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Background. Periodontitis is considered to be the leading cause of tooth loss in adults, and it interacts with some serious systemic
diseases. Periodontal basic therapy is the cornerstone of periodontal disease treatment and long-term maintenance and has a
positive impact on the treatment of systemic diseases. Aim. To explore the potential gene targets of periodontitis therapies by
bioinformatics method. Methods. We analyzed the expression database (GSE6751) downloaded from the Gene Expression
Omnibus (GEO) with weighted gene coexpression network analysis (WGCNA) to confirm the functional gene modules.
Pathway enrichment network analyses the key genes in functional modules and verified the candidate genes from the samples
in peripheral blood sources of GSE43525. Moreover, we confirmed the expression of target protein in the periodontal tissues of
experimental periodontitis-afflicted mice using western blotting. Results. The functional gene modules were found to have
biological processes, and ARRB2, BIRC3, CD14, DYNLL1, FCER1G, FCGR1A, FCGR2B, FGR, HCK, and PRKCD were screened
as candidates’ genes in functional modules. The 921 DEG from GSE43525 and 418 DEG is from the green module of GSE6751
and identified AMICA1, KDELR1, DHRS7B, LMNB1, CTSA, S100A12, and FCGR1A as target genes. Finally, FCGR1A (CD64)
was confirmed as the key gene that affects periodontal treatment. Western blot analysis showed an increasing trend in the
expression level of FCGR1A protein in the periodontal tissues of experimental periodontitis mice compared to normal mice.
Conclusions. FCGR1A (CD64) may be a key gene target for periodontal therapy in patients with periodontitis and other
systemic diseases.

1. Introduction

Periodontal disease results from an imbalance in the local
immune microenvironment of periodontal tissues. Pathogens
invade periodontal tissues, including tissues surrounding dental
implants, stimulating the body’s immune system and leading to
the infiltration of chemokines and inflammatory cells, which
triggers the destruction of periodontal supporting tissues [1].
Periodontal disease is the leading cause of tooth loss in adults,
with a high incidence worldwide. Furthermore, increasing evi-
dence demonstrates a correlation between periodontal disease
and systemic diseases, such as diabetes, autoimmune inflamma-
tory diseases, atherosclerosis, and vascular diseases [2–6].

As the initial stage of periodontal therapy, periodontal
basic therapy can slow or block the development of periodon-
tal inflammation over time. Several studies have shown that

local periodontal nonsurgical treatment significantly affects
gene expression patterns in peripheral blood mononuclear
cells. Currently, at least 65 genes are thought to be associated
with periodontitis [7]. This diversity in gene expression pat-
terns is likely to affect the prognosis of patients with periodon-
titis associated with systemic disease [8].

The discovery and development of periodontitis in sys-
temic diseases are complex systematic biological processes
across various functional networks. The application of bioin-
formatics methods such as systematic description, screening
of important information, and high-throughput research and
data analysis can identify complex functional networks. In
the published literature, weighted gene coexpression network
analysis (WGCNA) was used to analyze potential gene mod-
ules that function in gene expression data [9]. The WGCNA
selects weighting coefficients to obtain results most consistent
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with the scale-free network distribution. Comprehensive data
analysis will help clinicians better understand the function of
genes and their relationship with disease [10].

This study analyzed the effects of comprehensive periodon-
tal therapy on gene expression in peripheral blood mononu-
clear cells of patients with periodontitis using the standard
WGCNA program. To dissect the relationship between gene
modules and the comprehensive treatment of periodontitis,
we screened candidate genes that affect the treatment of peri-
odontitis and identified key biomarkers related to periodontal
diseases associated with systemic diseases.

2. Materials and Methods

2.1. Data Acquisition. “Periodontal therapy,” “peripheral
blood mononuclear cells,” and “periodontal disease” were
used as key words to search gene expression datasets related
to periodontal disease in public Gene Expression Omnibus
(GEO), a comprehensive gene expression database supported
by the National Center for Biotechnology Information (NCBI)
of the American National Library of Medicine (NLM). The
series matrix files and data tables of the microarray platform
from GSE6751 (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE6751) and GSE43525 (https://www.ncbi.nlm
.nih.gov/geo/query/acc.cgi?acc=GSE43525) were downloaded
from the GEO, and GSE6751 consists of 59 blood samples
taken from 15 separate periodontitis patients with compre-
hensive treatment at four different time points: 15 samples
taken one week prior to periodontal therapy, 14 samples taken
at treatment initiation (baseline), 15 samples taken six weeks
postbaseline, and 15 samples taken 10 weeks postbaseline.
GSE43525 contains nine transcriptome data samples (five
blood samples from patients with refractory periodontitis
and four blood samples from healthy patients); these data were
used for subsequent model validation.

2.2. Coexpression Network Construction by WGCNA. We con-
structed a weighted coexpression gene network of GSE6751
gene data using the WGCNA-R package (R project version
4.0.0). We identified coexpressed gene modules to explore phe-
notypes and core genes in the gene network. The top 5000
genes were selected using this algorithm for further analysis.
WCGNA instruments were used to frame the network in the
form of a soft threshold β. In this study, β was estimated
according to scale-free criteria, and the topological overlap
matrix (TOM) was transformed from the degree of adjacency
among the genes. Based on the weighted correlation coefficient,
genes were classified according to their expression patterns,
and genes with similar patterns were grouped into one module.
According to the dissimilarity matrix, a hierarchical clustering
tree diagramwas estimated for the genes, and the genemodules
were calculated using the dynamic branch cutting method.

2.3. Functional and Pathway Enrichment Network Analysis
of Gene Modules. To determine the gene pathways and bio-
logical processes involved in the WGCNA module of interest
(the green module in this study, which has the highest corre-
lation with phenotype), the Metascape database (https://
www.metascape.org) was used for annotation and visualiza-

tion [11]. Min overlap ≥ 3 and P ≤ 0:01 were considered sta-
tistically significant. Membership similarities were detected
to distinguish between clusters. Kappa > 0:3 was considered
a cluster, and the most statistically significant ones in the
cluster were annotated.

2.4. Identification of Key Genes in Functional Modules. All
genes of the green module were extracted, the included genes
were entered into the search tool for retrieval of interacting
genes database (https://cn.string-db.org/), and a protein
interaction network was visualized by Cytoscape software
(version 3.7.1). The degree of connection was calculated for
each gene, and the top 10 genes were selected as key genes
for subsequent verification.

2.5. Verification of the Expression of Target Genes through
Experimental Periodontitis Model. In our previous study, the
periodontal pathogen P. gingivalis (ATCC 33277) was used
to establish an experimental periodontitis model in 6-week-
old female BABL/c (H-2dm2) mice. P. gingivalis 33277 was
cultivated on brain–heart infusion (BHI) agar supplemented
with vitamin K1 (10μg/mL), hemin (0.25%), and sterile defi-
brinated sheep blood (5%). Bacteria were incubated in an
anaerobic atmosphere (Don Whitley Scientific, Shipley, UK)
at 37°C. After 7 days, the bacterial colonies were collected
and cultured in complete BHI liquid at 37°C for 24h and then
used for oral infection during the logarithmic growth phase.

Animals were fed under standard conditions (humidity:
55–60%, 12h light/dark cycle, temperature: 20–22°C). After
oral bacterial inoculation (1010 colony-forming units of P. gin-
givalis, once a day for four weeks) or not, the mice were ran-
domly divided into periodontitis and normal control groups.
The mice were euthanized by CO2 asphyxiation four weeks
after the start of the experiment. The experimental protocol
was approved by the Ethics Committee of China Medical
University (2019PS119K). The protein was extracted from
gingival tissue from each group of mice. Protein expression
in the periodontal tissues of periodontitis mice was detected
by western blotting.

The extracted protein samples were analyzed using a
bicinchoninic acid (BCA) protein assay kit, electrophoresed
on 12% SDS-polyacrylamide gels according to their molecular
weights, and then transferred to polyvinylidene difluoride
(PVDF) membranes. Membranes were blocked with 5% skim
milk for 1h at room temperature. Thereafter, membranes were
incubated with rabbit polyclonal anti-FCGR1A (Affinity Biosci-
ences, 1 : 1000) and rabbit polyclonal antitubulin (Affinity Bio-
sciences, 1 : 1000) primary antibodies at 4°C overnight and
then incubated with HRP-labeled goat antirabbit IgG secondary
antibodies (Affinity Biosciences, 1 : 5000) at 37°C for 1h. The
membranes were visualized using an enhanced chemilumines-
cence procedure (Enhanced Chemiluminescence Reagent;
Millipore, USA).

3. Results

3.1. Clustering of Samples and Determination of Soft-
Thresholding Power. The sample clustering dendrogram and
trait heat map of periodontitis samples treated at four different
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time points are shown in Figure 1(a). According to the
standard of a scale-free network, different soft thresholds
were obtained through calculations (Figure 1(b)). The corre-
lation coefficient between the logarithm of a node’s connec-
tivity ½log ðKÞ� and the logarithm of the node’s probability
½log ðPðkÞÞ� corresponds to different soft thresholds. Con-
sidering the stationarity of the average connection level of
the network, we set 14 as the soft threshold, whose correla-
tion coefficient between log ðKÞ and log ðPðkÞÞ was close to
0.9, to construct the gene network/module.

3.2. Identification of Gene Modules. Through the network
construction and initial module division using β = 14, we

obtained a systematic clustering tree of genes. The dynamic
mixed cutting method was used to combine modules with
high similarity of characteristic genes. Different colors repre-
sent different gene modules: the black module has 219 genes,
the blue module has 906, the brown module has 765, the
green module has 418, the pink module has 84, and the grey
module has 614. Grey represents genes that do not belong to
any known module (Figure 2). We finally obtained nine dif-
ferent modules (Figure 3(a)).

3.3. Screening of Core Gene Module. Based on the TOM dis-
similarity, we used the module eigengene (ME) of each gene
module as the overall gene level of the module to correlate
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Figure 1: Clustering of samples and determination of soft-thresholding power. (a) The clustering was based on the expression data of
GSE6751, which contained 59 samples of blood at four time points: 15 samples at 1 week prior to periodontal treatment, 14 samples at
treatment initiation, 15 samples at 6 weeks postbaseline, and 15 samples at 10 weeks postbaseline. (b) Analysis of the scale-free fit index
for various soft-thresholding powers. (c) Analysis of the mean connectivity for various soft-thresholding powers.
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with known clinical features. To determine the key modules,
correlations between genes and clinical samples in the nine
modules were calculated, and the module with the highest cor-
relation was selected as the key module. The results showed
that the green module (MEgreen) had the highest negative cor-
relation with disease status (r = −0:35, P = 0:007), whereas the
redmodule (MEred) was positively correlated with the progno-

sis of periodontitis treatment (r = 0:32, P = 0:01) (Figure 3(a)).
The clustering analysis indicated that the relevance of green
modules is higher (Figure 3(b)). Therefore, genes in the green
module at ten weeks postbaseline (four weeks after periodontal
treatment) may function as candidate biomarkers for the treat-
ment of periodontal disease. In addition, to explore the coex-
pression similarity of the nine modules, we calculated the

g
2

1

0

–1

–2

At treatment initiation
1 week prior to periodontal treatment
6 weeks post-treatment
10 weeks post-treatment

g

(a)

Module colors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
ei

gh
t

Cluster dendrogram

(b)

Figure 2: Clustering dendrograms and modules identified by WGCNA. (a) Heat map depicts the topological overlap matrix (TOM) of genes
selected for weighted coexpression network analysis. Blue represents lower overlap, and red represents higher overlap. (b) Each branch in the
figure represents one gene, and each color represents a module in the constructed gene coexpression network by WGCNA.
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Figure 3: Continued.
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genes of the ten weeks postbaseline group and clustered them
according to their correlation. The adjacencies in the ten weeks
postbaseline group in the green module network are plotted in
a heat map (Figure 3(c)). In the green module of the ten weeks
postbaseline group, the correlation between gene significance
(GS) and module membership was significant (cor = 0:44, P
< 0:01) (Figure 3(d)).

3.4. Pathway and Process Enrichment Analyses. All genes in the
green module of the ten weeks postbaseline group were used as
enrichment backgrounds. Pathway and process enrichment
analyses showed that most of the biological processes (BP) of

the genes were associated with a term related to myeloid leuko-
cyte activation. These genes were also found to be involved in
the regulation of cell activation, cytokine production, regulation
of leukocyte-mediated immunity, cytokine-mediated signaling
pathways, immune response-regulating signaling pathways,
regulation of innate immune responses, negative regulation of
immune system processes, response to bacteria, regulation of
vesicle-mediated transport, regulation of neutrophil activation,
chemotaxis, superoxide metabolic processes, cellular regulation
of secretion, leukocyte differentiation, negative regulation of the
defense response, and macrophage activation (Figure 4(a)).
Each node represents an enriched term, and the color of the
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Figure 3: (a) Heat map of the correlation between module eigengenes and the disease status of periodontitis. The turquoise module was the
most positively correlated with status, and the green module was the most negatively correlated with status. (b) Hierarchical clustering of
module hub genes that summarizes the modules yielded in the clustering analysis. (c) Heat map of the adjacencies of the 10 weeks
postbaseline group in the green module network. (d) Scatter plot of module member ship (MM) vs. gene significance (GS) in the green
module. Cor represents the absolute correlation coefficient between MM and GS, and P is the significance evaluation.
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node indicates the cluster to which it belongs (Figure 4(b)).
Terms in the same cluster are closer to and more closely related
to each other. The gene set obtained in this study was enriched
for immune-related pathways. The green module of the ten
weeks past-baseline group has biological significance.

3.5. Protein-Protein Interaction (PPI) Enrichment Network
Construction and Key Gene Verification. In the visualized
protein-protein interaction expression network, parts of net-
works with highly connected areas have a higher probability
of participating in biological regulation, whereas lightly con-
nected nodes will not play a key role in the integrity of the
whole network (Figure 5). According to the sort node
degree, we screened the top ten genes as candidate genes
for further analysis. These were ARRB2, BIRC3, CD14,
DYNLL1, FCER1G, FCGR1A, FCGR2B, FGR, HCK, and
PRKCD. As these genes are closely linked and are at the
hub of the PPI network, they are expected to become targets
for periodontitis treatment.

3.6. Expression and Validation of Key Genes. The expression
status of candidate genes was validated in GSE43525, and
differentially expressed genes (DEG) were screened in the
green module with the cutoff at P < 0:05. The candidate
genes obtained from the PPI network were validated in the
normal and refractory periodontitis samples (Figure 6(a)).
As shown in the boxplot, the expression of CD14, FCGR1A,
DYNLL1, and FCGR2B correlated with disease status; there-
fore, these data suggest that these key genes may be impor-
tant targets for the treatment of periodontal disease. We
screened 921 DEG from GSE43525 and 418 DEG from the
green module of GSE6751. Furthermore, a Venn diagram
was used to analyze common DEGs between the GSE43525
and GSE6751 green module datasets (Figure 6(b)), and
seven genes were identified: AMICA1, KDELR1, DHRS7B,
LMNB1, CTSA, S100A12, and FCGR1A.

3.7. Western Blotting to Verify the Expression of FCGR1A in
Experimental Periodontitis Model. Western blot analyses
showed an increasing trend with the expression level of
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Figure 4: Pathways and process enrichment analyses. (a) The GO enriched terms colored by the P value. (b) Network of enriched terms
colored by cluster identity, where nodes that share the same cluster identity are typically close to each other. Each term is represented by
a circle node, and its color represents its cluster identity.
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FCGR1A protein in periodontal tissues of experimental peri-
odontitis mice compared to normal mice; however, the dif-
ference was not statistically significant (Figure 7).

4. Discussion

Globally, the prevalence of periodontal disease increases with
age from adolescents to adults and older population. Moreover,
the low- andmiddle-income countries had higher occurrence of
periodontal disease than high-income countries [12]. The epi-
demiologic and a large number of clinical and basic studies have
found that periodontal health impacts systemic diseases (such
as diabetes, metabolic syndrome, obesity, eating disorders, liver
disease, cardiovascular disease, Alzheimer disease, rheumatoid
arthritis, adverse pregnancy outcomes, and cancer), and vice
versa [13]. The prevalence of serious systemic diseases
continues to increase and occur in younger patients. Systemic
diseases associated with periodontal disease have no specific
treatment target; therefore, identification of these therapeutic
targets is of great importance. In this study, genes in the periph-
eral blood microarray dataset GSE6751, consisting of patients
with periodontitis, were clustered using bioinformatic methods.
The association between the gene modules and specific pheno-
types was analyzed using WGCNA. We found that genes with

DEG at onemonth after periodontal treatment (ten weeks post-
baseline) exhibited significant alterations in gene expression in
the green module. According to pathway and process enrich-
ment analyses, genes involved in immune regulation and
lymphocyte-mediated endogenous immune responses, such as
regulation of innate immune response, regulation of neutrophil
activation, cytokine-mediated signaling pathway, and macro-
phage activation, play an important role in the treatment of
periodontitis. Our group has conducted several previous studies
using animal models and found an imbalance in the regulatory
function of immune cells in bacterial-induced periodontitis, as
well as an imbalance in CD4+ or CD8+ Treg infiltration and
Th17 expression in gingival local tissue, peripheral lymphoid
tissue, and spleen in mice during periodontitis [14, 15]. When
the lesion was established, the number of infiltrating B lympho-
cytes in periodontal lesion tissue was significantly higher than
the number of T cells; furthermore, the ability ofmemory B cells
to express RANKL was also significantly higher than that of T
cells [16, 17]. Moreover, proinflammatory cytokines (IL-1, IL-
6, and TNF families), T cell subset-related cytokines (IL-12,
IFN-γ, IL-4, IL-23, IL-17, TGF-β, and IL-10 family), and B
cell-related cytokines (IL-10 family) modulate the local host
immune responses [18, 19]. Our previous studies indirectly ver-
ified our pathway and process enrichment analyses, indicating

Figure 5: The protein-protein interaction enrichment clusters have nodes colored according to the P value. Each point represents a gene,
and the edges connecting genes represent the interactions between genes. The darker the color and the node size, the higher the degree of
connectivity of the genes.
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that periodontal disease develops because of immune cell imbal-
ances, lymphocyte-mediated immune responses, and cytokine-
mediated signaling pathways.

Based on the interactive relationship between different
genes with the highest connectivity, we identified ARRB2,
BIRC3, CD14, DYNLL1, FCER1G, FCGR1A, FCGR2B, FGR,
HCK, and PRKCD as candidate genes. We used GSE43525
to verify these 10 candidate genes and found a difference
in FCGR1A expression in refractory periodontitis. Moreover,
FCGR1A exists at the intersection of Venn diagrams; therefore,
we speculated that FCGR1A may be a candidate target gene in
chronic periodontitis refractory to conventional therapy.

FCGR1A, also known as CD64, is an IgG receptor with a
high affinity that generally appears in the early stages of the
inflammatory response. As one of the receptors of the IgG Fc
fragment, CD64 can recognize immunoglobulin and has a high
affinity for IgG monomers (IgG1 and IgG3). Under normal
physiological conditions, CD64 is constitutively expressed on
macrophages, monocytes, and eosinophils and, to a lesser
extent, on resting neutrophils. However, in a state of infection
or inflammation, CD64 expression on the surface of neutrophils
can be increased rapidly, and the expression can be multiplied
5–10 times. Such engagement is stable in the body and repre-
sents a reliable biomarker for the early diagnosis of bacterial
infection [20]. In the initiation and maintenance of a series of
chronic diseases, CD64 is considered as a bridge connecting
humoral and cellular immunity. It affects phagocytosis, clear-
ance of immune complexes (such as inhibition of IFN-γ and
TLR4 signaling), antigen presentation, and stimulation of the
release of inflammatory mediators [21–23]. CD64 engagement
also regulates immune inflammation by promoting NF-κB reg-
ulation of NLRP3 inflammasome signaling [24, 25]. In the gin-
gival tissue of patients with chronic periodontitis, the expression
of MMP-12 in CD64-derived monocytes increased signifi-

cantly, and the expression of surface costimulatory molecule,
CD200R, decreased, resulting in irreversible tissue decline and
immune activation disorders [26]. CD64 is considered to have
significant clinical potential in resolving chronic inflammation
driven by M1-type dysregulated macrophages [27, 28].

5. Conclusion

In summary, we constructed a coexpression network using
WGCNA, detected gene modules, and identified 10 candi-
date genes for periodontal comprehensive therapy. We used
the GSE43525 database to verify candidate genes and con-
firm FCGR1A (CD64) as a key gene in the development of
periodontitis. These findings were drawn using bioinformat-
ics approaches and validated by experimental periodontitis
model. We expect that FCGR1A (CD64) may be a potential
target for evaluating the prognosis of comprehensive peri-
odontal therapy.

Nonetheless, this study has limitations that could to be
addressed in future research. Currently, our focus is on using
bioinformatics to analyze the results of published studies.
However, the patient sample size of these studies is limited.
Increase in research will increase the number of expression
databases available in the Gene Expression Omnibus. Addi-
tionally, the potential target gene screened in this study has
only been confirmed in animal models of periodontitis. In
the future, we aim to reevaluate the expression of FCGR1A
(CD64) in human periodontal ligament cells or tissues.
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