ocular surface, rather
than due to a direct pharmacological effect. Here it may be important to note that tear
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volume measurements from mice are notoriously challenging and are easily confounded
by physiological and environmental factors.

To determine the pharmacological efficacy of xanthohumol, we used a PLGA NP-
based formulation. PLGA NP are well-tolerated, biodegradable and approved by The
United States Food and Drug Administration.

The relationship between drug entrapment and NP size is complex, as reviewed
by Astete and Sabliov [31]. The presence of drug can, therefore, result in reduced size,
increased size, or unchanged size of PLGA NP. The use of polyvinyl alcohol as surfactant
tends to result in consistent sizing of empty and drug loaded PLGA NP [32]. In accordance
with others [33,34], we observed no significant change in nanoparticle morphology and
size after drug encapsulation, as determined by electron microscopy and dynamic light
scattering (Figure 4).

Release from PLGA NP occurs as NP degrade and is governed, in part, by the ratio of
poly-lactic and poly-glycolic acid [35]. For this first proof-of-concept study, we used a ratio
of 85:15 (poly-lactic:poly-glycolic acid), based on previously reported predicted release
properties for the NP [21,36]. These properties were indirectly confirmed by determining
the toxicity of xanthohumol-encapsulating PLGA NP in HCE-T cell cultures (Figure 5). In
contrast to free xanthohumol, the nanoparticle formulation resulted in incomplete cell death
at higher concentrations. This finding is expected when considering that xanthohumol
release from PLGA NP occurs as HCE-T cultures continue to proliferate. Opposing effects of
cytotoxic versus proliferative mechanisms are one of the commonly-recognized limitations
of a monolayer culture system for cell lines.

Similarly, the observed cytoprotective effect of xanthohumol-encapsulating PLGA NP
against chemically-induced oxidative stress in vitro (Figure 6) is likely underestimated due
to the limitations of the experimental model system, highlighting the importance of the
in vivo proof-of-concept studies described herein.

One shortcoming of the current study is that PLGA (85:15) NP are negatively charged
(Table 1). It is generally assumed that cationic NP exhibit enhanced retention times on
negatively charged ocular tissues, such as the cornea and the conjunctiva [35,37]. Therefore,
we opted to administer xanthohumol-encapsulating PLGA NP twice daily, matching the
instillation frequency of cyclosporine. A detailed quantitative analysis of retention times of
xanthohumol-encapsulating PLGA NP on the ocular surface is beyond the scope of this
article, which to our knowledge provides the first preclinical proof-of-concept supporting
the use of xanthohumol for ocular surface disease. Future studies will address modifications
to PLGA NP formulations to include co-polymers such as chitosan or Eudragit RL100. For
example, the latter, a copolymer of ethyl acrylate, methyl methacrylate and a low content of
methacrylic acid ester with quaternary ammonium groups, has been successfully used for
encapsulating cyclosporine with enhanced properties for topical delivery [38]. Nonetheless,
xanthohumol-encapsulating PLGA NP showed similar efficacy when compared against
0.05% ophthalmic cyclosporine emulsion (Restasis; Figure 8), which is the current standard
of care for patients with moderate to severe dry eye disease in the United States [2,39]. This
finding demonstrates the potential for PLGA NP as a drug delivery vehicle for diseases of
the ocular surface. Additional work characterizing xanthohumol-encapsulating PLGA NP,
including release kinetics and stability is currently underway and beyond the scope of this
initial demonstration of in vitro and in vivo efficacy.

Drug uptake into ocular tissues and specifically corneal epithelial cells depends
critically on possible inhibitory effects on drug efflux transporters. P-glycoprotein 1 (P-gp)
is an adenosine triphosphate-driven efflux pump, expressed in HCE-T cells and potently
blocked by cyclosporine. To determine whether xanthohumol exerts inhibitory effects
on P-gp, we performed an in vitro drug efflux transporter assay. No inhibitory effects
of xanthohumol on P-gp were identified, while cyclosporine exhibited a typical dose
response curve (Supplementary Material Figure S1). Caution is warranted when devising
co-administration paradigms of xanthohumol with cyclosporine or other P-gp antagonists
in order to avoid cytotoxic levels of xanthohumol.
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Xanthohumol is generally considered to exert its cytoprotective effects through both
stimulating the dissociation of Keap1 from Nrf2 and direct ROS scavenging activity [14,15].
Typically, scavenging of ROS results in the diminishing activation of the phase II antioxidant
system [40], reducing the endogenous antioxidant potential as cellular levels of oxidative
stress fall. Given the potent activation of Nrf2 in HCE-T cells in the absence of oxidative
stress (Figure 3), xanthohumol may be particularly well-suited for encapsulation in PLGA
NP. In a previous study, we quantified the efficacy of three-times daily administration
of the potent superoxide dismutase mimetic, manganese(III) tetrakis(1-methyl-4-pyridyl)
porphyrin (Mn-TM-2-PyP). Intriguingly, xanthohumol-encapsulating PLGA NP had a
much larger effect on 8-OHdG labeling in the cornea, reducing density of immunolabel
by ~50% (Figure 9), compared with an ~25% reduction elicited by Mn-TM-2-PyP [8].
Given that the antioxidant potential of Mn-TM-2-PyP is significantly greater than that of
xanthohumol ([8,17]), this finding may suggest that xanthohumol-encapsulating PLGA NP
are not only able to be retained at the ocular surface for a prolonged period of time despite
their negative surface charge, but also achieve sustained activation of the endogenous
antioxidant system.

5. Conclusions

Xanthohumol was cytoprotective against oxidative stress injury in human corneal
epithelial cells, while xanthohumol-encapsulating PLGA NP significantly improved dry
eye disease pathology in the mouse desiccating stress/scopolamine model. PLGA NP
represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to
the ocular surface. Future studies will optimize xanthohumol NP-based formulations with
the goal to minimize instillation frequency, increase stability, and enhance efficacy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13091362/s1, Figure S1: Xanthohumol does not inhibit the drug efflux trans-
porter, P-gp.
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8-OHdG 8-hydroxy-2’-deoxyguanosine
ANOVA One-Way Analysis of Variance
GAPHDH glyceraldehyde 3-phosphate dehydrogenase
Keap1 Kelch-like ECH-associated protein 1
LDH lactate dehydrogenase
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Mn-TM-2-PyP manganese(III) tetrakis(1-methyl-4- pyridyl) porphyrin
NF-kB nuclear factor kappa B
NP nanoparticle
Nrf2 nuclear factor erythroid 2-related factor 2
P-gp P-glycoprotein 1
PBS phosphate-buffered saline
PBS-T phosphate-buffered saline supplemented with 0.2% v/v Tween-20
PLGA poly(lactic-co-glycolic acid)
ROS Reactive oxygen species
tBHP tert-butyl hydroperoxide
TEM transmission electron microscopy
Xn xanthohumol
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