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Abstract
There is growing interest in studying the genetic contributions to longevity, but lim-
ited relevant genes have been identified. In this study, we performed a genetic asso-
ciation study of longevity in a total of 15,651 Chinese individuals. Novel longevity loci, 
BMPER (rs17169634; p = 7.91 × 10−15) and TMEM43/XPC (rs1043943; p = 3.59 × 10−8), 
were identified in a case–control analysis of 11,045 individuals. BRAF (rs1267601; 
p = 8.33 × 10−15) and BMPER (rs17169634; p = 1.45 × 10−10) were significantly as-
sociated with life expectancy in 12,664 individuals who had survival status records. 
Additional sex-stratified analyses identified sex-specific longevity genes. Notably, 
sex-differential associations were identified in two linkage disequilibrium blocks in the 
TOMM40/APOE region, indicating potential differences during meiosis between males 
and females. Moreover, polygenic risk scores and Mendelian randomization analyses 
revealed that longevity was genetically causally correlated with reduced risks of mul-
tiple diseases, such as type 2 diabetes, cardiovascular diseases, and arthritis. Finally, 
we incorporated genetic markers, disease status, and lifestyles to classify longevity 

www.wileyonlinelibrary.com/journal/acel
mailto:﻿
mailto:﻿
mailto:﻿
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:xuxun@genomics.cn
mailto:junxiamin@zju.edu.cn
mailto:niechao@genomics.cn
mailto:zengyi@nsd.pku.edu.cn


2 of 20  |     LIU et al.

1  |  INTRODUC TION

The average human life expectancy has been rising for decades 
(Greene, 2001; Oeppen & Vaupel, 2002), and it was recently 
estimated that the number of long-lived individuals (more than 
90  years old) was 63.5 million worldwide as of 2020 (United 
Nations, 2019). It is clear that longevity represents a complex 
trait that is influenced by genetic and environmental factors and 
their interactions (Passarino et al., 2016). Twin studies (Herskind 
et al., 1996; Skytthe et al., 2003) have estimated that the heri-
tability of longevity is approximately 20%–30% in modern soci-
eties, and the proportion increases to approximately 40% for 
long-lived individuals (Hjelmborg et al., 2006; Perls et al., 2000; 
Terry et al., 2007; van den Berg et al., 2019). Although longev-
ity is considered to exhibit relatively high heritability, limited 
genetic loci related to this trait have been identified in previous 
genome-wide association studies (GWAS; Deelen et al., 2014; 
Joshi et al., 2017; McDaid et al., 2017; Sebastiani et al., 2012; Zeng 
et al., 2016). Apolipoprotein E (APOE) is the only gene that has 
been replicated by multiple independent GWAS meta-analyses 
(Deelen et al., 2019; Joshi et al., 2017; McDaid et al., 2017). One 
recent meta-analysis revealed rs7676745 near GPR78 as a novel 
locus (Deelen et al., 2019). In European populations, other GWAS 
meta-analysis studies have replicated several longevity genes, in-
cluding CHRNA3/5, CDKN2A/B, SH2B3, and FOXO3A (Joshi et al., 
2017; McDaid et al., 2017). Our previous GWAS in a Chinese pop-
ulation additionally identified IL6 and ANKRD20A9P (Zeng et al., 
2016). One possible reason for the lack of replication could be the 
variation in phenotype definitions. Some studies have compared 
old cases with young controls. The selection of age cutoffs var-
ies among different studies. A recent study conducted on multi-
ethnic datasets used the 90th/99th survival percentile as the age 
cutoff (Deelen et al., 2019). Some other studies have used more 
extrema cutoffs, with only centenarians being included among the 
cases (Sebastiani et al., 2012, 2017; Zeng et al., 2016). The use of 
different definitions for cases and controls may lead to hetero-
geneity. Continuous phenotypes have also been widely used for 
longevity genetic studies. A person's life span is the most obvious 
phenotype. Nevertheless, many ongoing cohorts contain younger 
participants, resulting in the limited sample size of people with 
exact death dates. Therefore, the parental life span has been used 
as an alternative phenotype (McDaid et al., 2017; Timmers et al., 

2019). The predicted life span based on family history life span has 
also been used (Yashin et al., 2018). However, because the life-
styles, health care, and other environmental factors are quite dif-
ferent between generations, the use of parental life spans might 
introduce substantial bias. Notably, the previous studies often fo-
cused on Western populations; very few studies have focused on 
Asians, which account for 42% of the long-lived population world-
wide (United Nations, 2019). The Chinese Longitudinal Healthy 
Longevity Survey (CLHLS) encompasses a nationwide sample of 
long-lived adults and the “young old” in China, with up to 20 years 
of follow-up which enable us to track longevity and mortality. 
Therefore, CLHLS can provide an ideal dataset in analyzing the as-
sociation of genetic and non-genetic data with life span in humans.

In addition to studying the genetics of longevity and life span, 
age-related diseases and their correlations with longevity have 
attracted much attention (Sakaue et al., 2020). In either human 
centenarians or long-lived animals, it has long been observed that 
longevity and the occurrence of diseases, such as cardiovascular 
and cerebral stroke, are inversely correlated either genetically or 
experimentally (Altmann-Schneider et al., 2013; Hammond et al., 
1971; Rosa et al., 2019; van der Lee et al., 2019). A previous study, 
using genetic data of parental life span, reported genetic correla-
tions between several complex traits and mortality in a general 
population of European ancestry (Joshi et al., 2017). Our study de-
fined individuals with ages greater than 90 as the longevity group, 
rather than the parental survival which is a debatable longevity 
phenotype. Therefore, a systematic exploration of the correlation 
between longevity and complex diseases in the current study may 
reveal more information.

Another research interest is to predict longevity and life span 
based on age-related diseases and genetic markers. The polygenic 
risk score (PRS) generated from the summary statistics of associa-
tion studies is a commonly used predictor for genetic factors. For ex-
ample, a recent genetic study reported that a polygenic score could 
identify people with the top 10% parental survival PRS, who might 
outlive an average of 5 years those with the bottom 10% parental 
survival PRS (Timmers et al., 2019). In addition, circulating glucu-
ronic acid levels (Ho et al., 2019) or telomeres (Whittemore et al., 
2019) have been used as biomarkers for life span prediction. To date, 
there are very few studies that explore the potential of life span pre-
diction by using a combination of genetic data, disease conditions, 
and lifestyle factors.
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or not-longevity groups and predict life span. Our predictive models showed good 
performance (AUC = 0.86 for longevity classification and explained 19.8% variance of 
life span) and presented a greater predictive efficiency in females than in males. Taken 
together, our findings not only shed light on the genetic contributions to longevity but 
also elucidate correlations between diseases and longevity.
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Here, we performed a large-scale integrated analysis based 
on 15,651 Chinese individuals from CLHLS to identify the lon-
gevity genes, to explore the relationships between diseases and 
longevity, and to apply these longevity-related factors for life 
span prediction. This study including 2,509 centenarians is one of 
the largest centenarian studies in the world (Deelen et al., 2019; 
Sebastiani et al., 2017; Timmers et al., 2019). We firstly designed 
a customized SNP chip using a carefully selected set of SNPs that 
captured 27,656 candidate variants correlated with longevity, age-
related diseases, and immunity. Next, we carried out a candidate-
gene association analysis on the age-stratified phenotype (“cases” 
were defined as individuals surviving 90 years or over, while the 
“controls” had an age of less than 75, which is the average life 
span in China) and life span, respectively. Then, we performed a 
meta-analysis incorporating the current dataset and our previ-
ously published GWAS dataset by removing the overlapped sam-
ples. Moreover, we evaluated the polygenic prediction of diseases 
on longevity using polygenic risk score (PRS) analysis and inferred 
causal relationships between longevity and diseases using the bi-
directional Mendelian randomization method. Finally, we built pre-
dictive models for longevity, and life span by integrating genetic 
factors, disease status, and lifestyles. Overall, this study aimed to 
reveal the sex-combined and sex-specific longevity genes/path-
ways and investigate their predictive effectiveness on longevity 
and life span.

2  |  MATERIAL S AND METHODS

2.1  |  Participants and phenotypes

This study included a total of 15,651 individuals from the Chinese 
Longitudinal Healthy Longevity Surveys (CLHLS), which were con-
ducted in 1998, 2000, 2002, 2005, 2008, 2011, and 2014 in a 
randomly selected half of the counties and cities in 22 out of 31 
provinces in China. The primary dataset (dataset 1) included 13,228 
individuals with ages ranging from 30 to 114. All individuals were 
genotyped by using a well-designed customized chip targeting ap-
proximately 27  K longevity-related SNPs. These candidate SNPs 
were selected based on previously published associations with lon-
gevity, chronic diseases, and health indicators. For replication pur-
poses, a dataset 2 included 4477 individuals based on our previous 
study (Zeng et al., 2016). 2054 samples were overlapped between 
the two datasets.

Demographic and clinical information (i.e., diseases) was re-
corded for participants in this study. Phenotypic data were col-
lected using internationally standardized questionnaires adapted 
to the Chinese cultural and social context. The CLHLS study was 
approved by the Biomedical Ethics Committee of Peking University 
(IRB00001052-13074). All participants or their legal representa-
tives signed written consent forms in the baseline and follow-up 
surveys.

2.2  |  Customized SNP chip design

We customize a SNP chip containing 27,656 selected longevity and 
disease-related SNPs for targeted genotyping (Table S1). The se-
lected SNPs could be characterized as corresponding to five major 
components (Tables S2 and S3): (1) 11,893 SNPs associated with lon-
gevity based on our previous CLHLS GWAS study on 4477 Chinese 
individuals (Zeng et al., 2016); (2) 1881 reported longevity SNPs 
based on the other previously published longevity studies, includ-
ing the European Union (EU) longevity (Deelen et al., 2014) & New 
England centenarian study (NECS; Sebastiani et al., 2012), the Long 
Life Family Study (LLFS; Bae et al., 2013), and the Framingham Heart 
Study (FHS; Lunetta et al., 2007); (3) 3966 reported SNPs associated 
with diseases in the NHGRI-EBI GWAS catalog (MacArthur et al., 
2017); (4) 7260 SNPs associated with health indicators in the CLHLS 
and the Health and Retirement Study (HRS; Tanaka et al., 2017); and 
(5) 2656 tagging SNPs for imputing the alleles in the human major 
histocompatibility complex (MHC) region.

2.3  |  Sample filtering

The samples were required to meet 3 selection criteria: (1) a geno-
type calling rate >90%; (2) no existing population stratification ac-
cording to a multidimensional scaling (MDS) procedure implemented 
in PLINK v1.07, based on which individuals deviating from the main 
population cluster were removed; and (3) no inclusion of duplicates 
or first-degree relatives when evaluating pairwise through identity 
by descent (IBD). After sample filtering, 12,664 samples were in-
cluded in the dataset 1.

2.4  |  Variant filtering

To determine the high-quality genotypes, we applied a conservative 
inclusion threshold for variants: (1) minor allele frequency >5%, (2) 
genotype calling rate >90%; and (3) Hardy–Weinberg equilibrium 
(HWE) p > 10−5. To further confirm the quality of the genotypes, we 
calculated the concordance rate of the genotypes using 2,054 sam-
ples that overlapped between dataset 1 and dataset 2. Then, we re-
moved the variants with a concordance rate <0.9 (Figure S7), which 
largely eliminated the bias caused by two different arrays (Illumina 
ZhongHua and Affix arrays). After variant filtering, 23,769 out of the 
27,656 variants remained in dataset 1, and 818 K out of the 900 K 
variants remained in dataset 2.

2.5  |  Imputation

We performed imputation analysis by pre-phasing genotypes with 
SHAPEIT v2.5 (Delaneau et al., 2011), and then imputing variants 
from the 1000 Genomes Project released on October 2014 with 
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2504 samples (http://1000g​enomes.org) as a reference panel using 
IMPUTE2 v2.3.1(Howie et al., 2009). SNPs with a quality score (R2) 
>0.9 were included after imputation. After further quality control 
filtering for SNPs as described above, we eventually obtained 287 K 
SNPs from 12,664 individuals in dataset 1 and 5.6 M SNPs from 
4,477 individuals in dataset 2 for the subsequent genetic association 
analyses.

2.6  |  MHC analysis

To identify potential MHC associations for longevity, 2,656 MHC 
tag SNPs were included in the 27 K arrays for dataset 1. Then, we 
used beagle 5 (Browning et al., 2018) with the HAN-MHC datasets 
as a reference panel to impute MHC alleles, and the imputation ac-
curacy was 0.96 at the two-digit level as previously described (Zhou 
et al., 2016). In dataset 2, the samples were genotyped using Illumina 
HumanOmniZhongHua-8 BeadChips tagging 900,015 SNPs, among 
which 8,350 SNPs were located in the MHC region. We imputed 
the MHC alleles using the same procedure applied for dataset 1 
and obtained 104 imputed HLA alleles presented in both two data-
sets. For each dataset, 104 tests were performed in the cases and 
controls. In each test, one allele was compared with the other 103 
alleles grouped together. The allelic 2  ×  2 contingency table for a 
specific HLA allele contained the counts of that allele and the counts 
of the other 103 alleles in cases and controls. We next performed a 
meta-analysis of the two datasets for the 104 imputed HLA alleles 
for longevity. Finally, a Bonferroni-corrected p < 0.0005 = 0.05/104 
for 104 alleles was defined as significant.

2.7  |  Association analysis for longevity

We performed genetic association analysis of 287 K imputed SNPs 
in dataset 1. More specifically, after sample filtering, a total of 8,490 
individuals (4,662 cases with an age ≥90 and 3,828 controls with an 
age <75; 75 is the average life span of Chinese individuals) in dataset 
1 were used for a case–control association analysis. We then per-
formed association analysis in dataset 2 (Zeng et al., 2016). Since 
1,922 individuals in dataset 2 were overlapped with 8,490 case/
control samples in dataset 1, a case–control association analysis was 
performed in 2,555 independent samples by removing the 1,922 
overlapped samples from 4,477 samples of dataset 2. The 2,555 
independent samples included 1,105 centenarians’ cases and 1,450 
controls with age <65. For each dataset, we applied logistic regres-
sion to calculate the p-values and odds ratio (ORs) of the SNPs by 
adjusting for sex and the top two MDS dimensions using PLINK 1.07. 
Next, a meta-analysis was performed on the two case–control asso-
ciation results, using inverse-variance weighted fixed-effect meta-
analysis in METAL software (https://genome.sph.umich.edu/wiki/
METAL). To further replicate the results, we also reviewed associa-
tion results from previous literatures, including EU & NECS, LLFS & 
FHS longevity GWAS, and studies in the GWAS catalog.

To investigate the correlations between the identified longevity-
related SNPs and diseases and the other traits, we reviewed diseases 
GWAS in this study (see Section 2.12 below). Then, we downloaded 
the summary statistics data from the Japan BioBank, a study 
of 300,000 Japanese citizens suffering from cancers, diabetes, 
rheumatoid arthritis, and other common diseases (Triendl, 2003). 
Similarly, we searched the longevity SNPs in the summary statistics 
data from Japan Biobank to examine their associations with meta-
bolic traits and diseases.

2.8  |  Sex-specific association analysis for  
longevity

We performed sex-specific genetic association analyses in males 
and females separately. Male-specific variants were identified as 
those that (1) were significantly associated with longevity in males 
(pmale < 5 × 10−8) but not significant in females (pfemale > 0.05), and (2) 
exhibited a nominally significant sex difference (p-value testing for 
difference in sex-specific effect estimates, pdifference < 0.05; formula 
1). Female-specific variants were identified as (1) significantly asso-
ciated with longevity in females (pfemale < 5 × 10−8) but not significant 
in males (pmale > 0.05), and (2) exhibited a nominally significant sex 
difference (pdifference < 0.05; formula 1). For each variant, we calcu-
lated pdifference testing for the difference between the male-specific 
and female-specific beta estimates �m and � f using the T-statistic 
(formula (1))

where SEm and SEf are the standard errors of the beta estimations in 
different sex groups.

2.9  |  Functional annotation and 
enrichment analysis

The significant loci with p < 10−5 identified in the sex-combined ge-
netic association analysis with longevity were mapped to genes using 
SNP2GENE in FUMA (Watanabe et al., 2017; http://fuma.ctglab.nl/). 
We mapped variants to genes based on physical distance within a 
20-kb window by the positional mapping method. The mapped 
genes were further investigated using the GENE2FUNC procedure, 
which provides hypergeometric tests for the list of enriched map-
ping genes in 53 GTEx tissue-specific gene expression sets, 7,246 
MSigDB gene sets, and 2,195 GWAS catalog gene sets. Using the 
GENE2FUNC procedure, we examined whether the mapped genes 
were enriched in specific diseases or traits in the GWAS catalog as 
well as whether enriched in specific Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes (KEGG) categories. Significant results were 
selected if a false discovery rate (FDR)-corrected p  <  0.05 was 
observed.

(1)T =

(

�m − � f
)
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2
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To identify sex-specific longevity pathways, the best-fit p-value 
cutoffs of 5 × 10−5 and 0.0015 (calculated by using PRSice; Euesden 
et al., 2015, software with the BEST FIT command) were used to se-
lect SNPs in females and males, respectively. SNPs were annotated 
and enriched for the pathways obtained from MSigDB version 5.2 
limited to the KEGG, Reactome, and GO databases. A SNP was an-
notated to a gene if it fell within the interval of the coding sequence 
with the upstream and downstream 50 kb flanking regions. We per-
formed the gene set enrichment analysis using MAGMA (de Leeuw 
et al., 2015) and sex-specific pathway gene sets, and those showing 
a FDR-corrected p < 0.05 were regarded as significant.

2.10  |  Observational correlation analysis

We had detailed questionnaire information including sex, age, dis-
eases, cognition, and lifestyle factors. The observational correlation 
analysis was performed to assess the statistical relationship (i.e., the 
correlation) between longevity and these influencing factors, which 
were evaluated by multivariable linear regression analysis while ad-
justed for sex and the top two MDS (Table S13). In the multivari-
able linear regression model, the phenotype is longevity trait with 
longevity cases as 1 and middle-aged controls as 0. The variables 
included diseases, cognition, and lifestyle factors, for example, suf-
fering from a disease or not was defined as 1 and 0, respectively.

2.11  |  Polygenic risk Scores (PRS) analysis

In this cohort study, we calculated weighted polygenic risk scores 
based on 3,966 known susceptibility markers from the GWAS cata-
log for many age-related diseases (Table S5). We imputed the miss-
ing risk alleles and corresponding beta weights whenever possible 
by checking the details in the original reports. Markers were coded 
additively, and the logarithms of the reported odds ratios were used 
as weights. All markers were clumped by pairwise linkage disequi-
librium (r2 > 0.8) prior to constructing the polygenic risk score. Each 
disease containing at least five SNPs was used to generate the PRS 
for each individual, and 87 diseases were ultimately included (Table 
S14). PRS analysis was performed to calculate the correlations of 
longevity and disease risks not only in all individuals but also in males 
and females, respectively.

2.12  |  Mendelian randomization (MR) analysis

We had detailed disease records for each individual. Therefore, we 
performed the GWAS for each of the disease types using the same 
approach that we applied for the longevity association analysis and 
used summary statistics data for longevity and various diseases for 
MR analysis. To calculate the causal effect of longevity on diseases, 
as well as the effects of diseases on longevity, we performed a bidi-
rectional MR analysis using four different MR methods, including the 

GSMR method (Zhu et al., 2018) in GCTA tool and inverse-variance 
weighting (IVW), weighted median and MR–Egger regression meth-
ods implemented in the “TwoSampleMR” R package for robust vali-
dation. A consistent effect across the four methods is less likely to 
be a false positive. In the process of the MR analysis, we selected 
independent SNPs as instrumental variables, setting a linkage dis-
equilibrium threshold of r2 < 0.2 in a 500-kb window. We explored 
multiple settings for instrument strength with p  <  10−3, p  <  10−4, 
and p < 10−5, respectively. We used the MR–Egger intercept imple-
mented in MR–Egger regression to test for the presence of direc-
tional pleiotropy.

2.13  |  Survival analysis

By the last interview, 3,040 of the 12,664 individuals were reported 
to have died by their families. To study the relationship between 
genotypes and life span, we used age and live/dead status as phe-
notypes, and we used a multivariate Cox proportional regression 
model to perform association analysis. The model was implemented 
with the “coxph” function from the survival package in R 3.5.1. In the 
model, the individuals were either dead (status 1), alive (status 0); or 
missing at the follow-up interview were subjected to censoring. The 
surviving subjects were calculated according to age and censoring 
parameters. Then, the Cox regression was performed using all geno-
types and sex as independent variables and the surviving status as 
the dependent variable. The survival curves were plotted using the 
“survfit” function in R 3.5.1.

2.14  |  Lasso regression prediction

The prediction analysis was completely independent from the as-
sociation analyses, and all the 23,769 SNPs incorporated with 19 
disease statuses, five lifestyle measurements, and sex were entered 
into the least absolute shrinkage and selection operator (Lasso). 
Lasso is a supervised machine learning method that can select a 
subset of SNPs to achieve the best prediction efficiency. The dis-
ease status, lifestyle measurements, and SNP genotypes were im-
puted separately. Disease status and lifestyles were imputed using 
the MICE package in R 3.5.1. All the SNPs remaining after QC 
(n  =  23,769) were imputed internally without using any reference 
panel, because the reference panel-based imputation leverages link-
age disequilibrium information (e.g., highly correlated SNPs will be 
imputed), which is redundant information in terms of prediction. 
The missing genotypes were imputed using Beagle 5.0 (Browning 
et al., 2018). Together with sex, 23,824 predictors were entered into 
the Lasso regression (Tibshirani, 1996). The whole dataset was split 
into 80% and 20% subsets for model training and testing. Fivefold 
cross-validation was conducted for the training dataset. The training 
process for Lasso regression included feature selection and model 
fitting. Only one of the features with redundant information was se-
lected for modeling, such as SNPs in high linkage disequilibrium. For 
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F I G U R E  1 Study design and workflow. To investigate the longevity-associated genes/pathways, we first carefully selected and designed 
a customized SNP chip that captured 27,656 candidate variants mainly for longevity as well as disease, health indicator, and immunity. Then, 
we genotyped these SNPs in a large sample of 13,228 individuals. Next, we carried out the genetic association analyses using age-stratified 
phenotype (“cases” were defined as individuals surviving past 90 years of age and “controls” with age less than average life span of 75) 
as well as incorporating all individuals’ age and the survival status as phenotype, respectively. Furthermore, we performed meta-analysis 
together with previous dataset (removing overlapped samples) to identify the longevity genes in gender-combined and gender-stratified 
groups, respectively. In addition, we evaluated polygenic prediction of diseases on longevity using polygenic risk score (PRS) analysis and 
inferred causal relationships between longevity and diseases using bidirectional Mendelian randomization (MR) method. Finally, we built the 
prediction model for longevity and life span using all existing factors.
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longevity prediction, AUCs were calculated to evaluate prediction 
efficiency. For the life span prediction, the explained variance for life 
span was estimated using linear model. The predictions were also 
performed in the male and female groups separately.

3  |  RESULTS

3.1  |  Study subjects and design

This study was composed of two datasets including a total of 15,651 
individuals. The first included 13,228 individuals with 27,656 lon-
gevity- and disease-related SNPs genotyped by using our custom-
ized SNP chip (Tables S1–S3, see also Section 2). After implementing 
the standard quality control procedures, 12,664 samples and 23,769 
out of the 27,656 SNPs remained for subsequent analysis (Figure 
S1A). Reference-based imputation enlarged the dataset into 287,000 
SNPs. The second dataset was the GWAS set that we previously 
published, including 4,477 samples (2,178 centenarians and 2,299 
middle-aged controls, Figure S1B) and 5.6 M imputed SNPs (Zeng 
et al., 2016). The two datasets included 2,054 overlapping individu-
als, and the genotype concordances of SNPs for the same individual 
were measured for quality control. The discordant SNPs (genotype 
concordance <0.9) were removed, and the remaining SNPs were 
imputed for association analysis. The analysis flow is presented in 
Figure 1.

We first performed a case–control association analysis on 8,490 
individuals (4,662 cases with age ≥90 and 3,828 controls with age <75, 
Figure S1A) from dataset 1. Twelve SNPs achieved significance after 
Bonferroni's correction (Table S4; p < 1.81 × 10−6 = 0.05/27,656). In 
dataset 2, 1,922 individuals, who were overlapped with the 8,490 
case/control samples of dataset 1, were removed. We then investi-
gated the significance of these 12 SNPs in the independent dataset 
2 with 2,555 individuals. Two SNPs were also nominally significant 
in the same direction (Table S4; p < 0.05). Therefore, we performed 
both sex-combined and sex-stratified meta-analyses of these two 
independent datasets including 11,045 individuals to further iden-
tify potential longevity genes and pathways. Meanwhile, we car-
ried out survival analysis, polygenic risk score (PRS) prediction, and 
Mendelian randomization (MR) in all 12,664 individuals from data-
set 1. The survival analysis utilized age and the live/dead status as a 
phenotype to identify SNPs associated with life span. Furthermore, 
we used PRS analysis and bidirectional MR method to infer causal 
relationships between longevity and diseases. Finally, we built the 
prediction model for longevity and life span in 7,807 individuals from 
dataset 1 with disease status, lifestyle records, and SNP genotypes.

3.2  |  Novel longevity genes revealed by meta-
analysis

As shown in Figure 1, we identified three loci that were significantly 
associated with longevity (p < 5×10−8) in the meta-analysis of the two TA
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datasets. Among these 3 identified longevity loci, one is the well-
known locus located near the TOMM40/AOPE region. The two newly 
identified genes/loci include BMPER and TMEM43 (Table 1; Figure 2A; 
Figure S2). The top signal, rs17169634 (p = 7.91 × 10−15), is located in 
the intronic region of the BMPER gene and has been reported to be 
associated with Alzheimer's disease (Nelson et al., 2014; Table S5). The 
second significant signal is the well-known longevity locus TOMM40/
APOE (rs2075650; p = 6.17 × 10−10). The third top SNP, rs1043943 
(p  =  3.59  ×  10−8), is located in the 3'-UTR of TMEM43, which is 
in strong linkage disequilibrium (LD) with rs2228001 (r2  =  0.95; 
p = 1.13 × 10−7), a missense mutation in the XPC gene. It has been 
reported that rs1043943 might regulate the expression of XPC, which 
is a nucleotide excision repair (NER) gene involved in DNA damage re-
pair, and the deletion of XPC leads to the development of lung tumors 
in mice (Hollander et al., 2005). We investigated these three identified 
longevity-associated SNPs in the two largest relevant meta-analyses 
results (Deelen et al., 2019; Timmers et al., 2019; Table S6). The 
TOMM40/APOE (rs2075650) locus was significant in all three studies 
and shows consistent effect directions for the minor allele. It is also 
the most notable genetic loci across many GWAS in multiple ethni-
cal populations. The other two loci were not replicated. Rs1043943 in 

TMEM43 was nearly nominal significant (p = 0.057) in parents’ life span 
study by Timmers et al. but not significant in Deelen's study (p > 0.5). 
While for rs17169634 in BMPER, although Deelen's study showed 
nominally significance (p = 0.033), the effect of minor allele G was in 
the opposite direction with our results. We further performed associa-
tion analyses for diseases in dataset 1 and found that the BMPER locus 
was associated with arthritis (p  =  3.76  ×  10−6) and prostate cancer 
(p = 6.32 × 10−3), and the G allele for SNP rs17169634 has decreased 
effects on the risk of arthritis and prostate cancer. TOMM40/APOE 
locus linked to dementia (p = 2.40 × 10−4) and arthritis (p = 3.01 × 10−3), 
and TMEM43 was associated with Parkinson's disease (p  =  0.045). 
Interestingly, our three longevity SNPs have also been linked to multi-
ple metabolic traits in GWASs on the Japan BioBank dataset (Triendl, 
2003; Figure 2B). Specifically, BMPER is associated with body mass 
index (BMI); TOMM40/APOE is associated with low-density lipopro-
tein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), 
total cholesterol (TC), total triglyceride (TG), and colorectal cancer 
(CRC), and TMEM43 is associated with aspartate aminotransferase 
(AST) and blood uric acid (UA).

Since we enriched SNPs located in the MHC region, we next im-
puted 104 HLA alleles using the HAN-MHC reference panel (Zhou 

F I G U R E  2 Identification of novel 
longevity genes by meta-analysis. (a) 
Manhattan plot showing the association 
results by meta-analysis for longevity. 
The red line represents a genome-
wide significant p-value (5 × 10–8). The 
gray lines showed the top three loci 
associated with longevity, including 
rs17169634 (p = 7.91 × 10−15) at gene 
BMPER, rs2075650 (p = 6.17 × 10−10) 
at TOMM40/APOE loci, and rs1043943 
(p = 3.59 × 10−8) at 3'-UTR of TMEM43. 
(b) Crossing references with GWAS 
studies from BioBank Japan (BBJ) 
showed that the three longevity SNPs 
also linked to multiple traits. ALT, alanine 
aminotransferase; and CRC, colorectal 
cancer; AST, aspartate aminotransferase; 
BMI, body mass index; BS, blood sugar; 
DBP, diastolic blood pressure; HDL-C, 
high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein 
cholesterol; RA, rheumatoid arthritis; 
SBP, systolic blood pressure; T2D, type 2 
diabetes; TC, total cholesterol; TG, total 
triglyceride; UA, uric acid.
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F I G U R E  3 Sex differences in genetic 
associations with longevity. (a) Manhattan 
plot showing the male-specific and 
female-specific associations for longevity. 
The gray line represents the genome-
wide p threshold (5 × 10−8). Four female-
specific (FLJ30838; BRAF; BMPER; and 
TOMM40) and two male-specific genes 
(HLA-DPA1 and TPM4) were marked in 
red lines. (b) Regional plot showing the 
association results for TOMM40/APOE 
locus in males and females, respectively. 
The LD blocks of this locus were also 
plotted using Haploview tool, SNPs 
in block 2 (rs12972156, rs12972970, 
rs34342646, rs6857, rs71352238, 
rs2075650, rs34404554) and block 
4 (rs769449, rs429358) showed sex 
differences (pdifference < 0.05), whereas 
SNPs in the other two blocks were not.
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et al., 2016) and explored their relationships with the longevity phe-
notype. No SNPs in the HLA region reached genome-wide signif-
icance. While considering HLA alleles, three were observed to be 
significant after adjusting for the total number of reconstructed HLA 
alleles (p < 0.0005 = 0.05/104, Table S7). Among these three newly 
identified HLA alleles, HLA-DQB1*0609 was identified as a pro-
longevity allele (β = 0.42; p = 3.34 × 10−4), while HLA-C*12:02 and 
HLA-B*52:01 were found to be anti-longevity (β < 0). HLA-C*12:02 is 
a susceptibility factor in the late-onset type of psoriasis in Japanese 
(Mabuchi et al., 2014), while HLA-B*52:01  has been reported to 
increase the risks of pulmonary infarction, ischemic heart disease, 
aortic regurgitation, hypertension, renal artery stenosis, cerebrovas-
cular disease, and visual disturbance (Kitamura et al., 1998).

To further explore the biological functions of these identified 
longevity-associated signals, we investigated 300 SNPs associated 
with longevity at a suggestive significance level (p < 10−5) using the 
FUMA tool (Watanabe et al., 2017). Interestingly, we found that these 
longevity-associated genes presented significantly up-regulated 
expression patterns in multiple specific cerebral regions, including 
the brain substantia nigra and brain amygdala (Figure S3). Through 
cross-referencing with the GWAS catalog, we found that longevity-
associated SNPs showed significant enrichment related to the cere-
brospinal total tau (T-tau) levels, cerebrospinal phosphorylated tau 
(P-tau 181p) levels, cerebral amyloid deposition (PET imaging), and 
various age-related diseases, such as Alzheimer's disease, age-related 
macular degeneration, type 2 diabetes, and ischemic stroke (Figure 
S4). Based on KEGG analysis, four enriched pathways included type 
2 diabetes mellitus, Alzheimer's disease, and the two previously 
identified calcium and MAPK signaling pathways (Figure S5). Taken 
together, we found that longevity-related genes (TOMM40, APOE, 
APOC1, PVRL2, BRAF, MRPS33, RYR2, BMPER, PMF1, BGLAP, MEIS1, 
CACNA1D, ZNRF3, CTNND2, CELF2, KREMEN1, ANKRD30A, WFS1, 
PPP2R2C, GLG1, KLHL29,WSCD1, FUT10, TMEM43) are also implicated 
in diseases and pathways involved in cardiovascular homeostasis, im-
munity, inflammation, lipid metabolism, and cognitive function. These 
associated gene sets are usually clustered with each other, suggesting 
the anti-correlation between these age-related diseases and longevity.

3.3  |  Sex-specific genes associated with longevity

Regarding the sex difference in genetics of longevity, we performed 
a sex-stratified genetic association analysis. We compared the three 
genome-wide significant SNPs between sexes and found that only the 
APOE/TOMM40 SNP showed a sex difference (Table 2, pmale = 0.008; 
pfemale = 5.12 × 10−9; psex difference = 0.049). The other two SNPs were 
not significantly different between males and females (p < 0.05 in both 
males and females, and pdifference > 0.05). Notably, we identified two 
male-specific associations (Table 2; Figure 3A; p < 5×10−8 in males and 
psex difference < 0.05) and four female-specific associations (p < 5×10−8 in 
females and psex difference < 0.05) linked to longevity. The male-specific 
longevity locus, rs2308910 at HLA-DPA1, was a missense mutation 
at amino acid position 59 where Glu is converted to Asp. HLA-DPA1 

as an HLA class II gene plays a central role in the immune system by 
presenting peptides derived from extracellular proteins. The other 
male-specific longevity SNP rs16981095 regulated the expression of 
the gene TPM4 in whole blood (Westra et al., 2013) that its related 
pathways are dilated cardiomyopathy and cardiac muscle contraction. 
We also found four female-specific loci for longevity: rs10490092 at 
FLJ30838; rs6967652 at BRAF; rs73329134 at BMPER; and rs2075650 
at TOMM40/APOE. Among these female longevity SNPs, rs2075650 
had been linked to longevity in multiple studies as well as in our 
sex-combined analysis (p  =  6.17  ×  10−10). However, we found that 
rs2075650 is associated with longevity with higher effect in females 
(β = −0.360; p = 5.12 × 10−9) than males (β = −0.197; p = 0.008). More 
specifically, the TOMM40/APOE locus (chr19:45.37 M-45.42 M) could 
be split into four LD blocks (Figure 3B; Table S8), among which the 
SNPs in block 2 (rs12972156, rs12972970, rs34342646, rs6857, 
rs71352238, rs2075650, rs34404554) and block 4 (rs769449, 
rs429358) showed sex differences (pdifference  <  0.05), whereas the 
SNPs in the other two blocks did not.

We next investigated sex-specific pathways based on sex-specific 
loci. The best-fit p cutoffs of 0.0178 and 0.0004 according to PRSice 
software were used to select SNPs for pathway analyses in males 
and females, respectively. The selected longevity-associated SNPs 
were significantly enriched in 9 pathways for males (false discovery 
rate, FDR <0.05; Table S9). These pathways were mainly enriched 
in DNA replication and mismatch repair-related pathways including 
mismatch repair, nucleotide excision repair, base excision repair, and 
pathways related to amino acid metabolism including ATP-binding 
cassette transporters (ABC transporters), beta-alanine metabolism 
pathway, arginine, and proline metabolism pathway. In females, 10 
pathways were enriched and clustered into the cancer-related path-
way, including glioma pathway, melanoma pathway, chronic myeloid 
leukemia pathway, JAK-STAT signaling pathway, B-cell receptor sig-
naling, and pathways related to the metabolism of terpenoids such 
as terpenoid backbone biosynthesis, porphyrin and chlorophyll me-
tabolism, valine leucine and isoleucine degradation, and glyoxylate 
and dicarboxylate metabolism (Table S9).

3.4  |  Replication of previously identified loci for 
human longevity

For validation purposes, we investigated previously reported 1,881 
SNPs in multiple GWAS longevity studies (SNPs resources listed 
in Table S2). After quality control, 1,305 of the 1,881 SNPs were 
available for investigation. Nine SNPs in three genes were well rep-
licated in this study and showed statistical significance after mul-
tiple testing corrections (Table S10; p  <  3.8  ×  10−5  =  0.05/1,305). 
These three replicated genes include TOMM40/APOE (rs2075650, 
rs6857, rs769449, rs429358, rs405509, rs4420638, and rs7412), 
FGD3 (rs4573339), and AKT1 (rs3803304). Additionally, 106 SNPs 
were replicated with nominal significance (p < 0.05). For example, 
three previously reported SNPs, rs16972414 (PIK3C3, p  =  0.015), 
rs6721003 (SCN7A, p = 0.0037), and rs2149954 (EBF1, p = 0.047), 
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were replicated (Table S11). However, our previously reported SNPs 
in gene IL6 and ANKRD20A9P associations (Zeng et al., 2016) did not 
pass quality control. Therefore, they cannot be replicated.

Notably, we replicated 11 out of the 22 previously reported 
sex-specific SNPs but not the rare SNPs (Table S12). These 11 as-
sociations were nominally significant in one sex (p  <  0.05) but 
not significant in the other sex (p > 0.05), and the sex-differential 
p  <  0.05. SNP rs4972778 at KIAA1715 showed the most signifi-
cant difference between sexes (pmale = 0.49; pfemale = 6.62 × 10

−6; 
psex difference = 5.13 × 10−4).

3.5  |  Observational, PRS, and MR analyses 
identify the correlations of diseases with longevity

On the basis of detailed questionnaire information including sex, 
age, diseases, cognition, and lifestyle factors, we systematically 
analyzed the effects of these factors on longevity. First, the obser-
vational correlations of longevity with diseases were investigated 
(Table S13). Interestingly, we found that the most influential factors 
related to an increased probability of longevity were being female, 
exhibiting a lower education level, exhibiting a lower career status, 
not smoking, not drinking, and an absence of diseases such as hy-
pertension, type 2 diabetes mellitus (T2D), cardiovascular disease 
(CVD), dyslipidemia, gastroenteric ulcer, arthritis or cholelithiasis. 
At the organ and tissue aging levels, we found that long-lived indi-
viduals are more likely to suffer from cataracts, glaucoma, and de-
mentia diseases, and to exhibit lower activities of daily living (ADL) 
and Mini-Mental State Examination (MMSE) scores. In addition, we 
found that T2D and CVD were significantly inversely correlated with 
longevity in females.

Based on a total of 3,966 disease markers from the GWAS 
catalog genotyped in this study, we constructed the polygenic 
risk scores (PRS) of each participant for 87 disease traits, and 
we calculated their correlations with longevity. Seven nominally 
significant correlations were identified, but none of them passed 
the multiple testing adjusted threshold (Table S14; p  <  0.0006). 
However, we observed that long-lived individuals tended to 
present lower polygenic risk scores for T2D (p  =  0.002), stroke 
(p = 0.007), rheumatoid arthritis (p = 0.007), vitiligo (p = 0.031), 
breast cancer (p = 0.046), or CVD (p = 0.049) with nominal signif-
icance (p < 0.05).

To investigate whether longevity might have causal effects on 
these diseases and vice versa, we next applied the bidirectional 
Mendelian randomization (MR) method. We explored multiple set-
tings for instrument strength (p < 10−3, p < 10−4, and p < 10−5) with 
strict LD pruning (r2 < 0.2). We first identified the causal effect of 
longevity on the disease. When using all three different thresholds as 
cutoff values for instrumental strength, we observed that longevity 
had a causal effect on reduced risks of CVD (pGCTA-GSMR=1.16 × 10

−8) 
and T2D (pGCTA-GSMR  =  1.91  ×  10−6). These two causal relation-
ships were shown to be robust when the other three MR tests 
were performed (pinverse_variance_weighted = 2.35 × 10−9, pweighted-median 
=1.75 × 10−4, and pMR-Egger  = 1.23 × 10−2 for decreased CVD risk; 
pinverse_variance_weighted = 1.76 × 10

−6, pweighted-median = 5.64 × 10
−3, and 

pMR-Egger = 3.33 × 10−2 for decreased T2D risk), and there was no 
evidence of horizontal pleiotropy (pegger-intercept  >  0.05; Table S15). 
Moreover, longevity showed direct observational correlations with 
T2D (pobservation = 2.54 × 10−12) and CVD (pobservation = 1.58 × 10−7; 
Table 3). Both observational correlations and bidirectional MR 
confirmed the causal effects of longevity on the lower risks 
of CVD and T2D. While defining p  <  10−3 as cutoff, longevous 

F I G U R E  4 Survival curves for individuals with different genotypes. 12,664 individuals with live/ death status from dataset 1 were 
included for survival analysis. Approximately 24% (3,040/12,664) of the individuals died with age of death recorded. (a) Survival curves 
showing the life span of individuals according to BRAF gene polymorphism rs1267601. (b) Survival curves showing the life span of individuals 
according to BMPER gene polymorphism rs17169634.
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individuals showed a causal effect on a decreased risk of arthritis 
(pGCTA-GSMR  =  8.22  ×  10−5), stroke (pGCTA-GSMR  =  2.57  ×  10−3), and 
hypertension (pGCTA-GSMR  =  3.29  ×  10−3), presenting no horizontal 
pleiotropy. Conversely, we also investigated the potential effect 
of disease on longevity, and we observed that T2D and dementia 
negatively affected longevity when taking p < 10−3 as an instrumen-
tal cutoff, while stroke and cataract negatively affected longevity 
when taking p < 10−4 as the instrumental cutoff (Table S15). Taken 
together, our series of analyses, including observational correlation, 
PRS, and bidirectional MR analysis, revealed that long-lived individu-
als tend to exhibit a lower genetic risk of T2D, CVD, and arthritis, and 
in turn that the absence or delayed onset of diseases such as T2D, 
dementia, and stroke lead ones to live longer and have higher odds 
to be longevity (Table 3; Table S15).

3.6  |  Determinants of life span identified by 
survival analysis

During the follow-ups, approximately 24% (3,040/12,664) of the 
individuals died (with an age of death recorded). We performed sur-
vival analyses to identify genetic variants associated with life span 
using the Cox regression model (Table S16). The results showed 
that rs1267601 in BRAF was the variant most associated with life 
span, and carriers of the CC genotype had significantly higher sur-
vival rates at age 100+ compared with CT/TT carriers (28.6% for 
CC, 16.9% for CT, and 11.8% for TT; hazard ratio (HR) for survival 
1.35; p  =  8.33  ×  10−15; Figure 4A). In addition, we found that the 
Alzheimer's disease-related SNP rs17169634 in BMPER was the lon-
gevity marker showing the greatest promoting effect, with carriers 

F I G U R E  5 Predictive efficiency for longevity and life span. (a) Receiver operating characteristic curves (ROC) for predictor variables 
of longevity (binary phenotype). The predictive effectiveness was evaluated by the area under the ROC curve (AUC). The predictive 
effectiveness of SNPs (AUC = 0.767) was slightly higher compared with disease and lifestyle (AUC = 0.761). The composite SNPs, disease, 
and lifestyle achieved the best predictive power with AUC = 0.860. ROC for predictor variables of longevity in males (b) and in females (c), 
respectively. The predictive efficiencies of composite SNPs, diseases, and lifestyles for longevity were presented in both male (AUC = 0.821) 
and female (AUC = 0.819) groups. The predictive efficiency of SNPs for longevity is 0.732 in females and 0.707 in males. (d) The correlations 
between true life span and predicted life span showing the predicted effectiveness for life span. SNPs could only explain 2% of the variance 
for life span, while disease and lifestyle could explain much more variance (15.3%). The composite SNPs, disease, and lifestyle could explain 
19.8% of the variance. The predicted effectiveness for life span in males (e) and in females (f), respectively. The predictive effectiveness for 
life span is better in females than in males. Especially, in males, the SNP set fails to give significant prediction for life span (p = 0.10), whereas 
the selected SNPs could explain 7% of the variance in females (p = 1.25 × 10−6).

70 80 90 100 110

75
80

85
90

95
10

0

Life span Prediction

True Life span

P
re

di
ct

ed
 li

fe
 s

pa
n

Disease, lifestyle and SNPs 
Disease and lifestyle
SNPs

Disease, lifestyle and SNPs; R−squared: 0.19
Disease and lifestyle; R−squared: 0.15
SNPs; R−squared: 0.08

(d) Life span Prediction in Females

True Life span
70 80 90 100 110

75
80

85
90

95
10

0

P
re

di
ct

ed
 li

fe
 s

pa
n

Disease, lifestyle and SNPs 
Disease and lifestyle
SNPs

Disease, lifestyle and SNPs; R−squared: 0.10
Disease and lifestyle; R−squared: 0.04
SNPs; R−squared: 0.07

(e) Life span Prediction in Males

True Life span
70 80 90 100

75
80

85
90

95
10

0

P
re

di
ct

ed
 li

fe
 s

pa
n

Disease, lifestyle and SNPs 
Disease and lifestyle
SNPs

Disease, lifestyle and SNPs; R−squared: 0.04
Disease and lifestyle; R−squared: 0.05
SNPs; R−squared: 0.01

(f)

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

  0
0.

2
0.

4
0.

6
0.

8
1.

0

Disease, lifestyle and SNPs; AUC=0.860

Disease and lifestyle; AUC=0.761
SNPs; AUC=0.767

(a) Longevity Preidction Predictions in Males

Specificity (%)

S
en

si
tiv

ity
 (

%
)

100 80 60 40 20 0

0
20

40
60

80
10

0

Disease, lifestyle and SNPs; AUC=0.819

Disease and lifestyle; AUC=0.739
SNPs; AUC=0.732

Specificity (%)

S
en

si
tiv

ity
 (

%
)

100 80 60 40 20 0
0

20
40

60
80

10
0

Disease, lifestyle and SNPs; AUC=0.821
Disease and lifestyle; AUC=0.750
SNPs; AUC=0.707

(b) (c)Predictions in Females



    |  15 of 20LIU et al.

of the minor allele G exhibiting a substantially longer life span than 
noncarrier (28.3% for GG, 16.8% for GA, and 11.3% for AA; survival 
HR = 1.25; p = 1.45 × 10−10; Figure 4B). Except for the BRAF and 
BMPER loci, we did not observe any other loci that reached genome-
wide significance. The APOE/TOMM40 locus was correlated with life 
span at nominal significance (p = 0.0013).

3.7  |  Predictions of longevity and life span

One of the ultimate objectives for identifying factors contributing 
to longevity is to predict longevity and life span. Based on all the 
factors we identified from both previous studies and our own asso-
ciation studies, we constructed a predictive model for longevity (age 
≥90 vs. age <75) and life span through Lasso regression (Tibshirani, 
1996). The prediction was independent of the association study; all 
the SNPs that we designed on the customized SNP chip (n = 23,800 
after quality control) as well as 19 disease phenotypes and fivce life-
styles entered prediction model construction. We constructed three 
models using (1) all SNPs; (2) self-reported diseases and lifestyles 
collected in questionnaires; and (3) the combination of all features 
in models 1 and 2. After removing features and individuals with a 
high missing rate, the total sample size for the prediction study was 
7807. Data were separated into training and testing sets (see Section 
2). Models 1 and 2 achieved acceptable discriminations (model 1: 
AUC = 0.767; model 2: AUC = 0.761). Interestingly, model 1 (using 
all SNPs) and model 2 (using disease status and lifestyles) yielded 
similar prediction efficiency. Additionally, the third model, with all 
the variables, exhibited quite good predictive performances, and the 
final AUC reached 0.86 (Figure 5A). We further investigated the sig-
nificance of the SNPs selected by Lasso regression for the prediction 
in our genetic association study. We found that those SNPs that ef-
fectively contributed to the prediction exhibited significantly lower 
p-value enrichment (Figure S6).

For the prediction of life span, we used 3,023 individuals who 
had an exact age of death and detailed phenotypic records in our 
datasets. All three predictive models yielded good performance 
(Figure 5; model 1: p = 1.9 × 10−5; models 2 and 3: p < 2.2 × 10−16). 
Model 1 could only explain 8% of the variances in the life span, while 
model 2 could explain 15.3%. Furthermore, model 3, including all 
features, could explain 19.8% of the variances.

The genetic architectures of longevity and disease progression 
are quite different between sexes. Next, we applied our predictive 
models to the male and female groups separately. The predictive ef-
ficiency for longevity (binary phenotype) was good in both the male 
(AUC = 0.821) and female (AUC = 0.819) groups (Figure 5b,c). However, 
the predictive efficiency for life span in females was superior to that 
of males (Figure 5e,f). In particular, in males, the SNP set failed to give 
a significant prediction for life span (p = 0.10), while in females, the 
selected SNPs could explain 7% of the variance (p = 1.25 × 10−6), in-
dicating that the sex groups indeed exhibited different genetic archi-
tectures for aging. The selected features and their coefficients for all 
prediction models are listed in Tables S17 and S18.

4  |  DISCUSSION

In this study, we present several findings regarding the genetic 
contributions to longevity and their gender differences based on 
15,651 individuals from the cohort of the Chinese Longitudinal 
Healthy Longevity Survey. We designed an informative SNP chip for 
studying the genetics of longevity. Longevity case–control analysis 
(n = 11,045) and survival analysis (n = 12,664) were performed in 
different subsets of the cohort. In addition to previously published 
longevity-related studies, we included SNPs for relevant diseases, 
such as CVD and T2D, intending to obtain results that were com-
parable to those of previous studies. The main findings and several 
highlights of this work are described below.

First, we identified two novel loci (BMPER and TMEM43/XPC) 
and replicated three loci (TOMM40/APOE, FGD3, and AKT1) asso-
ciated with longevity in Chinese populations. Interestingly, these 
five longevity-associated loci have been linked to diseases, espe-
cially age-related diseases. For example, BMPER has been associ-
ated with aging and its related diseases, such as Alzheimer's disease 
(Nelson et al., 2014), and it is also involved in the regulation of the 
proinflammatory phenotype of the endothelium (Helbing et al., 
2011), functioning primarily in the vascular (Lockyer et al., 2017) 
and respiratory systems (Helbing et al., 2013). XPC is involved in 
DNA damage repair and is associated with disease characterized 
by an extreme sensitivity to ultraviolet rays from sunlight, such 
as xeroderma pigmentosum, complementation group c and xero-
derma pigmentosum, variant type, and the deletion of XPC leads 
to lung tumors in mice (Hollander et al., 2005). The TOMM40/
APOE locus has been reported to be associated with longevity in 
multiple studies among diverse populations and the locus con-
tributes to Alzheimer's disease (Seshadri et al., 2010), age-related 
macular degeneration (Cipriani et al., 2012), cardiovascular disease 
(Middelberg et al., 2011), cognitive decline (Davies et al., 2014), 
immunity (Reiner et al., 2008), and lipid metabolism/dyslipidemia 
(Aulchenko et al., 2009). FGD3, a putative regulator of cell mor-
phology and motility, was associated with longevity in the NECS 
study, and its expression plays a prognostic role in breast cancer 
(Renda et al., 2019). AKT1 is relevant to longevity (Deelen et al., 
2013; Nojima et al., 2013), and the dysregulation of AKT signaling 
leads to diseases for which there are major unmet medical needs, 
such as cancer, diabetes, and cardiovascular and neurological dis-
eases (Hers et al., 2011). The two novel signals were also linked to 
multiple age-related phenotypes not only in this cohort but also 
in GWASs from the Japan BioBank, whose cohort is ethnically 
closer to the Chinese population. The BMPER locus was associated 
with arthritis, prostate cancer, and BMI. The TMEM43 locus was 
associated with Parkinson's disease, AST, and UA. These findings 
consistently revealed the genetic overlap between exceptional lon-
gevity and age-related diseases and traits (Fortney et al., 2015). It is 
noted that five SNPs including rs10757274, rs4977574, rs2891168, 
rs10965235, and rs944797 located in well-known CDKN2B locus, 
which is associated with CVD, were also associated with longevity 
with nominal significance in our study.
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While comparing our current results with other GWAS meta-
analyses and our previous results, inconsistencies were found. 
SNP rs17169634 in BMPER showed different directions of effects 
in multiple studies. One possible reason could be that the true 
causal variants are hidden in this area, but due to different linkage 
disequilibrium (LD) structures among European and Chinese pop-
ulations, the alleles tagging true causal variants may be different. 
Future fine-mapping with denser makers or genome sequencing will 
be required to illuminate the hidden information. SNP rs17169634 
was not significantly associated with longevity in our dataset 2; 
therefore, the direction of effects in dataset 2 could not be deter-
mined that the confidence interval of effect size included zero. The 
significant signal was driven by dataset 1, where we also tested its 
association with complex diseases. The G allele for rs17169634 in 
BMPER has reduced effects on the risk of arthritis (p = 3.76 × 10−6) 
and prostate cancer (p  = 6.32 × 10−3). Taken together, the results 
in our data showed that the G allele for rs17169634 in BMPER in-
creased the probability of being longevity in our logistic regression 
and has increased effects for life expectancy in survival analysis 
and reduced the risks of age-related diseases. Notably, the causal 
effects from an increased chance of longevity to reduced risk of 
arthritis were also identified in our MR analysis. These directions 
of effects are as expected that long-lived individuals show a delay 
in overall morbidity through having beneficial effects for diseases 
(Andersen et al., 2012). As for our previously reported SNPs in 
IL6 and ANKRD20A9P, they did not pass the quality control in our 
current analysis. Therefore, they cannot be replicated. We further 
checked the frequency of reported SNPs on these two genes. The 
minor allele of rs2069837 in IL6 has a lower frequency (0.075) than it 
is in the dbSNP Asian population (0.179), and this allele has reduced 
effects for longevity. Since the proportion of centenarians is much 
higher in our previous study (48%; Zeng et al., 2016) than in other 
GWAS studies for longevity, the underrepresentation of this allele 
in our dataset is plausible. The inconsistency of the results could be 
caused by the differences in proportions of centenarians between 
our two datasets and also among different ethnic populations. As for 
SNP rs2440012 in ANKRD20A9P, the minor allele G was overrepre-
sented in our previous study (0.076) compared with Asians in dbSNP 
(G = 0). It has been filtered out in Deelen's meta-analysis may be 
due to multi-allelic problems in the European population (C = 0.90, 
A = 0.0015, G = 0.098). Additional independent datasets are needed 
for a detailed look into these loci.

One existing major problem of longevity genetic studies is that 
the findings from different studies are difficult to replicate. The rea-
sons could be ethnic differences in genetic background and varia-
tion of phenotype definitions. Furthermore, when considering the 
complex relationships between age-related diseases and longevity 
(Andersen et al., 2012; Ukraintseva et al., 2016), the health manage-
ment systems and culture could also introduce distinctions among 
populations. For instance, if the age-related diseases could be man-
aged well, the patients could still survive longer. Therefore, the lon-
gevous individuals are mixed with people who carry true protective 
alleles for the disease and individuals who accepted excellent health 

care. While the healthcare systems are quite different among coun-
tries, especially for older generations, the frequency of longevity-
related alleles could be different in the elderly. Hence, further 
studies should also take health care and lifestyle into account when 
classifying cases and controls for comparisons.

Second, we found some sex-specific loci related to longev-
ity. Numerous studies have reported remarkable sex differences 
in longevity and life span (Austad & Fischer, 2016; Candore et al., 
2006; Ostan et al., 2016; Yuan et al., 2020); however, very few 
studies have reported the sex-differential effect of genetics for 
longevity. TOMM40/APOE is well-characterized longevity locus that 
could be split into 4 LD blocks. We found that two of these 4 LD 
blocks were associated with longevity in females but not in males 
(pdifference < 0.05), in line with our previous study (Zeng et al., 2018). 
This may indicate sex-specific genetic associations of longevity may 
be caused by differences during meiosis between males and fe-
males. The distinction of recombination rates between sex groups 
has been reported in both human and animals (Li & Merila, 2010; 
Tapper et al., 2005). Since the recombination was closely interacted 
with natural selection (Schumer et al., 2018), differences in recom-
bination are plausible to lead to sex or population stratification and 
thereby causing a small group of people having enriched evolution-
ary benefit alleles. Therefore, it is necessary to use strand-specific, 
long-segment sequencing technologies or family studies to detailed 
look into the LD structure for longevity people in future studies.

Interestingly, the predictive effectiveness of SNPs for longevity is 
slightly better in females (AUC = 0.732) than in males (AUC = 0.707). 
For life span predictions, SNPs could explain 7% of the variance for 
life span in females (p = 1.25 × 10−6) but failed to provide a signifi-
cant prediction for life span in males (p = 0.10). All these results are 
consistent with our previous finding (Zeng et al., 2018) that the ge-
netic association with longevity is stronger in females than in males. 
Notably, we found that some diseases also presented sex-differential 
patterns associated with longevity. For example, T2D and CVD were 
more significantly correlated with longevity in females. Previous 
studies have reported sex differences between cardiovascular dis-
eases and aging, in which it is assumed that genetic traits and sex 
hormones play the key roles (Rodgers et al., 2019).

Our PRS and MR analyses revealed negative correlations be-
tween longevity and multiple diseases, including CVD, T2D, and 
arthritis. The results were generally in consistent with those in 
a meta-analysis of the European population (Joshi et al., 2017). 
However, other studies indicated different conclusions. One pub-
lication based on the Leiden Longevity Study (LLS) suggested that 
disease risk alleles do not compromise human longevity (Beekman 
et al., 2010). The authors only considered 30 disease risk SNPs, 
while our analyses included more carefully selected SNPs for age-
related diseases (Erikson et al., 2016), and the obtained polygenic 
risk scores reflected an overall significant decrease in genetic dis-
ease risk in exceptionally long-lived individuals. Taken together, 
these findings suggested that some disease risk SNP alleles might 
increase the chance of longevity (McDaid et al., 2017), but there 
are more effective disease risk SNP alleles associated with earlier 
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mortality (Erikson et al., 2016; Joshi et al., 2017). The benefits of uti-
lizing polygenic risk scores are that it summed the effects of multiple 
alleles instead of looking at the count of each risk allele. Therefore, 
when considering the additive effects aggregating all risk alleles, the 
genetic risks of multiple diseases were found to be reduced in long-
lived populations.

There is growing interest in predicting the risks for diseases 
and complex traits using polygenic risk scores (Khera et al., 2018). 
Previous studies have predicted longevity and life span based 
mainly on animal models (Huang et al., 2004; Shen et al., 2014; 
Swindell et al., 2008) or the use of single biomarker (Ho et al., 2019; 
Whittemore et al., 2019). One recent study using the UK Biobank 
dataset applied polygenic risk score for life span prediction with 
good performance but was limited by utilizing summary statistics for 
life span based on parental data (Timmers et al., 2019). Our newly 
developed prediction models including genetic markers performed 
nicely in the classification of longevity (AUC = 0.767) but were not 
very effective in the prediction of life span (explaining only 15.3% 
of the variance). When disease status and lifestyle information were 
added, the longevity- and life span-prediction models produced bet-
ter predictions for both longevity (AUC =  0.86) and life span (ex-
plaining 19.8% of the variances). Additionally, for the classification of 
longevity, the performance of SNPs is similar to that of diseases and 
lifestyles, indicating that genetics and phenotypes may have inde-
pendent components that influence aging.

A limitation of the present study is the candidate-gene approach, 
which might preclude the discovery of new possible causative genes 
or biological pathways. However, our selection of candidates was pri-
marily based on our previous genome-wide association studies con-
ducted in 4477 Chinese individuals from the Chinese Longitudinal 
Healthy Longevity Survey (CLHLS). The SNPs with p-values smaller 
than 0.015 in our previous GWAS were all selected for inclusions on 
our customized chip. We collected additional candidate SNPs from 
existing studies, including studies not only on longevity genetics but 
also on other age-related complex diseases and traits. Moreover, 
by leveraging on imputation technology, the candidate SNP sets 
were further expanded. By incorporating all these SNPs together, 
we performed multi-candidate genes association analyses, which is 
suboptimal for genome-wide associations but still very informative. 
Secondly, in order to identify sex-specific genetic markers associ-
ated with longevity, we stratified our sample into male and female 
groups. The benefit of stratifying the sample is an increased chance 
to find those sex-specific SNPs tagging different causal variants in 
different sex groups. However, this strategy also has the drawback 
that the reduced sample size for each analysis group caused de-
creased power. We only replicated half of the previous identified 
sex-specific loci, and more replication studies are required in the 
future. Thirdly, we noted that the predicted life span was generally 
shorter than the true life span, indicating undefined missing con-
founders contributing to the life span (genetic and other confound-
ing factors or their interactions). Future genetic studies of longevity 
based on affordable exome and whole-genome sequencing might be 
helpful to further identify a larger number of longevity-associated 

genetic variants by applying the analysis of rare genetic and copy 
number variants. Together, these findings provide a benchmark 
for the development of longevity- and life span-predictive models. 
Further studies are warranted to improve the models through the 
identification of an additional panel of predictive variables and the 
development of innovative computational approaches.

In summary, our results not only identified novel longevity genes 
but also depicted the landscape of genetic contributors to longev-
ity and life span through a complex of sex-differential and disease-
related interactive circuits, which could be more precisely predicted 
in the near future.
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