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Abstract

Background: Gene is a key step in genome annotation. Ab initio gene prediction enables gene annotation of new
genomes regardless of availability of homologous sequences. There exist a number of ab initio gene prediction tools
and they have been widely used for gene annotation for various species. However, existing tools are not optimized for
identifying genes with highly variable GC content. In addition, some genes in grass genomes exhibit a sharp 5′-3′
decreasing GC content gradient, which is not carefully modeled by available gene prediction tools. Thus, there is still
room to improve the sensitivity and accuracy for predicting genes with GC gradients.

Results: In this work, we designed and implemented a new hidden Markov model (HMM)-based ab initio gene
prediction tool, which is optimized for finding genes with highly variable GC contents, such as the genes with negative
GC gradients in grass genomes. We tested the tool on three datasets from Arabidopsis thaliana and Oryza sativa. The
results showed that our tool can identify genes missed by existing tools due to the highly variable GC contents.

Conclusions: GPRED-GC can effectively predict genes with highly variable GC contents without manual intervention.
It provides a useful complementary tool to existing ones such as Augustus for more sensitive gene discovery. The
source code is freely available at https://sourceforge.net/projects/gpred-gc/.
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Background
Identification and annotation of genes in genomic
sequences is a key step for functional analysis of a genome.
The goal of gene annotation is to identify the loca-
tion and structure of protein-coding genes in genomic
sequences. Computational gene prediction methods can
be broadly divided into two main categories: ab initio
methods and homology-based methods. Ab initio gene
prediction tools can predict genes in the query sequence
without relying on the availability of homologs. A majority
of ab initio gene prediction tools rely on hidden Markov
models (HMMs), which describe different gene struc-
tural elements such as UTRs, exons, introns, etc. Given a
sequence, we can use HMMs to infer the most probable
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path corresponding to an annotation of gene structure.
Gene prediction tools such as GENSCAN [1, 2], GENEID
[3], HMMGene [4], GeneMark.hmm [5], GlimmerHMM
[6], FGENESH [7], SNAP [8], and AUGUSTUS [9] belong
to the first category. The second category contains com-
parative gene prediction tools, which compare a query
sequence with homologous sequences of related species
and employ their sequence similarity for gene annotation.
The examples of the second group include GENEWISE
[10], GENOMESCAN [11], AGenDA [12, 13], TWIN-
SCAN [14], SGP2 [15], DOUBLESCAN [16], CEM [17],
SLAM [18], etc. There are also some machine learn-
ing based gene prediction programs [19–21], which are
usually designed for prokaryotes such as metagenomic
data rather than complicated gene structures containing
introns.

Using more information such as homologous sequences
has potential to produce better results. However, as a large
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number of new genomes are being sequenced using next-
generation sequencing platforms, closely-related species
are not always available. Thus, ab initio gene predic-
tion tools play a significant role to find novel genes in
the sequences without a priori known homologs. Note
that some tools incorporate both HMMs and homologous
sequences for boosting gene prediction performance. If
a tool can conduct gene prediction without homologous
sequences, it is classified into the first category.

GC content-dependent gene prediction
As the base composition and the exon length distribu-
tions can differ significantly for genes with different GC
contents, some gene prediction tools employ GC content-
dependent training [1, 2, 9, 22, 23]. In animals, genome
isochores are regions of the genome with different GC
contents, and it has been shown that the GC content of
animal genes closely matches the GC content of the iso-
chore in which the gene is found [24]. The AUGUSTUS
gene prediction program has a mode that creates inde-
pendent HMMs based on the GC content of the genomic
region that is being processed [9]. Both theoretical anal-
ysis and empirical results have shown that GC content-
dependent training greatly improves the gene prediction
accuracy and sensitivity.

In plants, isochores do not exist, and it has been shown
that the GC content of plant genes is not correlated with
the GC content of the genomic region in which the gene is
found. Furthermore, in grasses such as Oryza sativa (rice),
genes can be characterized as having either a high GC or

low GC content whereas most non-grass species such as
the model species Arabidopsis thaliana (thale cress) have
genes with a narrow gene GC content distribution. Using
a single HMM to predict these two classes of genes in O.
sativa was shown to be less accurate than using a gene
prediction protocol that was aware of the high and low
GC genes in grasses. Bowman et al. [24] trained three
HMM programs on low, medium and high GC genes. All
HMMs were used to make gene predictions, but only the
best prediction that was most congruent with available
evidence was retained. This method improved gene pre-
dictions compared to a gene prediction protocol that was
not GC aware.

While the method of Bowman et al. [24] is an improve-
ment over other gene prediction programs, it is a heuristic
that can be improved upon by an modification of the
basic structure of the underlying gene prediction HMM.
Furthermore, many grass genes exhibit a sharp 5′-3′
decreasing GC content gradient [25], [26], which is not
carefully modeled by existing gene prediction tools and
Bowman’s method. As a result, these tools have unsatisfac-
tory sensitivity and accuracy for predicting genes with GC
gradients. Figure 1 illustrates an example of a gene with
descending slope of GC content in Oryza sativa data set.

To address these limitations, we propose a new gene
prediction model with two advantages: 1) our model can
predict genes with GC gradient with higher sensitivity
and accuracy without manual intervention; 2) our unified
model is optimized for genes of variant GC content and
5′-3′ changing patterns.

Fig. 1 A gene LOC_Os03g44820.1 with GC content gradient from Oryza sativa data set. X-axis represents each exon inside the gene. Y-axis
represents the GC content
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Methods
In this section, we describe GPRED-GC, a tool that pre-
dicts genes with 5′-3′ GC gradient. The flowchart for
training and annotating genes is shown in Fig. 2. The
main novelty of our method is a modified hidden Markov
model (HMM) that distinguishes exons of different GC
content. The HMM has a similar topology to the one used
in AUGUSTUS [22, 23] and many other de novo gene
prediction tools [1, 4]. The major difference is that our
model is designed to handle various GC contents and 5′-3′
changing patterns inside coding regions.

The hidden Markov model of GPRED-GC
An HMM is a probabilistic sequence model with suc-
cessful application for gene prediction. It models the key
sequence features such as exons and introns in a gene and
can be trained using annotated gene sets. Once the model
is built, it can be applied to search for genes and annotate
the gene structures using existing algorithms designed
for HMMs, such as the Viterbi algorithm. Essentially, an
optimal state path in an HMM that can maximize the like-
lihood or posterior probability of a query being produced
by the model can be used to label each base in the query
sequence.

As AUGUSTUS is a popular plant gene prediction
tool, we use the generalized Hidden Markov Model from
AUGUSTUS [22] as the base model. The essential differ-
ence is that instead of using one state to represent an exon,
we have three states to model exons of high, medium,
and low GC contents. Figure 3 illustrates the major dif-
ference for an exon state in a standard HMM and our
HMM, which incorporates changes of GC contents across
the genes.

Here, we make an assumption that the GC content
change inside exons is relatively small. Although we can
use a window-based model inside each exon to further
refine the representation of GC gradient, it will signif-
icantly increase the model complexity. By only distin-
guishing exons of different GC contents, we have a better
tradeoff between the model complexity and the model
resolution.

For single exon genes, three states
(

EH
single , EM

single, EL
single

)

are created. For the initial exon, three states
(
E0

init H,
E0

init M , E0
init L

)
are used to model exons of high, medium,

and low GC content. Moreover, the initial exons of other
phases, the internal exons of all phases, and the terminal
exon all have three states for high, medium, and low GC
content. Genes of variant GC changing patterns can be
represented by the new exon states.

The added exon states allow the HMM to predict
genes of various GC gradients with higher accuracy. For
example, genes of negative GC gradient tend to be rep-
resented by a path starting with EH and ending with EL.
Genes with high GC content and moderate gradient tend
to be produced by a path mainly consisting of EH.

The states in the HMM
In total, the model of GPRED-GC has the following 79
states in set Q:

{IR, EH
single, EM

single, EL
single, EH

term, EM
term, EL

term}
⋃

{rEH
single, rEM

single, rEL
single, rEH

init, rEM
init, rEL

init}
⋃

2⋃
i=0

{Ei
init H, Ei

init M, Ei
init L, DSSi, I i

short, I i
fixed, I i

geo}
⋃

Fig. 2 An overview of the training and predicting genes. (a) Training. (b) Prediction
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Fig. 3 For each internal exon, three states (E+,H
0 , E+,M

0 , E+,L
0 ) are used to

model exons of high, medium, and low GC content. This figure only
illustrates three internal exon states for one phase on the plus strand
(corresponding to one reading frame). The internal exons of other
phases, the initial exon, the terminal exon, and the single exon all
have three states for high, medium, and low GC content. Genes of
various GC contents and gradients can be represented as various
paths through the exon states

2⋃
i=0

{ASSi, Ei
H, Ei

M, Ei
L}

⋃

2⋃
i=0

{rEi
term H, rEi

term M, rEi
term L, rDSSi, }

⋃

2⋃
i=0

{rI i
short, rI i

fixed, rI i
geo, rASSi, rEi

H, rEi
M, rEi

L}

(1)

Figure 4 is a schematic representation of the HMM in
our work. In the upper half of Fig. 4, the states represent
protein-coding genes on the forward strand. The state
IR stands for the intergenic region. In the lower half of
Fig. 4, the states represent protein-coding genes on the
reverse strand. Each state on the reverse strand begins
with ‘r’. They have the consistent biological meaning with
the states on the forward strand. The superscript on the
reverse strand represents the reading frame phase of an
exon. Thus, there are nine states for a terminal exon and
three states for an initial exon considering high, medium,
and low GC contents.

Similar to existing HMMs for gene prediction, our
HMM is also a general HMM, which supports length dis-
tribution and the Markov model emission of the exons.
For each exon state on both forward strand and reverse
strand, the exon length distribution is computed on

the corresponding exons, respectively. Similarly, different
inhomogeneous kth-order Markov models (by default
k = 4) for each exon state are derived separately.

New transitions in our HMM
With new states representing exons of different GC con-
tents, new transitions incident to these new states are
added. In this section, we describe how we compute the
transition probabilities for the new edges.

In Fig. 4, the arrows represent the transitions between
states in the state set Q with non-zero probabilities. The
transitions from and to the intron states are the same as
those of states described in the AUGUSTUS model [22].
For GPRED-GC, we consider two strategies for comput-
ing transition probabilities. First strategy, we use a very
simple strategy by dividing the known transition proba-
bilities concerning the exon states of AUGUSTUS equally
for three exon states of high, medium, and low GC con-
tents. This strategy can be used when we have very limited
training data. Our hypothesis is that they start with equal
probabilities. Figure 4 includes the transition probabili-
ties of this strategy. The second strategy is a standard
method based on maximum likelihood training. We com-
pute the transition probabilities using the maximum like-
lihood estimation from the training data. In the following
equation, akl is the transition probability for k, l ∈ Q. Akl
is the number of observed transitions from the state k to
state l in training data. The maximum likelihood estimator
is defined as

akl = Akl∑
q∈Q Akq

(2)

To avoid zero probabilities due to sparse/insufficient
training data, we add pseudocounts to the observed fre-
quencies to reflect prior biases regarding the probability
values. Given pseudocounts rkl, we define A′

kl as

A′
kl = Akl + rkl (3)

Usually, with the Laplace method, all rkl equal to 1.
The performance comparison of the two strategies for

computing transition probabilities will be shown in the
Results and discussion Section.

Results and discussion
To evaluate the performance of GPRED-GC, we tested
GPRED-GC on three sets of data from A. thaliana and
O. sativa. The first data set on A. thaliana was down-
loaded from the server of Augustus [27]. The other two
were from O. sativa, obtained from the MSU Rice Anno-
tation Project and from Stanke et al. [28], respectively. A.
thaliana is a dicotyledenous plant and not a grass species.
The genes in A. thaliana do not have GC-gradients that
are common to genes from grasses. We expect that our
program should achieve similar performance to other
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Fig. 4 The state diagram of GPRED-GC. The states beginning with r represents the reverse strand. EH
single: a single exon of high GC content. EM

single: a

single exon of medium GC content. EL
single: a single exon of low GC content. Einit H: the initial coding exon of a multi-exon gene with high GC

content. Einit M : the initial exon of a multi-exon gene with medium GC content. Einit L: the initial exon of a multi-exon gene with low GC content. DSS:
a donor splice site. Ishort: an intron emitting at most d nucleotides. Ifixed: a longer intron with the first d nucleotides. Igeo: a longer intron emitting one
nucleotide at a time after the first d nucleotides. ASS: an acceptor splice site with branch point. EH: an internal coding exon of a multi-exon gene
with high GC content. EM: the internal exon of a multi-exon gene with medium GC content. EL: the internal exon of a multi-exon gene with low GC
content. EH

term: the last coding exon of a multi-exon gene with high GC content. EM
term: the terminal exon of a multi-exon gene with medium GC

content. EL
term: the terminal exon of a multi-exon gene with low GC content. IR: intergenic region. Diamonds represent the states that emit fixed

length strings. Ovals represent the states including explicit length distribution. The numbers at the arrows show the transition probabilities. The
transition probabilities incident to new exon states are derived using equal divisions (strategy 1). The exponents 0, 1, and 2 represent the reading
frame phase. For an exon state, this is the position of the last base of the exon in its codon. For the other states, the exponent are the
preceding-exon phase. The small circles represent silent states

ab initio gene prediction programs on gene prediction for
A. thaliana. For the data sets from O. sativa, we expect to
observe improved performance of gene prediction. As our
HMM is modified from the HMM in Augustus, we com-
pared our results to the output of regular AUGUSTUS
ab initio gene finding program. In particular, we focus on
examining the performance of our method on identifying
genes with sharp change of GC content.

Evaluation metrics
We adopted the standard evaluation metrics [22] for gene
prediction: sensitivity and specificity. The sensitivity and
specificity are computed at three levels: the nucleotide
level, the exon level, and the gene level. The sensitivity and
the specificity are defined as

Sensitivity(Sen) = TP
TP + FN

(4)
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Specificity(Spe) = TP
TP + FP

(5)

TP (true positive) represents the number of correctly
predicted features (coding nucleotides, exons, or genes).
FN (false negative) represents the number of annotated
features that are not correctly predicted by a gene anno-
tation program. FP represents the number of predicted
features that are not annotated. At each level, we report
both the sensitivity and specificity. Sensitivity is the per-
centage of correctly predicted features in the set of all
annotated features. Specificity is the percentage of cor-
rectly predicted features in the set of all predicted features.
Specificity is also called positive predictive value (PPV)
in other literature. At the exon level, a predicted exon
will be correct if both splice sites are identical to their
labeled positions. At the gene level, a predicted gene is
considered correct if all exons are correctly identified, and
no additional exons are identified in the gene. The pre-
dicted partial genes are evaluated similarly. The forward
and reverse strands are considered as different sequences.

Gene prediction on A. thaliana
We trained our HMM for A. thaliana using the training
set from Stanke’s website [27]. The data set contained 249
genomic regions. There were two single exon genes and
247 multi-exon genes in the data set.

Training the HMM model
To train our HMM, we calculated the GC contents for all
of the exons and classified them as high, medium, and low
using specified cutoffs. For GPRED-GC, we have two cut-
offs: lowT and highT. If an exon has GC content below
lowT, it is classified as low GC content. If an exon has GC
content above highT, it is labeled as high GC content. Oth-
erwise, it is labeled as medium. The detailed classification
is summarized in Procedure 1.

Figure 5 illustrates the distribution of exons by their GC
contents for 1,431 exons in A. thaliana data set. Com-
pared to the GC content distribution for exons in O. sativa
(see the figure in Section Gene Prediction in O. sativa), the
variation of GC contents of exons in A. thaliana is smaller.

Table 1 shows the values of lowT and highT used in the
experiments. Exons in the training set are classified into
three groups based on lowT and highT cutoffs. Parameters
are derived separately for different exon states.

For all newly added exons of types EH , EL, and EM, their
exon length distributions are computed. In addition, we
calculated kth-order Markov Model (by default k=4) for
each new exon state.

For computing transition probabilities, we used two
strategies. First, we equally divided the probabilities of
AUGUSTUS for three states of high, medium, and low GC
contents. Second, we used maximum likelihood estima-
tion to calculate transition probabilities.

Procedure 1 The pseudocode for classifying the exons
into three groups
Input: E: a set of exons and e.GC: GC Content of an exon.
Output: EH: a set of exons classified as high GC content,

EM: a set of exons classified as medium GC content,
and EL: a set of exons classified as low GC content.
//Exon Classification

1: for each e ∈ E do
2: if e.GC > highT then
3: EH ⇐ e
4: else
5: if e.GC >= lowT and e.GC <= highT then
6: EM ⇐ e
7: else
8: if e.GC < lowT then
9: EL ⇐ e

10: end if
11: end if
12: end if
13: end for

We used 10-fold cross-validation for model training.
It divided the training data set randomly into 10 sub-
sets. The evaluation method is repeated 10 times. For
each round, one of 10 subsets is designated as the
test set and the other 9 subsets are put together for
training. Then the average prediction accuracy of all
10 trials is calculated. The parameters maximizing the
average prediction performance are kept as the default
parameters.

Performance comparison between different gene prediction
tools
We tested AUGUSTUS and GPRED-GC on the testing
data set of A. thaliana [27], which has no overlap with
the training data set. There were 74 genomic regions
with 168 genes on the forward and reverse strand.
Our program was modified from AUGUSTUS version
2.4 downloaded from [29]. Both original AUGUS-
TUS and GPRED-GC were tested using default input
parameters.

Table 1 shows the comparison of the accuracy of
AUGUSTUS and GPRED-GC with different thresholds of
GC contents. In this experiment, the transition probabil-
ities from intron to exons of different GC contents were
equally divided into three portions. These experimental
results show that GPRED-GC achieved slightly better sen-
sitivity and specificity for gene level predictions. For base
level and exon level predictions, GPRED-GC has higher
specificity than AUGUSTUS. Overall, the performances
of these two tools are comparable on this data set, which
is expected for a non-grass genome that lack genes with
widely varying GC contents or genes with negative GC
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Fig. 5 GC Content of exons in the A. thaliana data set

gradients. In addition, the performance of GPRED-GC
does not vary significantly with the change of the GC con-
tent cutoffs, mainly because the GC contents of the exons
in this data set are clustered between 0.35 and 0.6.

We also implemented GPRED-GC by computing the
transition probabilities from intron to different exon states
using maximum likelihood estimation. Table 2 presents
the accuracy comparison of AUGUSTUS and GPRED-GC
with different cutoffs and trained transition probabili-
ties. Using maximum likelihood estimation for comput-
ing the transition probabilities gave the better overall
performance.

The uniquely predicted genes by GPRED-GC
As the major goal of GPRED-GC is to detect genes with
highly variable GC contents, we evaluated this goal by
examining the GC contents of uniquely identified genes by
GPRED-GC. There were 14 uniquely identified genes by
our tool and 149 shared genes. For all these genes, we
computed their GC contents and the standard deviation
(SD). In addition, we introduce another metric named
“GC-distance", which is the largest difference of GC con-
tents between all exons inside a gene. Thus, a gene with
highly variable GC contents are more likely to have a big
SD and also a large GC-distance.

Table 1 Performance comparison of gene prediction tools on A. thaliana with the transition probabilities divided into three equal portions

Program AUGUSTUS GPRED-GC

lowT=0.47 lowT=0.30 lowT=0.30 lowT=0.60

highT=0.63 highT=0.60 highT=0.70 highT=0.70

Base Sen 0.968 0.962 0.963 0.962 0.963

level Spe 0.708 0.709 0.710 0.710 0.710

Exon Sen 0.870 0.848 0.848 0.845 0.848

level Spe 0.666 0.669 0.679 0.680 0.679

Gene Sen 0.554 0.565 0.548 0.548 0.548

level Spe 0.352 0.360 0.354 0.354 0.354

Time(Sec.) 40.3 52.4 52.8 54.2 53.0

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under
different sets of thresholds on A. thaliana dataset in seconds. Note: The running time is the total running time of prediction
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Table 2 Performance comparison of gene prediction tools on A. thaliana with the transition probabilities trained by computing
maximum likelihood estimation

Program AUGUSTUS GPRED-GC

lowT=0.47 lowT=0.30 lowT=0.30 lowT=0.60

highT=0.63 highT=0.60 highT=0.70 highT=0.70

Base Sen 0.968 0.960 0.972 0.972 0.972

level Spe 0.708 0.711 0.709 0.709 0.709

Exon Sen 0.870 0.851 0.882 0.882 0.882

level Spe 0.666 0.674 0.677 0.677 0.677

Gene Sen 0.554 0.560 0.565 0.565 0.565

level Spe 0.352 0.346 0.351 0.351 0.351

Time(Sec.) 40.3 51.1 57.7 56.4 57.7

The two tools have comparable performance. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under different sets of thresholds on A. thaliana dataset in
seconds. Note: The running time represents the total running time of prediction

The experimental results demonstrated that the average
SD of the uniquely predicted genes was 0.046. However,
the average SD of the common ones was 0.033 which is
smaller than the uniquely predicted genes. Also, the aver-
age GC-distance for uniquely found genes was 0.111. The
average GC-distance of the common genes was only 0.087.
As an example, a uniquely identified gene is reported in
Fig. 6.

Running time analysis
The theoretical time complexity is O(|Q|L) where Q is the
set of the states in the HMM and L is the query length.
The actual running time is in Tables 1 and 2. As the total
number of states in GPRED-GC is less than twice of the
states in AUGUSTUS, the running time of GPRED-GC is
comparable to AUGUSTUS.

Gene prediction in O. sativa
We conducted two experiments using two different O. sativa
data sets. The first O. sativa data set is part of the MSU
Rice Genome Annotation Project [30], [31]. The second O.
sativa data set was obtained from Stanke et al. [28]. Unlike
A. thaliana, which has a set of gene predictions with high
confidence, O. sativa does not have confidence descrip-
tions assigned to gene predictions. Therefore, we choose
two data sets on O. sativa to avoid the possible inaccu-
rate annotations. These two data sets were constructed
from different means and contain different sequences.
The first data set is smaller than the second data set.
Figure 7 presents the distribution of exons by their GC
contents for 844 exons in the first O. sativa data set.
Figure 8 shows the distribution of exons by their GC con-
tents for 16,199 exons in the second O. sativa data set.

Fig. 6 The GC content change across all exons in a predicted multi-exon gene of A. thaliana. This gene SEQ16AC003000G7G8 was predicted by
GPRED-GC. X-axis represents the exon index. Y-axis represents the GC content
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Fig. 7 GC Content of the exons in the first data set of O. sativa

According to Figs. 7 and 8, the GC content of the exons
has a larger variation than that of A. thaliana. Thus, the
main purpose of the experiments is to test whether our
model can capture the change of GC content inside the
genes.

Gene identification in the first O. sativa data set
The training data set consisted of 150 genomic regions
with 11 single-exon genes and 139 multi-exon genes
on forward strand and reverse strand. Again, we used
10-fold cross validation strategy for model training. The

Fig. 8 GC Content of the exons in the second O. sativa data set
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Table 3 Performance comparison of gene prediction on the first O. sativa data set with the transition probabilities divided into three
equal parts

Program AUGUSTUS GPRED-GC

lowT=0.39 lowT=0.35 lowT=0.50 lowT=0.40

highT=0.61 highT=0.61 highT=0.60 highT=0.60

Base Sen 0.839 0.840 0.831 0.921 0.841

level Spe 0.892 0.902 0.898 0.883 0.901

Exon Sen 0.613 0.617 0.589 0.698 0.617

level Spe 0.694 0.733 0.715 0.692 0.725

Gene Sen 0.260 0.280 0.267 0.267 0.287

level Spe 0.235 0.261 0.250 0.234 0.267

Time(Sec.) 37.6 58.1 58.2 57.0 56.0

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under
different sets of thresholds on the first O. sativa dataset in seconds. Note: The running time is the total running time of prediction

test data set contains 150 genomic regions with 13 sin-
gle exon genes and 137 multi-exon genes on forward and
reverse strands.

We compared GPRED-GC with AUGUSTUS in Table 3.
In this experiment, we observed GC content change for
exons inside each gene. For example, some genes tend to
start with exons of high GC content and end with exons
of low GC content. As the result, GPRED-GC achieved
higher sensitivity than AUGUSTUS. GPRED-GC can
improve both the sensitivity and the specificity at all lev-
els using a cutoff of low GC content(0.40) and the cutoff
of high GC content(0.60). With transition probabilities
derived using maximum likelihood, the results are shown
in Table 4.

Furthermore, we compared changes in GC contents
of the uniquely identified genes by GPRED-GC and the
common genes shared by AUGUSTUS and GPRED-GC.
There were four uniquely predicted genes by GPRED-
GC and 143 common genes. We compared the uniquely
identified genes and common ones in terms of SD and
GC-distance for each protein-coding gene. The results

showed that the average SD of the uniquely predicted
genes (0.098) was higher than that of common genes
(0.075). Also, the average GC-distance of the uniquely
found genes by GPRED-GC (0.241) was bigger than that
of common genes (0.171).

Figure 9 plots the GC contents of the genes that can be
correctly predicted by GPRED-GC but miss-annotated by
regular AUGUSTUS. All these genes have a negative GC
gradient.

Running time on the first O. sativa data set
The running times of AUGUSTUS and GPRED-GC with
different sets of thresholds are compared in Table 3 and
Table 4.

Finding genes in the second O. sativa data set
The second O. sativa data set was provided by Stanke
et al. [28]. The detailed information about these genes
can be found in the authors’ paper. Here we provide a
brief summary about the genes in this data set. First,
Stanke et al. made a genbank file from the genome and

Table 4 Performance comparison of gene prediction on the first O. sativa data set with the transition probabilities trained using
maximum likelihood estimation

Program AUGUSTUS GPRED-GC

lowT=0.39 lowT=0.35 lowT=0.50 lowT=0.40

highT=0.61 highT=0.61 highT=0.60 highT=0.60

Base Sen 0.839 0.850 0.847 0.923 0.847

level Spe 0.892 0.898 0.898 0.876 0.899

Exon Sen 0.613 0.633 0.62 0.707 0.629

level Spe 0.694 0.732 0.716 0.670 0.727

Gene Sen 0.260 0.253 0.253 0.267 0.267

level Spe 0.235 0.235 0.235 0.227 0.247

Time(Sec.) 37.6 57.4 57.8 56.0 57.4

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under
different sets of thresholds on the first O. sativa dataset in seconds. Note: The running time shows the total running time of prediction
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Fig. 9 Genes of the first O. sativa data set predicted correctly by GPRED-GC but missed or incorrectly annotated by Augustus. Four genes are listed in
the four subplots: (a), (b), (c), and (d). X-axis represents the exon index inside a gene. Y-axis represents GC content

the gff file. Second, they constructed a set with both
5’ and 3’ UTRs annotated. Then, they selected genes
with both UTRs and CDSes (from a visual inspection in
JBrowse against panicle and leaf RNA-Seq STAR align-
ments). Fourth, they identified genes with errors only
and removed the sequences with errors. Finally, the data
set contains 1000 genes, which consist of 128 manually
selected and 872 randomly chosen ones (from among
filtered genes with both UTRs annotated). The HMM for
O. sativa was trained on a selection of 800 genes with

UTRs from phytozome [32]. For the training data set,
there were 187 single exon genes and 613 multi-exon
genes on the forward and reverse strands.

To assess the performance, we used the remaining 200
genes as the test set to avoid any overlap with the train-
ing set. The testing data set consisted of 40 single-exon
genes and 160 multi-exon genes on the forward and
reverse strands. Tables 5 and 6 compare the accuracy of
AUGUSTUS and GPRED-GC on the test set. Table 5
shows the results of the prediction using the equal

Table 5 Performance comparison of gene prediction tools on the second O. sativa data set with the transition probabilities divided
into three equal parts

Program AUGUSTUS GPRED-GC

lowT=0.31 lowT=0.49 lowT=0.30 lowT=0.60

highT=0.52 highT=0.52 highT=0.50 highT=0.70

Base Sen 0.859 0.942 0.950 0.937 0.840

level Spe 0.619 0.607 0.597 0.590 0.622

Exon Sen 0.670 0.768 0.781 0.748 0.630

level Spe 0.552 0.546 0.553 0.520 0.559

Gene Sen 0.355 0.400 0.400 0.355 0.365

level Spe 0.191 0.211 0.205 0.177 0.204

Time(Sec.) 48.2 60.2 60.8 60.8 59.0

The transition probabilities were divided into three equal parts. Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time
(Sec.) is the running time of AUGUSTUS and GPRED-GC under different sets of thresholds on the second O. sativa dataset in seconds. Note: The total running time of
prediction is presented
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Table 6 Performance comparison of gene prediction tools on the second O. sativa data set with the transition probabilities trained
using maximum likelihood estimation

Program AUGUSTUS GPRED-GC

lowT=0.31 lowT=0.49 lowT=0.30 lowT=0.60

highT=0.52 highT=0.52 highT=0.50 highT=0.70

Base Sen 0.859 0.955 0.945 0.948 0.858

level Spe 0.619 0.607 0.601 0.586 0.620

Exon Sen 0.670 0.798 0.769 0.765 0.665

level Spe 0.552 0.565 0.544 0.572 0.547

Gene Sen 0.355 0.425 0.360 0.350 0.370

level Spe 0.191 0.217 0.186 0.170 0.204

Time(Sec.) 48.2 64.9 62.4 63.5 60.3

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under
different sets of thresholds on the second O. sativa dataset in seconds. Note: The running time is the total running time of prediction

transition probabilities while Table 6 contains the
prediction results of the HMM whose transition probabil-
ities were trained using maximum likelihood. Both models
shows improved accuracy compared to AUGUSTUS.

By applying GPRED-GC of equal transition probabil-
ities (strategy 1), the sensitivity of GPRED-GC at base
level was enhanced from 0.859 to 0.942 for 0.31 lowT
cutoff and 0.52 highT cutoff. At the exon level, the sen-
sitivity of GPRED-GC was improved from 0.67 to 0.768.

The specificity of AUGUSTUS is slightly better than that
of GPRED-GC for the same cutoffs at the base level.
At the gene level, GPRED-GC had better sensitivity and
specificity (0.4 and 0.211, respectively). By using the tran-
sition probabilities trained via maximum likelihood, we
observed a bigger improvement in the performance (see
Table 6).

We conducted additional analysis using the results of
lowT=0.31 and highT=0.52. The analysis confirms that

Fig. 10 Summary of GC content profile of six genes correctly predicted by GPRED-GC. The names of the genes in each subplot are (a)
LOC_Os03g44820.1, (b) LOC_Os04g52180.1, (c) LOC_Os04g52710.1, (d) LOC_Os05g30860.1, (e) LOC_Os06g11040.1, (f) LOC_Os10g03830.1,
respectively from the second O. sativa data set. These genes cannot be detected or annotated correctly by AUGUSTUS. X-axis represents exon index
inside the gene. Y-axis represents the GC content
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GPRED-GC can detect the genes containing a GC con-
tent gradient. There were 26 uniquely predicted genes by
GPRED-GC and 163 common genes shared by AUGUSTUS
and GPRED-GC. Uniquely predicted genes had higher
SD (0.099) than common genes (0.080). Besides, the
average GC-distance (i.e. the difference between the
exon with the highest GC content and the exon with the
lowest GC content) for each protein-coding gene of the
uniquely found genes are larger than that of the common
genes (0.211 and 0.171, respectively). GPRED-GC
miss-annotated 11 genes, which are correctly predicted
by AUGUSTUS. For all these genes, we correctly pre-
dicted the initial and terminal exons but some of the
internal exons’ starting and ending positions are not
correctly computed. Overall, we correctly identified 26
more genes than AUGUSTUS while we missed 11 genes.
There are 533 exons in all of these 37 genes. At the exon
level for these genes, the sensitivities of GPRED-GC
vs. AUGUSTUS are 0.838 and 0.627, respectively. The
specificities of GPRED-GC VS AUGUSTUS are 0.639 and
0.543, respectively.

Figure 10 illustrates the examples of genes correctly pre-
dicted by GPRED-GC but missed by AUGUSTUS. This is

strong evidence showing that our tool can predict genes
with changing GC contents.

How to determine the lowT and highT cutoffs?
Our experimental results have shown that the gene pre-
diction performance is affected by the values of lowT and
highT. In Table 6, setting lowT and highT to 0.31 and 0.52
achieved significantly better performance than 0.30 and
0.50. As such a small change can lead to a big difference,
we investigated the reasons. Essentially, changing lowT
and highT mainly changes the labels of exons of the train-
ing data. The numbers of exons classified as having high,
medium, and low GC content may change. Meanwhile, the
number of transitions involving these states may change
too. Thus, we compared the corresponding parameters in
the two HMMs for these two sets of cutoffs. While many
parameters are identical, there are several differences as
shown in Table 7.

For the cutoff set (0.30, 0.50), there are several edges that
have zero or a very small number of training samples pass-
ing those edges. If the training case contains 0 samples for
one edge, only the pseudocount will be used, leading to
a very small transition probability. When the testing data

Table 7 The comparison of the corresponding parameters in the two HMMs for these two sets of cutoffs

From To lowT=0.30, highT=0.50 lowT=0.31, highT=0.52

Transition probabilities Training count Transition probabilities Training count

ASS0 E1
H 0.051961 212 0.045098 184

ASS0 E1
M 0.125490 510 0.132353 540

ASS0 E1
L 0.000980 4 0.000980 4

ASS0 E2
H 0.034314 140 0.027450 112

ASS0 E2
M 0.124510 508 0.129412 528

ASS0 E2
L 0.000980 4 0.002941 12

ASS1 E0
H 0.119469 216 0.101770 184

ASS1 E0
M 0.316372 572 0.334071 604

ASS1 E0
L 0.004425 8 0.004425 8

ASS1 EH
term 0.066372 120 0.055310 100

ASS1 EM
term 0.130531 236 0.139381 252

ASS1 EL
term 0.002212 4 0.004425 8

rDSS0 rE2
H 0.107246 148 0.092754 128

rDSS0 rE2
M 0.272464 376 0.284058 392

rDSS0 rE2
L 0 0 0.002899 4

rDSS1 rE2
H 0.074074 96 0.067901 88

rDSS1 rE2
M 0.379630 492 0.385802 500

rDSS1 rE2
L 0.003086 4 0.003086 4

rDSS2 rE2
H 0.099088 348 0.077449 272

rDSS2 rE2
M 0.407745 1432 0.428246 1504

rDSS2 rE2
L 0.001139 4 0.002278 8

Set1: lowT and highT are 0.30 and 0.50. Set2: lowT and highT are 0.31 and 0.52. The different probabilities before using pseudocount and their corresponding training counts
are listed
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has those cases, the overall generation probabilities tend
to be small. In order to avoid any bias of training, our guid-
ance is to choose the cutoffs so that the training data can
cover all the edges/transitions.

Running time on the second O. sativa data set
The running times of AUGUSTUS and GPRED-GC with
different sets of thresholds are compared in Tables 5 and 6.
The two tools have comparable total running time.

Conclusion
In this work, we provided an implementation of a HMM
that is optimized for predicting protein-coding regions
that have various GC content and 5′-3′ changing patterns.
Our experimental results showed that our program can
identify genes that are missed by AUGUSTUS.

According to the previous studies, several directions
can be improved. For gene prediction, some existing gene
prediction tools can identify 5′UTR and 3′UTR regions.
Currently, GPRED-GC is not able to identify UTR regions.
We plan to extend GPRED-GC to accurately predict
5’UTR and 3’UTR regions. Existing gene prediction tools
demonstrated that using extrinsic evidence derived from
matches to an EST or protein database can improve the
accuracy of gene prediction. We will further improve
GPRED-GC accuracy by using hints from external sources
if the data is available.
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