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The sodium-glucose cotransporter 2 inhibitor
luseogliflozin can suppress muscle atrophy
in Db/Db mice by suppressing the expression

of foxo1
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We investigated the effect of the sodium glucose cotransporter-2
inhibitor (SGLT-2i) luseogliflozin on skeletal muscle. Eight-week-
old mice were fed a standard diet or the standard diet with added
luseogliflozin for 8 weeks. The mice were divided into the following
four genotype/dietary groups: Db/m mice without SGLT-2i, Db/m
mice with SGLT-2i inhibitor, Db/Db without SGLT-2i, and Db/Db
with SGLT-2i. Among the mice with and without SGLT-2i, the ratio
of soleus and plantaris muscle to body weight in the Db/Db mice
was significantly lower than that in the Db/m mice. The cross-
sectional area of soleus muscle in the Db/Db mice without SGLT-2i
was significantly higher than that in the Db/Db mice with SGLT-2i.
The expression of foxo1 in soleus muscle of the Db/Db mice was
significantly higher than that of the Db/m mice, and the foxo1
expression of the Db/Db mice with SGLT-2i was significantly
lower than that of the mice without SGLT-2i. The fluorescence
intensity of foxo1 in the Db/Db mice fed SGLT-2i was significantly
lower than that in the Db/Db mice without SGLT-2i. The admin-
istration of luseogliflozin resulted in the suppression of both the
increased foxo1 expression and the reduced muscle cross-sectional
area in the soleus muscle of Db/Db mice.
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he numbers of individuals with type 2 diabetes are rapidly
increasing worldwide. Complications of type 2 diabetes
reduce a person’s quality of life, and they add a heavy burden to
the medical economy.” The prevention of the progression of dia-
betic complications is thus an important task. In recent years,
muscle atrophy has been thought of as a complication of diabetes.®
It has become clear that muscle atrophy, i.e., sarcopenia, and
sarcopenic obesity are strongly associated with dietary pattern
or metabolic disorder.®* In fact, we demonstrated that muscle
atrophy is present in diabetic patients.®© Muscle atrophy is also a
risk factor for both decreased daily life activity and mortality.
Several sodium glucose cotransporter-2 inhibitors (SGLT21i)
have recently become available as anti-diabetic medications,
and some of them have been reported to reduce the risk of incident
cardiovascular disease.®'” The effects of SGLT2i on body com-
position have been described,''? but the mechanisms underlying
these effects on muscle have been unclear. We conducted the
present study to investigate the effects of the SGLT2i luseogliflozin
on muscle in Db/Db mice. We evaluated muscle atrophy using
cross-sectional areas of muscle because this method has been
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often used as the best objective indicator of muscle atrophy.(!*!¥

We also evaluated the changes in gene expression in skeletal
muscle following the administration of SGLT2i. The genes mstn,
pgcla, and foxol are related to muscle atrophy.>-'? We focused
on foxol in this study because the foxol expression of skeletal
muscle in individuals with diabetes is accelerated, and this
suppresses the glucose utilization and lipid synthesis in skeletal
muscle.(!819

Materials and Methods

Animals and experimental design. All experimental pro-
cedures were approved by the Committee for Animal Research,
Kyoto Prefectural University of Medicine. Six-week-old male
non-diabetic heterozygous Db/m mice and 6-week-old male dia-
betic homozygous Db/Db mice were purchased from Shimizu
Laboratory Supplies (Kyoto, Japan). Starting when the mice were
8 weeks old, they were fed either a standard diet (SD; 344.9 kcal/
100 g, fat kcal 4.6%; CLEA Japan, Tokyo, Japan) or the same
standard diet with the SGLT2i luseogliflozin added (0.01% w/w
in chow) for 8 weeks. We divided the mice into the following
four groups: (1) Db/m without (w/0) SGLT2i, (2) Db/m with
SGLT?2i, (3) Db/Db w/o SGLT2i, and (4) Db/Db with SGLT2i. At
16 weeks old, after an overnight fast, all of the mice were killed
by the administration of a combination anesthetic: 0.3 mg/kg of
medetomidine, 4.0 mg/kg of midazolam, and 5.0 mg/kg of butor-
phanol (Fig. 1A).%0

Glucose tolerance tests. Intraperitoneal glucose tolerance
tests (iPGTTs) (2 g/kg) were performed in other 16-week-old
mice that had been fasted for 5 h. Plasma glucose was measured
from the tail vein using a glucometer (Gultest Neo Alpha; Sanwa
Kagaku Kenkyusho, Nagoya, Japan).

Tissue collection and histological assessment of murine
soleus and plantaris muscles. We used the soleus and plan-
taris muscles for the muscle samples.®? The soleus muscle was
either fixed with 10% buffered formaldehyde for the histological
examination or immediately frozen in QIAzol Lysis reagent
(Qiagen, Venlo, Netherlands) for mRNA extraction. We measured
the weight and cross-sectional area of soleus and plantaris muscles
of the four groups of mice described above. In this study, we used
the anatomical cross-sectional area, which is the cross-sectional
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The SGLT2i luseogliflozin did not change the body weight of the mice or improve their impaired glucose tolerance. (A) Outline of the

feeding and sacrifice protocol. (B) Body weight changes. (C, D) iPGTT results and the area under the curve of iPGTT. Data are mean + SEM. *p<0.01

by t test.

area of a muscle perpendicular to its longitudinal axis of soleus
muscle.®?

Soleus muscle sections were prepared and stained with hema-
toxylin and eosin or a monoclonal foxo! (C29H4) antibody (Cell
Signaling Technology, Beverly, MA) as a primary antibody, and a
Texas-red-conjugated anti-mouse secondary antibody (Jackson
ImmunoResearch, West Grove, PA). Nuclei were stained with
DAPI (Sigma-Aldrich, St. Louis, MO). Images were captured with
a fluorescence microscope (BZ-X710, Keyence, Osaka, Japan),
and the fluorescence intensity of the muscle tissue and the cell
nuclei numbers were analyzed using Image J software. We mea-
sured the weights of the soleus and plantaris muscles and the
cross-sectional areas of soleus muscle of the mice in the four
groups described above. All images acquired using the BZ-X710
microscope and the cross-sectional areas of soleus muscle were
measured using BZ-X analyzer software (Keyence).

Gene expression in soleus muscle. The soleus muscle of
fasting mice were resected and immediately frozen using liquid
nitrogen and homogenized in ice-cold QIAzol Lysis reagent,
and total RNA was isolated as described in the manufacturer’s
instructions. We reverse-transcribed the total RNA (0.5 ng) by
using a High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA) for first-strand cDNA synthesis
utilizing an oligonucleotide dT primer and random hexamer priming
according to the manufacturer’s recommendations. The reverse
transcription (RT) reaction was performed for 120 min at 37°C,
and the inactivation of RT was performed for 5 min at 85°C.

The mRNA expression levels of foxol, myog, mstn, myod, pgcla
and ppara were quantified using a real-time reverse transcription-
polymerase chain reaction (RT-PCR). The relative expression
levels of each targeted gene was normalized to the gapdh threshold
cycle (CT) values and quantified using the comparative threshold
cycle 2724 method as described.®® Signals from Db/m mice
without SGLT2i feeding were assigned a relative value of 1.0. The
RT-PCR was performed using TagMan Fast Advanced Master

24

Mix (Applied Biosystems) according to the manufacturer’s
instructions. The following PCR conditions were used: 1 cycle
for 2 min at 50°C and 20 s at 95°C, followed by 40 cycles for 1 s
at 95°C, and s0 s at 60°C.

Statistical analysis. We analyzed the data using the JMP
ver. 13.0 software (SAS, Cary, NC), and p values <0.05 were
considered significant. Student’s ¢ test was used to compare the
differences between pairs of groups.

Results

Effect of SGLT-2i on body weight and glucose homeostasis
After the 8-week dietary treatment, the body weight and blood
glucose in the two groups of Db/Db mice (those with and w/o the
SGLT2i) were significantly higher than those of the two groups of
Db/m mice. However, no significant reduction in body weight
and no improvement in impaired glucose tolerance were observed
following the administration of SGLT-2i (Fig. 1B-D).

Effect of SGLT-2i on skeletal muscle. In the mice treated
with and without SGLT-2i, the weight of the soleus muscle of the
Db/Db mice was significantly lower than that in the Db/m mice,
whereas the weight of the plantaris muscle did not show a signifi-
cant difference between the Db/Db and Db/m mice (Fig. 2A and
B). Additionally, among the mice treated with and without
SGLT-2i, the plantaris and soleus muscle to body weight ratio in
the Db/Db mice was significantly lower than that in the Db/m
mice (Fig. 2C and D). The cross-sectional area of soleus muscle in
the Db/Db mice without SGLT-2i was significantly less than that
in the Db/Db mice with SGLT-2i (Fig. 3A-E).

SGLT-2i suppressed foxo1 expression in muscle. Our RT-
PCR analyses revealed that the foxol expression in skeletal
muscle of the Db/Db mice was significantly higher than that of the
Db/m mice (Fig. 4A). However, the foxol expression in skeletal
muscle of the Db/Db mice with SGLT-2i was significantly lower
than that in the mice without SGLT-2i (Fig. 4A). The admin-
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Fig. 2. Luseogliflozin in the diet did not change the muscle weights of the mice. (A) Plantaris muscle weights (n = 6). (B) Soleus muscle weights
(n =6). (C) Ratio of plantaris muscle to body weight (n = 6). (D) Ratio of soleus muscle to body weight (n = 6). Data are mean + SEM. *p<0.05,
**p<0.01 by t test.
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Fig. 3. Histological assessment of the soleus muscle. Luseogliflozin increased the cross-sectional area of soleus muscle. (A-D) Cross-sections of soleus
muscle. (A) Db/m without SGLT2i. (B) Db/m with SGLT2i. (C) Db/Db without SGLT2i. (D) Db/Db with SGLT2i. Scale bar, 200 um. (E) Cross-sectional area
of soleus muscle. Data are mean + SEM. *p<0.01 by t test.
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Fig. 4.

Luseogliflozin significantly suppressed the expression of foxo? in Db/Db mice. RT-PCR analysis of gene expression in soleus muscle. (A) foxoT.

(B) myogenin. (C) myostatin. (D) myod. (E) pgcla. (F) ppara (n = 6). Data are mean + SEM. *p<0.05 by t test.

istration of SGLT-2i did not change the expressions of any other
genes in the Db/m and Db/Db mice (Fig. 4B—F). In addition, the
immunostaining of soleus muscle tissues demonstrated that the
fluorescence intensity of foxol in the Db/Db w/o SGLT2i group
was significantly higher than that of the Db/Db with SGLT2i
group (Fig. SA-E). Moreover, the number of cell nuclei per image
in both the Db/m mice and the Db/Db mice treated with SGLT-2i
were higher than those of the mice w/o SGLT-2i (Fig. 5F).

Discussion

Our findings demonstrated that the foxo! expression in skeletal
muscle of Db/Db mice is higher than that of Db/m mice and that
an SGLT?2i, luseogliflozin, suppressed this higher foxol expres-
sion in skeletal muscle of Db/Db mice. Increased foxol expression
in skeletal muscle was reported to be associated with muscle
atrophy.®? Foxol could affect several metabolic pathways.
Among them, proteolysis regulated by the ubiquitin-proteasome
pathway, autophagy, and the repression of protein synthesis are
dominant processes of muscle atrophy. 729

In addition, foxol has been thought to have a pivotal role in
glycolysis in muscle. In fact, increased foxo! expression resulted
in the upregulation of pdk4 expression, which suppresses the
glycolytic pathway.!® Increased foxol expression represses the
expression of srebplc, which is mediated by nuclear receptors
(such as liver X receptor and retinoid X receptor), and it upregu-
lates the biosynthesis of fatty acid in skeletal muscle."” Therefore,
increased foxol expression in skeletal muscle suppresses glucose
utilization and lipid synthesis.

26

In the present study, the ratio of plantaris and soleus muscle to
body weight in the Db/Db mice were significantly lower than that
in the Db/m mice. Moreover, the cross-sectional area of soleus
muscle in the Db/Db mice treated with SGLT2i was significantly
higher than that of the mice w/o SGLT2i.

This study has some limitations. First, the sample size was
small. Second, we did not investigate the biological mechanism
of luseogliflozin in vitro. This issue is very important and should
be addressed in future studies.

Conclusion

Taken together, our present findings suggest that increased
foxol expression in skeletal muscle is associated with the muscle
atrophy of Db/Db mice. This is the first study to demonstrate the
increased expression of foxo! in muscle tissue of Db/Db mice. The
administration of luseogliflozin resulted in the suppression of
both the increased foxo! expression and the reduced muscle cross-
sectional area in the soleus muscle of Db/Db mice. Further studies
investigating the association between the effect of an SGLT-2i on
muscle and foxol in muscle are needed.
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Luseogliflozin significantly suppressed the expression of foxo? in muscle tissue. Immunofluorescence of foxo1 of soleus muscle. Immunos-

tainings are shown. (A) Db/m without SGLT2i. (B) Db/m with SGLT2i. (C) Db/Db without SGLT2i. (D) Db/Db with SGLT2i. Scale bar, 50 um. (E) Fluores-
cence intensity. (F) Number of cell nuclei per image. Data are mean + SEM. *p<0.05, **p<0.01 by t test.
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