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ABSTRACT

Nucleic acid phylogenetic profiling (NAPP) classifies
coding and non-coding sequences in a genome ac-
cording to their pattern of conservation across other
genomes. This procedure efficiently distinguishes
clusters of functional non-coding elements in
bacteria, particularly small RNAs and cis-regulatory
RNAs, from other conserved sequences. In contrast
to other non-coding RNA detection pipelines, NAPP
does not require the presence of conserved RNA
secondary structure and therefore is likely to
identify previously undetected RNA genes or
elements. Furthermore, as NAPP clusters contain
both coding and non-coding sequences with
similar occurrence profiles, they can be analyzed
under a functional perspective. We recently
improved the NAPP pipeline and applied it to a col-
lection of 949 bacterial and 68 archaeal species. The
database and web interface available at http://napp.
u-psud.fr/ enable detailed analysis of NAPP clusters
enriched in non-coding RNAs, graphical display of
phylogenetic profiles, visualization of predicted
RNAs in their genome context and extraction of pre-
dicted RNAs for use with genome browsers or other
software.

INTRODUCTION

In all living organisms, the non-protein-coding regions of
genomes are host to a high density of functional elements,
including regulatory DNA sequences, transcription ter-
minators and attenuators, riboswitches and wide variety
of non-coding RNA genes such as SRP RNA, RNAse P
RNA or regulatory RNAs. Most bacterial genomes are
thought to harbor in the order of a hundred small regu-
latory RNAs (sRNAs) and a larger number of
riboswitches, T-boxes and regulatory leader elements
located in the 50 regions of mRNA genes (cis-encoded
RNAs). Traditionally, genome annotation processes

have focused mostly on protein-coding genes and
ignored these elements, to the point that the notion of
‘gene’ was (and still is) confused with that of ‘CDS’
(coding sequence) in most bacterial and archaeal genome
annotations. These ‘white spaces’ between coding se-
quences are now being intensely scrutinized for regulatory
elements and non-coding RNA (ncRNA) genes. Early
ncRNA gene finders used the higher GC contents and
supposed propensity for secondary structure formation
of RNAs to identify potential ncRNA genes (1).
However, as soon as complete genomes were available in
sufficient numbers, these approaches were superseded by
comparative genomics, which proved much more powerful
in discriminating functional elements from ‘junk’ DNA
(1). Comparative genomics reveals thousands of conserved
elements in the intergenic regions of even small bacter-
ial genomes. However, these elements are not always
ncRNAs and biologists need specific computational
tools to discriminate ncRNAs from other classes of func-
tional elements or noise. The first of these tools was
qRNA (2) that uses pairwise sequence alignments to dis-
tinguish structural RNAs from protein-coding segments
by seeking mutational patterns consistent with a
base-paired secondary structure or with a coding
sequence. Another program, RNAz (3), uses a multiple
sequence alignment to classify conserved segments
into ncRNA/non-ncRNA, based on the detection of sig-
nificant conserved secondary structure and base-pair co-
variation. A more recent ncRNA detection procedure,
sRNAPredict/SIPHT (4), was developed specifically for
bacteria and combines intergenic sequence conservation
to the detection of Rho-independent transcription termin-
ators (RIT).
There is no gold standard for declaring a conserved

non-coding sequence an RNA gene, a cis-encoded
RNA, a DNA-level element or a mere sequence compari-
son artifact. Both qRNA and RNAz assume that func-
tional ncRNAs adopt conserved secondary structures.
However, some bacterial sRNAs may act independently
of a specific secondary structure (5). The sRNAPredict
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pipeline requires that candidate ncRNA genes are flanked
by a RIT. However, a significant fraction of bacteria
prefer other termination mechanisms and, even in
those that favor RITs, many genes use Rho-dependent
termination or are part of operons and therefore are not
followed directly by a terminator. There is thus a strong
need for methods that can analyze all non-coding genome
elements independently of associated secondary
structures.
We have introduced nucleic acid phylogenetic profiling

(NAPP) as a method for the classification of intergenic
conserved non-coding elements (CNEs) in bacterial
genomes (6). NAPP involves collecting all CNEs and
CDSs in a reference species and seeking homologous se-
quences in all other available species. CNEs and CDSs are
then clustered based on the similarity of their occurrence
profiles. Applying this procedure to several bacterial
genomes, we observed that actual ncRNA genes and cis-
acting RNAs tend to strongly cluster together. We
inferred that unidentified CNEs in these clusters were
good candidates for RNA genes or elements, and experi-
mentally confirmed this for a set of Staphylococcus aureus
candidates. We since applied NAPP to the identification
of RNA genes in Bacillus subtilis (7) and improved the
pipeline in several respects (see below). To this date,
however, distributing NAPP results to a wider community
has proven difficult due to the relative complexity of
NAPP outputs and the quickly expanding bacterial
genome set. We have now developed a database and
web server for distributing NAPP data. The current
version of the database covers 1017 species including 949
Bacteria and 68 Archaea.

THE NAPP PIPELINE

A significant change to the NAPP pipeline since its first
publication relates to the definition of CNEs. In the
original NAPP procedure, we identified CNEs as
segments of variable length with a minimal conservation
ratio, computed from local Blast (8) alignments against
other genomes. This presented two drawbacks: first, it dis-
carded any region with conservation lower than a defined
cutoff, which was problematic as we know many RNAs
are poorly conserved. Second, the resulting CNEs possibly
combined elements with different conservation profiles.
We were interested in a more precise definition of CNEs
that would handle domains with different evolutionary
histories as independent entities. To address this, we de-
veloped a tiling procedure where each intergenic region of
the reference genome is divided into 50 nt, non-oriented
tiles overlapping by 25 nt.
All genes and intergenic tiles are submitted to the same

clustering procedure. Here, we define as ‘gene’ any
protein- or RNA-coding element provided in Genbank
annotation files, i.e. protein-coding genes are restricted
to their coding part and RNA genes are mostly tRNAs
and rRNAs. We align each tile/gene from the reference
organism against a set of 1069 bacterial/archaeal
genomes (obtained from the NCBI server in mid-2010)
using NCBI BLASTN 2.2.15 (parameters: �W 7 �e

0.01). The highest bit score obtained against each
genome is normalized by the Blastn score of the
sequence against itself. The phylogenetic profile of each
tile/gene is thus a vector of 1069 normalized scores.
Profiles are clustered using the K-means method (R
package) with parameters: Pearson distance and k=50.
To identify ncRNA-rich clusters, we Blast all tiles in a
cluster (parameters: �W 5 �e 0.001) against the
RFAM-full 10.0 database (9). Tiles with Blast hits are
tagged as ‘RNA’ tiles. Each cluster is assigned an
‘RNA enrichment P-value’ using Fisher’s exact test
(R package) based on counts of ‘RNA’ and ‘normal’
tiles. Clusters with a Fisher’s P< 0.05 are considered as
‘RNA-rich’. We measure Gene Ontology (GO) term en-
richments of RNA-rich clusters based on their
protein-coding gene contents. We convert the GI
numbers of protein-coding genes into Uniprot IDs and
then into GO terms using the appropriate EBI conversion
tables. This retrieves GO terms for 66% of CDSs.
We measure terms enrichment in RNA-rich clusters
using a Fisher’s exact test.

The NAPP database is implemented using MySQL re-
lational database server software version 4.1.22. The inter-
face is developed using PHP5 version 4.3.9, hosted via an
Apache server. Parts of the interface use Javascript. Tables
and profile views are constructed on the fly using PHP and
database queries.

RESULTS

RNA-rich clusters are found in 1017 of the 1069 genomes
analyzed. Species that fail to produce RNA-rich clusters
are mostly Archaea, endosymbionts (Buchnera,
Carsonella and Mycoplasma) and other bacteria with un-
usually compact genomes (Supplementary Table S1), sug-
gesting that these species contain fewer RNA genes and
elements than average. There are in average 4.3 RNA-rich
clusters per species containing altogether 1330 tiles. For
ncRNA prediction purposes, we combine all tiles
separated by <100 nt into contigs, independent of their
cluster of origin (contigs are not oriented). This procedure
produces an average of 643 contigs per genome, or 179
contigs/Mbase of genomic sequence (Supplementary
Table S2). A large fraction of contigs (49.5%) are
composed of a single tile (Supplementary Table S3). As
could be intuitively expected, large contigs are more likely
to represent actual RNAs than short ones. Contigs made
of four tiles or more are four times as likely to match
RFAM RNAs than single-tile contigs (corrected for size,
Supplementary Table S3, last column). This suggests that
prospective experimental validation should address
contigs over four tiles in priority.

The ncRNA prediction accuracy of NAPP was recent-
ly benchmarked (10) along with the three other compara-
tive genomics methods: sRNAPredict/SIPHT, RNAz and
eQRNA. The benchmark used a test set of 776 sRNAs
from 10 bacterial species, including 132 RNAs from
RFAM and the others from RNA-seq and tiling array
experiments. NAPP was generally more sensitive (higher
recall rate) but less specific (more ‘false positive’
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predictions) than other methods. As sRNAPredict had the
best overall accuracy (weighting both sensitivity and spe-
cificity), we further compare NAPP with this method
below.

NAPP predicts much more RNA loci than sRNA
Predict. Averaged over all genomes, sRNAPredict finds
25 RNA loci/Mb (4) while NAPP finds 179 RNA loci/
Mb (Supplementary Table S1). While this explains in
part the higher reported specificity of sRNAPredict
[12% versus 4% for NAPP (10)], it should be noted that
specificity is notoriously difficult to evaluate in this case
(10) as many false positives may turn out to be expressed
in rare conditions. Furthermore, NAPP predictions
include a significant number of ncRNAs lacking a RIT
that are thus excluded by sRNAPredict. This comprises
a large fraction of riboswitches and other mRNA leaders
that use translational attenuation instead of premature
termination, and most of the sRNA predictions in
genomes with low RIT usage. RIT usage is low overall
in Actinobacteria as well as in a number of isolated
Spirochaetes, Cyanobacteria, Alphaproteobacteria or
Firmicutes. These genomes were not sampled in the
benchmark (10), with the exception of Caulobacter
crescentus. We tested 21 genomes with a reportedly low
RIT usage (11) and observed a dramatic decrease in
the number of sRNAPredict loci for these genomes,
from 25/Mb in average to 2/Mb in the low RIT set,
while the number of NAPP predictions remains stable
at 159/Mb versus 179/Mb in average (Supplementary
Tables S4 and S5). Interestingly, these RIT-poor
genomes have nearly no RNA annotated and few
RFAM hits besides housekeeping RNAs and CRISPR
loci, which suggests NAPP predictions may be a rich
source of RNA discovery in these species. It should be
noted that NAPP also predicts RNAs in Archaea (which
do not contain RIT), at an average density of 142/Mb
(Supplementary Table S2).

An underlying hypothesis in phylogenetic profiling is
that genes or elements co-occur because they contribute
to the same cellular function (12). We noted in our initial
study that many ncRNAs tend to cluster with housekeep-
ing genes. We later identified a cluster of B. subtilis
elements enriched in sporulation genes and containing a
novel sRNA gene expressed during sporulation (7). To
enable this kind of analysis, we built GO term bias
analysis into the NAPP server. The most frequent GO
terms biases in RNA clusters (Supplementary Table S6)
are related to housekeeping functions, such as translation
(‘ribosome’, ‘translation’, ‘translational elongation’, etc.)
and energy metabolism (‘proton transport’, ‘NADH de-
hydrogenase’, ‘ATP hydrolysis’, ‘ATP synthesis’, etc.).
Terms related to RNA binding (‘RNA binding’,
‘ribonucleoprotein complex’, ‘rRNA binding’ and
‘tRNA binding’) are also very frequent. This enrichment
is intriguing as it suggests a co-evolution of certain RNAs
and RNA-binding proteins; however, it is more likely a
consequence of an over-representation of RNA-binding
activities among housekeeping functions. Another family
of terms found in fewer species is ‘transposition’,
‘transposase’, etc. This is interesting as these terms are
often associated with characteristic ‘patchy’ phylogenetic

profiles, such as the one shown in Figure 1B (first column)
for Escherichia coli strain O127 H6. These profiles are
often associated to plasmid or transposon-borne elem-
ents that are horizontally transmitted across distant
bacteria.

USING THE NAPP DATABASE

The NAPP database is freely available online at
http://napp.u-psud.fr/. The interface is composed of the
following display elements (further detail is provided in
the Figure 1 legend and in the online documentation).

(i) Main page: NAPP predictions are accessed for one
species at a time. Species are selected either by
typing keywords or through a drop-down menu.

(ii) ‘RNA-rich clusters’ table (Figure 1A): this is the
central page for a selected species. It presents the
main characteristics of RNA-rich clusters. From
this page, users can enter a position range to list
the elements of interest (tiles and genes) at this
location, or they can access the following pages.

(iii) Cluster view page: this page displays the contents of
an RNA-rich cluster (element name, position, Id
and description).

(iv) Profile page (Figure 1B): this page presents a graph-
ical view of the phylogenetic profiles of RNA-rich
clusters, together with associated GO-term biases.

(v) Contig page (Figure 1C): this page displays contigs
produced from adjacent tiles in all RNA-rich
clusters.

(vi) Genome context view (Figure 1D): from the cluster
and contig pages, users can visualize any element
(tile, gene or contig) in its genomic context using
the NCBI bacterial genome browser.

For each genome, users can export tiles or contigs as CSV
or GFF files for further analysis or visualization in a
genome browser. Queries and comments are welcomed
at napp.biologie@u-psud.fr.

FUTURE DIRECTIONS

The long-term objective of the NAPP project is to provide
biologists with comprehensive information on CNEs in
bacterial and archaeal genomes. While the current imple-
mentation focuses on the subset of elements that co-evolve
with known non-coding RNAs, many non-coding
elements harbor distinct phylogenetic profiles that are
not captured by this procedure. Furthermore, current
NAPP clusters can be very large (up to several thousand
tiles and genes) and may combine tiles and genes with
slightly, albeit significantly, different profiles that would
benefit from a more detailed examination. For instance,
the ‘sporulation’ cluster, we identified in B. subtilis (7) is
actually part of cluster #2 for this species that is enriched
in housekeeping terms (‘ribosome’, ‘translation’, etc.) but
not in the ‘sporulation’ term. The sporulation subcluster is
visible only through visual inspection of a hierarchical
clustering tree, which is not permitted with the current
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interface. A more comprehensive and interactive analysis
of complete clustering trees should lead both to improved
functional classification and to the recovery of additional
non-coding elements that are currently discarded from
NAPP clusters.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S6.
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