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Abstract
There is growing interest in studying the genetic contributions to longevity, but lim-
ited relevant genes have been identified. In this study, we performed a genetic asso-
ciation	study	of	longevity	in	a	total	of	15,651	Chinese	individuals.	Novel	longevity	loci,	
BMPER	(rs17169634;	p = 7.91 × 10−15) and TMEM43/XPC (rs1043943; p = 3.59 × 10−8), 
were identified in a case– control analysis of 11,045 individuals. BRAF	 (rs1267601;	
p = 8.33 × 10−15) and BMPER	 (rs17169634;	p = 1.45 × 10−10) were significantly as-
sociated	with	life	expectancy	in	12,664	individuals	who	had	survival	status	records.	
Additional	 sex-	stratified	 analyses	 identified	 sex-	specific	 longevity	 genes.	 Notably,	
sex-	differential	associations	were	identified	in	two	linkage	disequilibrium	blocks	in	the	
TOMM40/APOE region, indicating potential differences during meiosis between males 
and	females.	Moreover,	polygenic	risk	scores	and	Mendelian	randomization	analyses	
revealed that longevity was genetically causally correlated with reduced risks of mul-
tiple diseases, such as type 2 diabetes, cardiovascular diseases, and arthritis. Finally, 
we incorporated genetic markers, disease status, and lifestyles to classify longevity 
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1  |  INTRODUC TION

The average human life expectancy has been rising for decades 
(Greene,	 2001;	 Oeppen	 &	 Vaupel,	 2002),	 and	 it	 was	 recently	
estimated that the number of long- lived individuals (more than 
90	 years	 old)	 was	 63.5	 million	 worldwide	 as	 of	 2020	 (United	
Nations, 2019). It is clear that longevity represents a complex 
trait that is influenced by genetic and environmental factors and 
their	 interactions	(Passarino	et	al.,	2016).	Twin	studies	 (Herskind	
et	 al.,	 1996;	 Skytthe	 et	 al.,	 2003)	 have	 estimated	 that	 the	 heri-
tability of longevity is approximately 20%– 30% in modern soci-
eties, and the proportion increases to approximately 40% for 
long-	lived	 individuals	 (Hjelmborg	et	 al.,	 2006;	Perls	 et	 al.,	 2000;	
Terry	 et	 al.,	 2007;	 van	 den	 Berg	 et	 al.,	 2019).	 Although	 longev-
ity is considered to exhibit relatively high heritability, limited 
genetic loci related to this trait have been identified in previous 
genome-	wide	 association	 studies	 (GWAS;	 Deelen	 et	 al.,	 2014;	
Joshi	et	al.,	2017;	McDaid	et	al.,	2017;	Sebastiani	et	al.,	2012;	Zeng	
et	 al.,	 2016).	 Apolipoprotein	 E	 (APOE) is the only gene that has 
been	 replicated	 by	 multiple	 independent	 GWAS	 meta-	analyses	
(Deelen	et	al.,	2019;	Joshi	et	al.,	2017;	McDaid	et	al.,	2017).	One	
recent	meta-	analysis	 revealed	 rs7676745	 near	GPR78 as a novel 
locus	(Deelen	et	al.,	2019).	In	European	populations,	other	GWAS	
meta- analysis studies have replicated several longevity genes, in-
cluding CHRNA3/5, CDKN2A/B, SH2B3, and FOXO3A (Joshi et al., 
2017;	McDaid	et	al.,	2017).	Our	previous	GWAS	in	a	Chinese	pop-
ulation additionally identified IL6 and ANKRD20A9P	 (Zeng	et	 al.,	
2016).	One	possible	reason	for	the	lack	of	replication	could	be	the	
variation in phenotype definitions. Some studies have compared 
old cases with young controls. The selection of age cutoffs var-
ies	among	different	studies.	A	recent	study	conducted	on	multi-	
ethnic datasets used the 90th/99th survival percentile as the age 
cutoff (Deelen et al., 2019). Some other studies have used more 
extrema cutoffs, with only centenarians being included among the 
cases	(Sebastiani	et	al.,	2012,	2017;	Zeng	et	al.,	2016).	The	use	of	
different definitions for cases and controls may lead to hetero-
geneity. Continuous phenotypes have also been widely used for 
longevity	genetic	studies.	A	person's	life	span	is	the	most	obvious	
phenotype. Nevertheless, many ongoing cohorts contain younger 
participants, resulting in the limited sample size of people with 
exact death dates. Therefore, the parental life span has been used 
as	an	alternative	phenotype	(McDaid	et	al.,	2017;	Timmers	et	al.,	

2019). The predicted life span based on family history life span has 
also	 been	 used	 (Yashin	 et	 al.,	 2018).	However,	 because	 the	 life-
styles,	health	care,	and	other	environmental	factors	are	quite	dif-
ferent between generations, the use of parental life spans might 
introduce substantial bias. Notably, the previous studies often fo-
cused	on	Western	populations;	very	few	studies	have	focused	on	
Asians,	which	account	for	42%	of	the	long-	lived	population	world-
wide	 (United	 Nations,	 2019).	 The	 Chinese	 Longitudinal	 Healthy	
Longevity	 Survey	 (CLHLS)	 encompasses	 a	 nationwide	 sample	 of	
long- lived adults and the “young old” in China, with up to 20 years 
of follow- up which enable us to track longevity and mortality. 
Therefore,	CLHLS	can	provide	an	ideal	dataset	in	analyzing	the	as-
sociation of genetic and non- genetic data with life span in humans.

In addition to studying the genetics of longevity and life span, 
age- related diseases and their correlations with longevity have 
attracted much attention (Sakaue et al., 2020). In either human 
centenarians or long- lived animals, it has long been observed that 
longevity and the occurrence of diseases, such as cardiovascular 
and cerebral stroke, are inversely correlated either genetically or 
experimentally	(Altmann-	Schneider	et	al.,	2013;	Hammond	et	al.,	
1971;	Rosa	et	al.,	2019;	van	der	Lee	et	al.,	2019).	A	previous	study,	
using genetic data of parental life span, reported genetic correla-
tions between several complex traits and mortality in a general 
population of European ancestry (Joshi et al., 2017). Our study de-
fined individuals with ages greater than 90 as the longevity group, 
rather than the parental survival which is a debatable longevity 
phenotype. Therefore, a systematic exploration of the correlation 
between longevity and complex diseases in the current study may 
reveal more information.

Another	 research	 interest	 is	 to	 predict	 longevity	 and	 life	 span	
based on age- related diseases and genetic markers. The polygenic 
risk	score	 (PRS)	generated	from	the	summary	statistics	of	associa-
tion studies is a commonly used predictor for genetic factors. For ex-
ample, a recent genetic study reported that a polygenic score could 
identify	people	with	the	top	10%	parental	survival	PRS,	who	might	
outlive an average of 5 years those with the bottom 10% parental 
survival	 PRS	 (Timmers	 et	 al.,	 2019).	 In	 addition,	 circulating	 glucu-
ronic	acid	 levels	 (Ho	et	al.,	2019)	or	 telomeres	 (Whittemore	et	al.,	
2019) have been used as biomarkers for life span prediction. To date, 
there are very few studies that explore the potential of life span pre-
diction by using a combination of genetic data, disease conditions, 
and lifestyle factors.
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or not- longevity groups and predict life span. Our predictive models showed good 
performance	(AUC	=	0.86	for	longevity	classification	and	explained	19.8%	variance	of	
life span) and presented a greater predictive efficiency in females than in males. Taken 
together, our findings not only shed light on the genetic contributions to longevity but 
also elucidate correlations between diseases and longevity.
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Here,	 we	 performed	 a	 large-	scale	 integrated	 analysis	 based	
on	 15,651	 Chinese	 individuals	 from	 CLHLS	 to	 identify	 the	 lon-
gevity genes, to explore the relationships between diseases and 
longevity, and to apply these longevity- related factors for life 
span prediction. This study including 2,509 centenarians is one of 
the largest centenarian studies in the world (Deelen et al., 2019; 
Sebastiani	et	al.,	2017;	Timmers	et	al.,	2019).	We	firstly	designed	
a	customized	SNP	chip	using	a	carefully	selected	set	of	SNPs	that	
captured	27,656	candidate	variants	correlated	with	longevity,	age-	
related diseases, and immunity. Next, we carried out a candidate- 
gene association analysis on the age- stratified phenotype (“cases” 
were defined as individuals surviving 90 years or over, while the 
“controls” had an age of less than 75, which is the average life 
span in China) and life span, respectively. Then, we performed a 
meta- analysis incorporating the current dataset and our previ-
ously	published	GWAS	dataset	by	removing	the	overlapped	sam-
ples.	Moreover,	we	evaluated	the	polygenic	prediction	of	diseases	
on	longevity	using	polygenic	risk	score	(PRS)	analysis	and	inferred	
causal relationships between longevity and diseases using the bi-
directional	Mendelian	randomization	method.	Finally,	we	built	pre-
dictive models for longevity, and life span by integrating genetic 
factors, disease status, and lifestyles. Overall, this study aimed to 
reveal the sex- combined and sex- specific longevity genes/path-
ways and investigate their predictive effectiveness on longevity 
and life span.

2  |  MATERIAL S AND METHODS

2.1  |  Participants and phenotypes

This	study	 included	a	total	of	15,651	 individuals	from	the	Chinese	
Longitudinal	Healthy	Longevity	Surveys	 (CLHLS),	which	were	con-
ducted in 1998, 2000, 2002, 2005, 2008, 2011, and 2014 in a 
randomly selected half of the counties and cities in 22 out of 31 
provinces in China. The primary dataset (dataset 1) included 13,228 
individuals	with	ages	 ranging	 from	30	 to	114.	All	 individuals	were	
genotyped by using a well- designed customized chip targeting ap-
proximately	 27	 K	 longevity-	related	 SNPs.	 These	 candidate	 SNPs	
were selected based on previously published associations with lon-
gevity, chronic diseases, and health indicators. For replication pur-
poses, a dataset 2 included 4477 individuals based on our previous 
study	(Zeng	et	al.,	2016).	2054	samples	were	overlapped	between	
the two datasets.

Demographic and clinical information (i.e., diseases) was re-
corded	 for	 participants	 in	 this	 study.	 Phenotypic	 data	 were	 col-
lected	 using	 internationally	 standardized	 questionnaires	 adapted	
to	 the	Chinese	cultural	and	social	 context.	The	CLHLS	study	was	
approved	by	the	Biomedical	Ethics	Committee	of	Peking	University	
(IRB00001052-	13074).	 All	 participants	 or	 their	 legal	 representa-
tives signed written consent forms in the baseline and follow- up 
surveys.

2.2  |  Customized SNP chip design

We	customize	a	SNP	chip	containing	27,656	selected	longevity	and	
disease-	related	 SNPs	 for	 targeted	 genotyping	 (Table	 S1).	 The	 se-
lected	SNPs	could	be	characterized	as	corresponding	to	five	major	
components	(Tables	S2	and	S3):	(1)	11,893	SNPs	associated	with	lon-
gevity	based	on	our	previous	CLHLS	GWAS	study	on	4477	Chinese	
individuals	 (Zeng	 et	 al.,	 2016);	 (2)	 1881	 reported	 longevity	 SNPs	
based on the other previously published longevity studies, includ-
ing	the	European	Union	(EU)	longevity	(Deelen	et	al.,	2014)	&	New	
England centenarian study (NECS; Sebastiani et al., 2012), the Long 
Life	Family	Study	(LLFS;	Bae	et	al.,	2013),	and	the	Framingham	Heart	
Study	(FHS;	Lunetta	et	al.,	2007);	(3)	3966	reported	SNPs	associated	
with	diseases	 in	 the	NHGRI-	EBI	GWAS	catalog	 (MacArthur	 et	 al.,	
2017);	(4)	7260	SNPs	associated	with	health	indicators	in	the	CLHLS	
and	the	Health	and	Retirement	Study	(HRS;	Tanaka	et	al.,	2017);	and	
(5)	2656	tagging	SNPs	for	 imputing	the	alleles	 in	the	human	major	
histocompatibility	complex	(MHC)	region.

2.3  |  Sample filtering

The	samples	were	required	to	meet	3	selection	criteria:	(1)	a	geno-
type calling rate >90%; (2) no existing population stratification ac-
cording	to	a	multidimensional	scaling	(MDS)	procedure	implemented	
in	PLINK	v1.07,	based	on	which	individuals	deviating	from	the	main	
population cluster were removed; and (3) no inclusion of duplicates 
or first- degree relatives when evaluating pairwise through identity 
by	 descent	 (IBD).	 After	 sample	 filtering,	 12,664	 samples	were	 in-
cluded in the dataset 1.

2.4  |  Variant filtering

To	determine	the	high-	quality	genotypes,	we	applied	a	conservative	
inclusion	threshold	for	variants:	(1)	minor	allele	frequency	>5%,	(2)	
genotype	 calling	 rate	 >90%;	 and	 (3)	 Hardy–	Weinberg	 equilibrium	
(HWE)	p > 10−5.	To	further	confirm	the	quality	of	the	genotypes,	we	
calculated the concordance rate of the genotypes using 2,054 sam-
ples that overlapped between dataset 1 and dataset 2. Then, we re-
moved the variants with a concordance rate <0.9 (Figure S7), which 
largely eliminated the bias caused by two different arrays (Illumina 
ZhongHua	and	Affix	arrays).	After	variant	filtering,	23,769	out	of	the	
27,656	variants	remained	in	dataset	1,	and	818	K	out	of	the	900	K	
variants remained in dataset 2.

2.5  |  Imputation

We	performed	 imputation	analysis	by	pre-	phasing	genotypes	with	
SHAPEIT	 v2.5	 (Delaneau	 et	 al.,	 2011),	 and	 then	 imputing	 variants	
from	 the	 1000	 Genomes	 Project	 released	 on	October	 2014	with	
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2504 samples (http://1000g enomes.org) as a reference panel using 
IMPUTE2	v2.3.1(Howie	et	al.,	2009).	SNPs	with	a	quality	score	(R2) 
>0.9	were	 included	 after	 imputation.	After	 further	 quality	 control	
filtering	for	SNPs	as	described	above,	we	eventually	obtained	287	K	
SNPs	 from	 12,664	 individuals	 in	 dataset	 1	 and	 5.6	M	 SNPs	 from	
4,477	individuals	in	dataset	2	for	the	subsequent	genetic	association	
analyses.

2.6  |  MHC analysis

To	 identify	 potential	MHC	 associations	 for	 longevity,	 2,656	MHC	
tag	SNPs	were	included	in	the	27	K	arrays	for	dataset	1.	Then,	we	
used	beagle	5	(Browning	et	al.,	2018)	with	the	HAN-	MHC	datasets	
as	a	reference	panel	to	impute	MHC	alleles,	and	the	imputation	ac-
curacy	was	0.96	at	the	two-	digit	level	as	previously	described	(Zhou	
et	al.,	2016).	In	dataset	2,	the	samples	were	genotyped	using	Illumina	
HumanOmniZhongHua-	8	BeadChips	tagging	900,015	SNPs,	among	
which	 8,350	 SNPs	were	 located	 in	 the	MHC	 region.	We	 imputed	
the	MHC	 alleles	 using	 the	 same	 procedure	 applied	 for	 dataset	 1	
and	obtained	104	imputed	HLA	alleles	presented	in	both	two	data-
sets. For each dataset, 104 tests were performed in the cases and 
controls. In each test, one allele was compared with the other 103 
alleles grouped together. The allelic 2 × 2 contingency table for a 
specific	HLA	allele	contained	the	counts	of	that	allele	and	the	counts	
of	the	other	103	alleles	in	cases	and	controls.	We	next	performed	a	
meta-	analysis	of	the	two	datasets	for	the	104	imputed	HLA	alleles	
for longevity. Finally, a Bonferroni- corrected p < 0.0005 = 0.05/104 
for 104 alleles was defined as significant.

2.7  |  Association analysis for longevity

We	performed	genetic	association	analysis	of	287	K	imputed	SNPs	
in	dataset	1.	More	specifically,	after	sample	filtering,	a	total	of	8,490	
individuals	(4,662	cases	with	an	age	≥90	and	3,828	controls	with	an	
age <75; 75 is the average life span of Chinese individuals) in dataset 
1	were	used	 for	a	case–	control	association	analysis.	We	then	per-
formed	 association	 analysis	 in	 dataset	 2	 (Zeng	 et	 al.,	 2016).	 Since	
1,922 individuals in dataset 2 were overlapped with 8,490 case/
control samples in dataset 1, a case– control association analysis was 
performed in 2,555 independent samples by removing the 1,922 
overlapped samples from 4,477 samples of dataset 2. The 2,555 
independent samples included 1,105 centenarians’ cases and 1,450 
controls	with	age	<65.	For	each	dataset,	we	applied	logistic	regres-
sion to calculate the p-	values	and	odds	ratio	 (ORs)	of	the	SNPs	by	
adjusting	for	sex	and	the	top	two	MDS	dimensions	using	PLINK	1.07.	
Next, a meta- analysis was performed on the two case– control asso-
ciation results, using inverse- variance weighted fixed- effect meta- 
analysis	 in	 METAL	 software	 (https://genome.sph.umich.edu/wiki/
METAL).	To	further	replicate	the	results,	we	also	reviewed	associa-
tion	results	from	previous	literatures,	including	EU	&	NECS,	LLFS	&	
FHS	longevity	GWAS,	and	studies	in	the	GWAS	catalog.

To investigate the correlations between the identified longevity- 
related	SNPs	and	diseases	and	the	other	traits,	we	reviewed	diseases	
GWAS	in	this	study	(see	Section	2.12	below).	Then,	we	downloaded	
the summary statistics data from the Japan BioBank, a study 
of 300,000 Japanese citizens suffering from cancers, diabetes, 
rheumatoid arthritis, and other common diseases (Triendl, 2003). 
Similarly,	we	searched	the	longevity	SNPs	in	the	summary	statistics	
data from Japan Biobank to examine their associations with meta-
bolic traits and diseases.

2.8  |  Sex- specific association analysis for  
longevity

We	 performed	 sex-	specific	 genetic	 association	 analyses	 in	 males	
and	 females	 separately.	 Male-	specific	 variants	 were	 identified	 as	
those that (1) were significantly associated with longevity in males 
(pmale < 5 × 10−8) but not significant in females (pfemale > 0.05), and (2) 
exhibited a nominally significant sex difference (p- value testing for 
difference in sex- specific effect estimates, pdifference < 0.05; formula 
1). Female- specific variants were identified as (1) significantly asso-
ciated with longevity in females (pfemale < 5 × 10−8) but not significant 
in males (pmale > 0.05), and (2) exhibited a nominally significant sex 
difference (pdifference < 0.05; formula 1). For each variant, we calcu-
lated pdifference testing for the difference between the male- specific 
and female- specific beta estimates �m and � f using the T- statistic 
(formula (1))

where SEm and SEf are the standard errors of the beta estimations in 
different sex groups.

2.9  |  Functional annotation and 
enrichment analysis

The significant loci with p < 10−5 identified in the sex- combined ge-
netic association analysis with longevity were mapped to genes using 
SNP2GENE	in	FUMA	(Watanabe	et	al.,	2017;	http://fuma.ctglab.nl/).	
We	mapped	variants	 to	genes	based	on	physical	distance	within	a	
20- kb window by the positional mapping method. The mapped 
genes were further investigated using the GENE2FUNC procedure, 
which provides hypergeometric tests for the list of enriched map-
ping	genes	 in	53	GTEx	 tissue-	specific	gene	expression	sets,	7,246	
MSigDB	gene	sets,	 and	2,195	GWAS	catalog	gene	sets.	Using	 the	
GENE2FUNC procedure, we examined whether the mapped genes 
were	enriched	in	specific	diseases	or	traits	in	the	GWAS	catalog	as	
well	as	whether	enriched	in	specific	Gene	Ontology	(GO)	and	Kyoto	
Encyclopedia	of	Genes	 (KEGG)	categories.	Significant	results	were	
selected if a false discovery rate (FDR)- corrected p < 0.05 was 
observed.

(1)T =

(

�m − � f
)

√

SE
2

m
+ SE

2

f
− 2 ∗ cor

(

�m, � f
)

∗ SEm ∗ SEf

http://1000genomes.org
https://genome.sph.umich.edu/wiki/METAL
https://genome.sph.umich.edu/wiki/METAL
http://fuma.ctglab.nl/
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To identify sex- specific longevity pathways, the best- fit p- value 
cutoffs of 5 × 10−5	and	0.0015	(calculated	by	using	PRSice;	Euesden	
et al., 2015, software with the BEST FIT command) were used to se-
lect	SNPs	in	females	and	males,	respectively.	SNPs	were	annotated	
and	enriched	for	the	pathways	obtained	from	MSigDB	version	5.2	
limited	to	the	KEGG,	Reactome,	and	GO	databases.	A	SNP	was	an-
notated	to	a	gene	if	it	fell	within	the	interval	of	the	coding	sequence	
with	the	upstream	and	downstream	50	kb	flanking	regions.	We	per-
formed	the	gene	set	enrichment	analysis	using	MAGMA	(de	Leeuw	
et al., 2015) and sex- specific pathway gene sets, and those showing 
a FDR- corrected p < 0.05 were regarded as significant.

2.10  |  Observational correlation analysis

We	had	detailed	questionnaire	 information	 including	sex,	age,	dis-
eases, cognition, and lifestyle factors. The observational correlation 
analysis was performed to assess the statistical relationship (i.e., the 
correlation) between longevity and these influencing factors, which 
were evaluated by multivariable linear regression analysis while ad-
justed	 for	 sex	 and	 the	 top	 two	MDS	 (Table	S13).	 In	 the	multivari-
able linear regression model, the phenotype is longevity trait with 
longevity cases as 1 and middle- aged controls as 0. The variables 
included diseases, cognition, and lifestyle factors, for example, suf-
fering from a disease or not was defined as 1 and 0, respectively.

2.11  |  Polygenic risk Scores (PRS) analysis

In this cohort study, we calculated weighted polygenic risk scores 
based	on	3,966	known	susceptibility	markers	from	the	GWAS	cata-
log	for	many	age-	related	diseases	(Table	S5).	We	imputed	the	miss-
ing risk alleles and corresponding beta weights whenever possible 
by	checking	the	details	in	the	original	reports.	Markers	were	coded	
additively, and the logarithms of the reported odds ratios were used 
as	weights.	All	markers	were	clumped	by	pairwise	 linkage	disequi-
librium (r2 > 0.8) prior to constructing the polygenic risk score. Each 
disease	containing	at	least	five	SNPs	was	used	to	generate	the	PRS	
for each individual, and 87 diseases were ultimately included (Table 
S14).	 PRS	 analysis	was	 performed	 to	 calculate	 the	 correlations	 of	
longevity and disease risks not only in all individuals but also in males 
and females, respectively.

2.12  |  Mendelian randomization (MR) analysis

We	had	detailed	disease	records	for	each	individual.	Therefore,	we	
performed	the	GWAS	for	each	of	the	disease	types	using	the	same	
approach that we applied for the longevity association analysis and 
used summary statistics data for longevity and various diseases for 
MR	analysis.	To	calculate	the	causal	effect	of	longevity	on	diseases,	
as well as the effects of diseases on longevity, we performed a bidi-
rectional	MR	analysis	using	four	different	MR	methods,	including	the	

GSMR	method	(Zhu	et	al.,	2018)	in	GCTA	tool	and	inverse-	variance	
weighting	(IVW),	weighted	median	and	MR–	Egger	regression	meth-
ods	implemented	in	the	“TwoSampleMR”	R	package	for	robust	vali-
dation.	A	consistent	effect	across	the	four	methods	is	less	likely	to	
be	a	false	positive.	 In	the	process	of	the	MR	analysis,	we	selected	
independent	SNPs	as	 instrumental	variables,	 setting	a	 linkage	dis-
equilibrium	threshold	of	r2	<	0.2	in	a	500-	kb	window.	We	explored	
multiple settings for instrument strength with p < 10−3, p < 10−4, 
and p < 10−5,	respectively.	We	used	the	MR–	Egger	intercept	imple-
mented	 in	MR–	Egger	 regression	 to	 test	 for	 the	presence	of	direc-
tional pleiotropy.

2.13  |  Survival analysis

By	the	last	interview,	3,040	of	the	12,664	individuals	were	reported	
to have died by their families. To study the relationship between 
genotypes and life span, we used age and live/dead status as phe-
notypes, and we used a multivariate Cox proportional regression 
model to perform association analysis. The model was implemented 
with the “coxph” function from the survival package in R 3.5.1. In the 
model, the individuals were either dead (status 1), alive (status 0); or 
missing at the follow- up interview were subjected to censoring. The 
surviving subjects were calculated according to age and censoring 
parameters. Then, the Cox regression was performed using all geno-
types and sex as independent variables and the surviving status as 
the dependent variable. The survival curves were plotted using the 
“survfit” function in R 3.5.1.

2.14  |  Lasso regression prediction

The prediction analysis was completely independent from the as-
sociation	 analyses,	 and	 all	 the	 23,769	 SNPs	 incorporated	with	 19	
disease statuses, five lifestyle measurements, and sex were entered 
into the least absolute shrinkage and selection operator (Lasso). 
Lasso is a supervised machine learning method that can select a 
subset	of	SNPs	 to	achieve	 the	best	prediction	efficiency.	The	dis-
ease	status,	 lifestyle	measurements,	and	SNP	genotypes	were	 im-
puted separately. Disease status and lifestyles were imputed using 
the	 MICE	 package	 in	 R	 3.5.1.	 All	 the	 SNPs	 remaining	 after	 QC	
(n	 =	 23,769)	were	 imputed	 internally	without	 using	 any	 reference	
panel, because the reference panel- based imputation leverages link-
age	disequilibrium	 information	 (e.g.,	highly	correlated	SNPs	will	be	
imputed), which is redundant information in terms of prediction. 
The missing genotypes were imputed using Beagle 5.0 (Browning 
et al., 2018). Together with sex, 23,824 predictors were entered into 
the	Lasso	regression	(Tibshirani,	1996).	The	whole	dataset	was	split	
into 80% and 20% subsets for model training and testing. Fivefold 
cross- validation was conducted for the training dataset. The training 
process for Lasso regression included feature selection and model 
fitting. Only one of the features with redundant information was se-
lected	for	modeling,	such	as	SNPs	in	high	linkage	disequilibrium.	For	
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F I G U R E  1 Study	design	and	workflow.	To	investigate	the	longevity-	associated	genes/pathways,	we	first	carefully	selected	and	designed	
a	customized	SNP	chip	that	captured	27,656	candidate	variants	mainly	for	longevity	as	well	as	disease,	health	indicator,	and	immunity.	Then,	
we	genotyped	these	SNPs	in	a	large	sample	of	13,228	individuals.	Next,	we	carried	out	the	genetic	association	analyses	using	age-	stratified	
phenotype (“cases” were defined as individuals surviving past 90 years of age and “controls” with age less than average life span of 75) 
as well as incorporating all individuals’ age and the survival status as phenotype, respectively. Furthermore, we performed meta- analysis 
together with previous dataset (removing overlapped samples) to identify the longevity genes in gender- combined and gender- stratified 
groups,	respectively.	In	addition,	we	evaluated	polygenic	prediction	of	diseases	on	longevity	using	polygenic	risk	score	(PRS)	analysis	and	
inferred	causal	relationships	between	longevity	and	diseases	using	bidirectional	Mendelian	randomization	(MR)	method.	Finally,	we	built	the	
prediction model for longevity and life span using all existing factors.
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longevity	prediction,	AUCs	were	 calculated	 to	evaluate	prediction	
efficiency. For the life span prediction, the explained variance for life 
span was estimated using linear model. The predictions were also 
performed in the male and female groups separately.

3  |  RESULTS

3.1  |  Study subjects and design

This	study	was	composed	of	two	datasets	including	a	total	of	15,651	
individuals.	 The	 first	 included	13,228	 individuals	with	27,656	 lon-
gevity-		and	disease-	related	SNPs	genotyped	by	using	our	custom-
ized	SNP	chip	(Tables	S1–	S3,	see	also	Section	2).	After	implementing	
the	standard	quality	control	procedures,	12,664	samples	and	23,769	
out	 of	 the	 27,656	 SNPs	 remained	 for	 subsequent	 analysis	 (Figure	
S1A).	Reference-	based	imputation	enlarged	the	dataset	into	287,000	
SNPs.	 The	 second	 dataset	was	 the	GWAS	 set	 that	we	 previously	
published, including 4,477 samples (2,178 centenarians and 2,299 
middle-	aged	controls,	 Figure	S1B)	 and	5.6	M	 imputed	SNPs	 (Zeng	
et	al.,	2016).	The	two	datasets	included	2,054	overlapping	individu-
als,	and	the	genotype	concordances	of	SNPs	for	the	same	individual	
were	measured	for	quality	control.	The	discordant	SNPs	(genotype	
concordance	 <0.9)	 were	 removed,	 and	 the	 remaining	 SNPs	 were	
imputed for association analysis. The analysis flow is presented in 
Figure 1.

We	first	performed	a	case–	control	association	analysis	on	8,490	
individuals	(4,662	cases	with	age	≥90	and	3,828	controls	with	age	<75,	
Figure	S1A)	from	dataset	1.	Twelve	SNPs	achieved	significance	after	
Bonferroni's correction (Table S4; p < 1.81 × 10−6	=	0.05/27,656).	In	
dataset 2, 1,922 individuals, who were overlapped with the 8,490 
case/control	samples	of	dataset	1,	were	removed.	We	then	investi-
gated	the	significance	of	these	12	SNPs	in	the	independent	dataset	
2	with	2,555	individuals.	Two	SNPs	were	also	nominally	significant	
in the same direction (Table S4; p < 0.05). Therefore, we performed 
both sex- combined and sex- stratified meta- analyses of these two 
independent datasets including 11,045 individuals to further iden-
tify	 potential	 longevity	 genes	 and	 pathways.	 Meanwhile,	 we	 car-
ried	out	survival	analysis,	polygenic	risk	score	(PRS)	prediction,	and	
Mendelian	randomization	(MR)	in	all	12,664	individuals	from	data-
set 1. The survival analysis utilized age and the live/dead status as a 
phenotype	to	identify	SNPs	associated	with	life	span.	Furthermore,	
we	used	PRS	analysis	and	bidirectional	MR	method	to	 infer	causal	
relationships between longevity and diseases. Finally, we built the 
prediction model for longevity and life span in 7,807 individuals from 
dataset	1	with	disease	status,	lifestyle	records,	and	SNP	genotypes.

3.2  |  Novel longevity genes revealed by meta- 
analysis

As	shown	in	Figure	1,	we	identified	three	loci	that	were	significantly	
associated with longevity (p < 5×10−8) in the meta- analysis of the two TA
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datasets.	 Among	 these	 3	 identified	 longevity	 loci,	 one	 is	 the	 well-	
known locus located near the TOMM40/AOPE region. The two newly 
identified genes/loci include BMPER and TMEM43	(Table	1;	Figure	2A;	
Figure	S2).	The	top	signal,	rs17169634	(p = 7.91 × 10−15), is located in 
the intronic region of the BMPER gene and has been reported to be 
associated	with	Alzheimer's	disease	(Nelson	et	al.,	2014;	Table	S5).	The	
second significant signal is the well- known longevity locus TOMM40/
APOE	 (rs2075650;	p	=	6.17	×	10−10).	The	 third	 top	SNP,	 rs1043943	
(p = 3.59 × 10−8),	 is	 located	 in	 the	 3'-	UTR	 of	 TMEM43, which is 
in	 strong	 linkage	 disequilibrium	 (LD)	 with	 rs2228001	 (r2 = 0.95; 
p = 1.13 × 10−7), a missense mutation in the XPC gene. It has been 
reported that rs1043943 might regulate the expression of XPC, which 
is	a	nucleotide	excision	repair	(NER)	gene	involved	in	DNA	damage	re-
pair, and the deletion of XPC leads to the development of lung tumors 
in	mice	(Hollander	et	al.,	2005).	We	investigated	these	three	identified	
longevity-	associated	SNPs	in	the	two	largest	relevant	meta-	analyses	
results	 (Deelen	 et	 al.,	 2019;	 Timmers	 et	 al.,	 2019;	 Table	 S6).	 The	
TOMM40/APOE	(rs2075650)	locus	was	significant	in	all	three	studies	
and shows consistent effect directions for the minor allele. It is also 
the	most	notable	genetic	 loci	across	many	GWAS	 in	multiple	ethni-
cal populations. The other two loci were not replicated. Rs1043943 in 

TMEM43 was nearly nominal significant (p = 0.057) in parents’ life span 
study	by	Timmers	et	al.	but	not	significant	in	Deelen's	study	(p > 0.5). 
While	 for	 rs17169634	 in	 BMPER,	 although	 Deelen's	 study	 showed	
nominally significance (p = 0.033), the effect of minor allele G was in 
the	opposite	direction	with	our	results.	We	further	performed	associa-
tion analyses for diseases in dataset 1 and found that the BMPER locus 
was associated with arthritis (p	 =	 3.76	 ×	 10−6) and prostate cancer 
(p	=	6.32	×	10−3),	and	the	G	allele	for	SNP	rs17169634	has	decreased	
effects on the risk of arthritis and prostate cancer. TOMM40/APOE 
locus linked to dementia (p = 2.40 × 10−4) and arthritis (p = 3.01 × 10−3), 
and TMEM43	 was	 associated	 with	 Parkinson's	 disease	 (p = 0.045). 
Interestingly,	our	three	longevity	SNPs	have	also	been	linked	to	multi-
ple	metabolic	traits	in	GWASs	on	the	Japan	BioBank	dataset	(Triendl,	
2003; Figure 2B). Specifically, BMPER is associated with body mass 
index	 (BMI);	TOMM40/APOE is associated with low- density lipopro-
tein	cholesterol	(LDL-	C),	high-	density	lipoprotein	cholesterol	(HDL-	C),	
total cholesterol (TC), total triglyceride (TG), and colorectal cancer 
(CRC), and TMEM43 is associated with aspartate aminotransferase 
(AST)	and	blood	uric	acid	(UA).

Since	we	enriched	SNPs	located	in	the	MHC	region,	we	next	im-
puted	104	HLA	alleles	using	the	HAN-	MHC	reference	panel	(Zhou	

F I G U R E  2 Identification	of	novel	
longevity genes by meta- analysis. (a) 
Manhattan	plot	showing	the	association	
results by meta- analysis for longevity. 
The red line represents a genome- 
wide significant p- value (5 × 10– 8). The 
gray lines showed the top three loci 
associated with longevity, including 
rs17169634	(p = 7.91 × 10−15) at gene 
BMPER,	rs2075650	(p	=	6.17	×	10−10) 
at TOMM40/APOE loci, and rs1043943 
(p = 3.59 × 10−8)	at	3'-	UTR	of	TMEM43. 
(b)	Crossing	references	with	GWAS	
studies from BioBank Japan (BBJ) 
showed	that	the	three	longevity	SNPs	
also	linked	to	multiple	traits.	ALT,	alanine	
aminotransferase; and CRC, colorectal 
cancer;	AST,	aspartate	aminotransferase;	
BMI,	body	mass	index;	BS,	blood	sugar;	
DBP,	diastolic	blood	pressure;	HDL-	C,	
high- density lipoprotein cholesterol; 
LDL- C, low- density lipoprotein 
cholesterol;	RA,	rheumatoid	arthritis;	
SBP,	systolic	blood	pressure;	T2D,	type	2	
diabetes; TC, total cholesterol; TG, total 
triglyceride;	UA,	uric	acid.
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F I G U R E  3 Sex	differences	in	genetic	
associations	with	longevity.	(a)	Manhattan	
plot showing the male- specific and 
female- specific associations for longevity. 
The gray line represents the genome- 
wide p threshold (5 × 10−8). Four female- 
specific (FLJ30838; BRAF; BMPER; and 
TOMM40) and two male- specific genes 
(HLA- DPA1 and TPM4) were marked in 
red lines. (b) Regional plot showing the 
association results for TOMM40/APOE 
locus in males and females, respectively. 
The LD blocks of this locus were also 
plotted	using	Haploview	tool,	SNPs	
in	block	2	(rs12972156,	rs12972970,	
rs34342646,	rs6857,	rs71352238,	
rs2075650,	rs34404554)	and	block	
4	(rs769449,	rs429358)	showed	sex	
differences (pdifference < 0.05), whereas 
SNPs	in	the	other	two	blocks	were	not.
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et	al.,	2016)	and	explored	their	relationships	with	the	longevity	phe-
notype.	No	SNPs	 in	 the	HLA	 region	 reached	 genome-	wide	 signif-
icance.	While	 considering	HLA	alleles,	 three	were	observed	 to	be	
significant	after	adjusting	for	the	total	number	of	reconstructed	HLA	
alleles (p	<	0.0005	=	0.05/104,	Table	S7).	Among	these	three	newly	
identified	 HLA	 alleles,	 HLA-	DQB1*0609	 was	 identified	 as	 a	 pro-	
longevity allele (β = 0.42; p = 3.34 × 10−4),	while	HLA-	C*12:02	and	
HLA-	B*52:01	were	found	to	be	anti-	longevity	(β	<	0).	HLA-	C*12:02	is	
a susceptibility factor in the late- onset type of psoriasis in Japanese 
(Mabuchi	 et	 al.,	 2014),	 while	 HLA-	B*52:01	 has	 been	 reported	 to	
increase the risks of pulmonary infarction, ischemic heart disease, 
aortic regurgitation, hypertension, renal artery stenosis, cerebrovas-
cular	disease,	and	visual	disturbance	(Kitamura	et	al.,	1998).

To further explore the biological functions of these identified 
longevity-	associated	 signals,	 we	 investigated	 300	 SNPs	 associated	
with longevity at a suggestive significance level (p < 10−5) using the 
FUMA	tool	(Watanabe	et	al.,	2017).	Interestingly,	we	found	that	these	
longevity- associated genes presented significantly up- regulated 
expression patterns in multiple specific cerebral regions, including 
the brain substantia nigra and brain amygdala (Figure S3). Through 
cross-	referencing	with	the	GWAS	catalog,	we	found	that	 longevity-	
associated	SNPs	showed	significant	enrichment	related	to	the	cere-
brospinal total tau (T- tau) levels, cerebrospinal phosphorylated tau 
(P-	tau	 181p)	 levels,	 cerebral	 amyloid	 deposition	 (PET	 imaging),	 and	
various	age-	related	diseases,	such	as	Alzheimer's	disease,	age-	related	
macular degeneration, type 2 diabetes, and ischemic stroke (Figure 
S4).	Based	on	KEGG	analysis,	four	enriched	pathways	included	type	
2	 diabetes	 mellitus,	 Alzheimer's	 disease,	 and	 the	 two	 previously	
identified	 calcium	 and	MAPK	 signaling	 pathways	 (Figure	 S5).	 Taken	
together, we found that longevity- related genes (TOMM40, APOE, 
APOC1, PVRL2, BRAF, MRPS33, RYR2, BMPER, PMF1, BGLAP, MEIS1, 
CACNA1D, ZNRF3, CTNND2, CELF2, KREMEN1, ANKRD30A, WFS1, 
PPP2R2C, GLG1, KLHL29,WSCD1, FUT10, TMEM43) are also implicated 
in diseases and pathways involved in cardiovascular homeostasis, im-
munity, inflammation, lipid metabolism, and cognitive function. These 
associated gene sets are usually clustered with each other, suggesting 
the anti- correlation between these age- related diseases and longevity.

3.3  |  Sex- specific genes associated with longevity

Regarding the sex difference in genetics of longevity, we performed 
a	sex-	stratified	genetic	association	analysis.	We	compared	the	three	
genome-	wide	significant	SNPs	between	sexes	and	found	that	only	the	
APOE/TOMM40	SNP	showed	a	sex	difference	(Table	2,	pmale = 0.008; 
pfemale = 5.12 × 10−9; psex difference	=	0.049).	The	other	two	SNPs	were	
not significantly different between males and females (p < 0.05 in both 
males and females, and pdifference > 0.05). Notably, we identified two 
male-	specific	associations	(Table	2;	Figure	3A;	p < 5×10−8 in males and 
psex difference < 0.05) and four female- specific associations (p < 5×10−8 in 
females and psex difference < 0.05) linked to longevity. The male- specific 
longevity locus, rs2308910 at HLA- DPA1, was a missense mutation 
at	amino	acid	position	59	where	Glu	is	converted	to	Asp.	HLA- DPA1 

as	an	HLA	class	II	gene	plays	a	central	role	in	the	immune	system	by	
presenting peptides derived from extracellular proteins. The other 
male-	specific	longevity	SNP	rs16981095	regulated	the	expression	of	
the gene TPM4	 in	whole	blood	(Westra	et	al.,	2013)	that	 its	related	
pathways are dilated cardiomyopathy and cardiac muscle contraction. 
We	also	found	four	female-	specific	loci	for	longevity:	rs10490092	at	
FLJ30838;	rs6967652	at	BRAF; rs73329134 at BMPER;	and	rs2075650	
at TOMM40/APOE.	Among	these	female	longevity	SNPs,	rs2075650	
had been linked to longevity in multiple studies as well as in our 
sex- combined analysis (p	 =	 6.17	 ×	 10−10).	 However,	 we	 found	 that	
rs2075650	is	associated	with	longevity	with	higher	effect	in	females	
(β	=	−0.360;	p = 5.12 × 10−9) than males (β	=	−0.197;	p	=	0.008).	More	
specifically, the TOMM40/APOE	locus	(chr19:45.37	M-	45.42	M)	could	
be split into four LD blocks (Figure 3B; Table S8), among which the 
SNPs	 in	 block	 2	 (rs12972156,	 rs12972970,	 rs34342646,	 rs6857,	
rs71352238,	 rs2075650,	 rs34404554)	 and	 block	 4	 (rs769449,	
rs429358) showed sex differences (pdifference < 0.05), whereas the 
SNPs	in	the	other	two	blocks	did	not.

We	next	investigated	sex-	specific	pathways	based	on	sex-	specific	
loci. The best- fit p	cutoffs	of	0.0178	and	0.0004	according	to	PRSice	
software	were	used	to	select	SNPs	 for	pathway	analyses	 in	males	
and	 females,	 respectively.	The	selected	 longevity-	associated	SNPs	
were significantly enriched in 9 pathways for males (false discovery 
rate, FDR <0.05; Table S9). These pathways were mainly enriched 
in	DNA	replication	and	mismatch	repair-	related	pathways	including	
mismatch repair, nucleotide excision repair, base excision repair, and 
pathways	 related	 to	amino	acid	metabolism	 including	ATP-	binding	
cassette	 transporters	 (ABC	transporters),	beta-	alanine	metabolism	
pathway, arginine, and proline metabolism pathway. In females, 10 
pathways were enriched and clustered into the cancer- related path-
way, including glioma pathway, melanoma pathway, chronic myeloid 
leukemia	pathway,	JAK-	STAT	signaling	pathway,	B-	cell	receptor	sig-
naling, and pathways related to the metabolism of terpenoids such 
as terpenoid backbone biosynthesis, porphyrin and chlorophyll me-
tabolism, valine leucine and isoleucine degradation, and glyoxylate 
and dicarboxylate metabolism (Table S9).

3.4  |  Replication of previously identified loci for 
human longevity

For validation purposes, we investigated previously reported 1,881 
SNPs	 in	 multiple	 GWAS	 longevity	 studies	 (SNPs	 resources	 listed	
in	 Table	 S2).	 After	 quality	 control,	 1,305	of	 the	 1,881	 SNPs	were	
available	for	investigation.	Nine	SNPs	in	three	genes	were	well	rep-
licated in this study and showed statistical significance after mul-
tiple testing corrections (Table S10; p < 3.8 × 10−5 = 0.05/1,305). 
These three replicated genes include TOMM40/APOE	 (rs2075650,	
rs6857,	 rs769449,	 rs429358,	 rs405509,	 rs4420638,	 and	 rs7412),	
FGD3 (rs4573339), and AKT1	 (rs3803304).	Additionally,	106	SNPs	
were replicated with nominal significance (p < 0.05). For example, 
three	 previously	 reported	 SNPs,	 rs16972414	 (PIK3C3, p = 0.015), 
rs6721003	 (SCN7A, p = 0.0037), and rs2149954 (EBF1, p = 0.047), 
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were	replicated	(Table	S11).	However,	our	previously	reported	SNPs	
in gene IL6 and ANKRD20A9P	associations	(Zeng	et	al.,	2016)	did	not	
pass	quality	control.	Therefore,	they	cannot	be	replicated.

Notably, we replicated 11 out of the 22 previously reported 
sex-	specific	SNPs	but	not	 the	rare	SNPs	 (Table	S12).	These	11	as-
sociations were nominally significant in one sex (p < 0.05) but 
not significant in the other sex (p > 0.05), and the sex- differential 
p	 <	 0.05.	 SNP	 rs4972778	 at	 KIAA1715 showed the most signifi-
cant difference between sexes (pmale = 0.49; pfemale	=	6.62	×	10

−6; 
psex difference = 5.13 × 10−4).

3.5  |  Observational, PRS, and MR analyses 
identify the correlations of diseases with longevity

On	 the	 basis	 of	 detailed	 questionnaire	 information	 including	 sex,	
age, diseases, cognition, and lifestyle factors, we systematically 
analyzed the effects of these factors on longevity. First, the obser-
vational correlations of longevity with diseases were investigated 
(Table S13). Interestingly, we found that the most influential factors 
related to an increased probability of longevity were being female, 
exhibiting a lower education level, exhibiting a lower career status, 
not smoking, not drinking, and an absence of diseases such as hy-
pertension, type 2 diabetes mellitus (T2D), cardiovascular disease 
(CVD),	 dyslipidemia,	 gastroenteric	 ulcer,	 arthritis	 or	 cholelithiasis.	
At	the	organ	and	tissue	aging	levels,	we	found	that	long-	lived	indi-
viduals are more likely to suffer from cataracts, glaucoma, and de-
mentia	diseases,	and	to	exhibit	lower	activities	of	daily	living	(ADL)	
and	Mini-	Mental	State	Examination	(MMSE)	scores.	In	addition,	we	
found	that	T2D	and	CVD	were	significantly	inversely	correlated	with	
longevity in females.

Based	 on	 a	 total	 of	 3,966	 disease	 markers	 from	 the	 GWAS	
catalog genotyped in this study, we constructed the polygenic 
risk	 scores	 (PRS)	 of	 each	 participant	 for	 87	 disease	 traits,	 and	
we calculated their correlations with longevity. Seven nominally 
significant correlations were identified, but none of them passed 
the multiple testing adjusted threshold (Table S14; p	 <	 0.0006).	
However,	 we	 observed	 that	 long-	lived	 individuals	 tended	 to	
present lower polygenic risk scores for T2D (p = 0.002), stroke 
(p = 0.007), rheumatoid arthritis (p = 0.007), vitiligo (p = 0.031), 
breast cancer (p	=	0.046),	or	CVD	(p = 0.049) with nominal signif-
icance (p < 0.05).

To investigate whether longevity might have causal effects on 
these diseases and vice versa, we next applied the bidirectional 
Mendelian	randomization	 (MR)	method.	We	explored	multiple	set-
tings for instrument strength (p < 10−3, p < 10−4, and p < 10−5) with 
strict LD pruning (r2	<	0.2).	We	first	 identified	the	causal	effect	of	
longevity	on	the	disease.	When	using	all	three	different	thresholds	as	
cutoff values for instrumental strength, we observed that longevity 
had	a	causal	effect	on	reduced	risks	of	CVD	(pGCTA-	GSMR=1.16	×	10

−8) 
and T2D (pGCTA-	GSMR = 1.91 × 10−6). These two causal relation-
ships	 were	 shown	 to	 be	 robust	 when	 the	 other	 three	 MR	 tests	
were performed (pinverse_variance_weighted = 2.35 × 10−9, pweighted- median 
=1.75 × 10−4, and pMR-	Egger = 1.23 × 10−2	 for	decreased	CVD	 risk;	
pinverse_variance_weighted	=	1.76	×	10

−6, pweighted- median	=	5.64	×	10
−3, and 

pMR-	Egger = 3.33 × 10−2 for decreased T2D risk), and there was no 
evidence of horizontal pleiotropy (pegger- intercept > 0.05; Table S15). 
Moreover,	 longevity	showed	direct	observational	correlations	with	
T2D (pobservation = 2.54 × 10−12)	and	CVD	(pobservation = 1.58 × 10−7; 
Table	 3).	 Both	 observational	 correlations	 and	 bidirectional	 MR	
confirmed the causal effects of longevity on the lower risks 
of	 CVD	 and	 T2D.	 While	 defining	 p < 10−3 as cutoff, longevous 

F I G U R E  4 Survival	curves	for	individuals	with	different	genotypes.	12,664	individuals	with	live/	death	status	from	dataset	1	were	
included	for	survival	analysis.	Approximately	24%	(3,040/12,664)	of	the	individuals	died	with	age	of	death	recorded.	(a)	Survival	curves	
showing the life span of individuals according to BRAF	gene	polymorphism	rs1267601.	(b)	Survival	curves	showing	the	life	span	of	individuals	
according to BMPER	gene	polymorphism	rs17169634.
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individuals showed a causal effect on a decreased risk of arthritis 
(pGCTA-	GSMR = 8.22 × 10−5), stroke (pGCTA-	GSMR = 2.57 × 10−3), and 
hypertension (pGCTA-	GSMR = 3.29 × 10−3), presenting no horizontal 
pleiotropy. Conversely, we also investigated the potential effect 
of disease on longevity, and we observed that T2D and dementia 
negatively affected longevity when taking p < 10−3 as an instrumen-
tal cutoff, while stroke and cataract negatively affected longevity 
when taking p < 10−4 as the instrumental cutoff (Table S15). Taken 
together, our series of analyses, including observational correlation, 
PRS,	and	bidirectional	MR	analysis,	revealed	that	long-	lived	individu-
als	tend	to	exhibit	a	lower	genetic	risk	of	T2D,	CVD,	and	arthritis,	and	
in turn that the absence or delayed onset of diseases such as T2D, 
dementia, and stroke lead ones to live longer and have higher odds 
to be longevity (Table 3; Table S15).

3.6  |  Determinants of life span identified by 
survival analysis

During	 the	 follow-	ups,	 approximately	 24%	 (3,040/12,664)	 of	 the	
individuals	died	(with	an	age	of	death	recorded).	We	performed	sur-
vival analyses to identify genetic variants associated with life span 
using	 the	 Cox	 regression	 model	 (Table	 S16).	 The	 results	 showed	
that	 rs1267601	 in	BRAF was the variant most associated with life 
span, and carriers of the CC genotype had significantly higher sur-
vival	 rates	 at	 age	 100+	 compared	with	CT/TT	 carriers	 (28.6%	 for	
CC,	16.9%	for	CT,	and	11.8%	for	TT;	hazard	ratio	(HR)	for	survival	
1.35; p = 8.33 × 10−15;	 Figure	4A).	 In	 addition,	we	 found	 that	 the	
Alzheimer's	disease-	related	SNP	rs17169634	in	BMPER was the lon-
gevity marker showing the greatest promoting effect, with carriers 

F I G U R E  5 Predictive	efficiency	for	longevity	and	life	span.	(a)	Receiver	operating	characteristic	curves	(ROC)	for	predictor	variables	
of	longevity	(binary	phenotype).	The	predictive	effectiveness	was	evaluated	by	the	area	under	the	ROC	curve	(AUC).	The	predictive	
effectiveness	of	SNPs	(AUC	=	0.767)	was	slightly	higher	compared	with	disease	and	lifestyle	(AUC	=	0.761).	The	composite	SNPs,	disease,	
and	lifestyle	achieved	the	best	predictive	power	with	AUC	=	0.860.	ROC	for	predictor	variables	of	longevity	in	males	(b)	and	in	females	(c),	
respectively.	The	predictive	efficiencies	of	composite	SNPs,	diseases,	and	lifestyles	for	longevity	were	presented	in	both	male	(AUC	=	0.821)	
and	female	(AUC	=	0.819)	groups.	The	predictive	efficiency	of	SNPs	for	longevity	is	0.732	in	females	and	0.707	in	males.	(d)	The	correlations	
between	true	life	span	and	predicted	life	span	showing	the	predicted	effectiveness	for	life	span.	SNPs	could	only	explain	2%	of	the	variance	
for	life	span,	while	disease	and	lifestyle	could	explain	much	more	variance	(15.3%).	The	composite	SNPs,	disease,	and	lifestyle	could	explain	
19.8% of the variance. The predicted effectiveness for life span in males (e) and in females (f), respectively. The predictive effectiveness for 
life	span	is	better	in	females	than	in	males.	Especially,	in	males,	the	SNP	set	fails	to	give	significant	prediction	for	life	span	(p = 0.10), whereas 
the	selected	SNPs	could	explain	7%	of	the	variance	in	females	(p = 1.25 × 10−6).
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of the minor allele G exhibiting a substantially longer life span than 
noncarrier	(28.3%	for	GG,	16.8%	for	GA,	and	11.3%	for	AA;	survival	
HR	=	1.25;	p = 1.45 × 10−10; Figure 4B). Except for the BRAF and 
BMPER loci, we did not observe any other loci that reached genome- 
wide significance. The APOE/TOMM40 locus was correlated with life 
span at nominal significance (p = 0.0013).

3.7  |  Predictions of longevity and life span

One of the ultimate objectives for identifying factors contributing 
to longevity is to predict longevity and life span. Based on all the 
factors we identified from both previous studies and our own asso-
ciation studies, we constructed a predictive model for longevity (age 
≥90	vs.	age	<75)	and	life	span	through	Lasso	regression	(Tibshirani,	
1996).	The	prediction	was	independent	of	the	association	study;	all	
the	SNPs	that	we	designed	on	the	customized	SNP	chip	(n = 23,800 
after	quality	control)	as	well	as	19	disease	phenotypes	and	fivce	life-
styles	entered	prediction	model	construction.	We	constructed	three	
models	 using	 (1)	 all	 SNPs;	 (2)	 self-	reported	 diseases	 and	 lifestyles	
collected	in	questionnaires;	and	(3)	the	combination	of	all	 features	
in	models	1	and	2.	After	 removing	 features	and	 individuals	with	a	
high missing rate, the total sample size for the prediction study was 
7807. Data were separated into training and testing sets (see Section 
2).	Models	 1	 and	 2	 achieved	 acceptable	 discriminations	 (model	 1:	
AUC	=	0.767;	model	2:	AUC	=	0.761).	 Interestingly,	model	1	 (using	
all	 SNPs)	 and	model	2	 (using	disease	 status	 and	 lifestyles)	 yielded	
similar	prediction	efficiency.	Additionally,	 the	 third	model,	with	all	
the	variables,	exhibited	quite	good	predictive	performances,	and	the	
final	AUC	reached	0.86	(Figure	5A).	We	further	investigated	the	sig-
nificance	of	the	SNPs	selected	by	Lasso	regression	for	the	prediction	
in	our	genetic	association	study.	We	found	that	those	SNPs	that	ef-
fectively contributed to the prediction exhibited significantly lower 
p-	value	enrichment	(Figure	S6).

For the prediction of life span, we used 3,023 individuals who 
had an exact age of death and detailed phenotypic records in our 
datasets.	 All	 three	 predictive	 models	 yielded	 good	 performance	
(Figure 5; model 1: p = 1.9 × 10−5; models 2 and 3: p < 2.2 × 10−16). 
Model	1	could	only	explain	8%	of	the	variances	in	the	life	span,	while	
model 2 could explain 15.3%. Furthermore, model 3, including all 
features, could explain 19.8% of the variances.

The genetic architectures of longevity and disease progression 
are	quite	different	between	sexes.	Next,	we	applied	our	predictive	
models to the male and female groups separately. The predictive ef-
ficiency for longevity (binary phenotype) was good in both the male 
(AUC	=	0.821)	and	female	(AUC	=	0.819)	groups	(Figure	5b,c).	However,	
the predictive efficiency for life span in females was superior to that 
of	males	(Figure	5e,f).	In	particular,	in	males,	the	SNP	set	failed	to	give	
a significant prediction for life span (p = 0.10), while in females, the 
selected	SNPs	could	explain	7%	of	the	variance	(p = 1.25 × 10−6), in-
dicating that the sex groups indeed exhibited different genetic archi-
tectures for aging. The selected features and their coefficients for all 
prediction models are listed in Tables S17 and S18.

4  |  DISCUSSION

In this study, we present several findings regarding the genetic 
contributions to longevity and their gender differences based on 
15,651	 individuals	 from	 the	 cohort	 of	 the	 Chinese	 Longitudinal	
Healthy	Longevity	Survey.	We	designed	an	informative	SNP	chip	for	
studying the genetics of longevity. Longevity case– control analysis 
(n = 11,045) and survival analysis (n	=	12,664)	were	performed	 in	
different subsets of the cohort. In addition to previously published 
longevity-	related	 studies,	we	 included	SNPs	 for	 relevant	diseases,	
such	as	CVD	and	T2D,	 intending	 to	obtain	 results	 that	were	com-
parable to those of previous studies. The main findings and several 
highlights of this work are described below.

First, we identified two novel loci (BMPER and TMEM43/XPC) 
and replicated three loci (TOMM40/APOE, FGD3, and AKT1) asso-
ciated with longevity in Chinese populations. Interestingly, these 
five longevity- associated loci have been linked to diseases, espe-
cially age- related diseases. For example, BMPER has been associ-
ated	with	aging	and	its	related	diseases,	such	as	Alzheimer's	disease	
(Nelson et al., 2014), and it is also involved in the regulation of the 
proinflammatory	 phenotype	 of	 the	 endothelium	 (Helbing	 et	 al.,	
2011), functioning primarily in the vascular (Lockyer et al., 2017) 
and	 respiratory	 systems	 (Helbing	et	 al.,	2013).	XPC is involved in 
DNA	damage	 repair	 and	 is	 associated	with	disease	 characterized	
by an extreme sensitivity to ultraviolet rays from sunlight, such 
as xeroderma pigmentosum, complementation group c and xero-
derma pigmentosum, variant type, and the deletion of XPC leads 
to	 lung	 tumors	 in	 mice	 (Hollander	 et	 al.,	 2005).	 The	 TOMM40/
APOE locus has been reported to be associated with longevity in 
multiple studies among diverse populations and the locus con-
tributes	to	Alzheimer's	disease	(Seshadri	et	al.,	2010),	age-	related	
macular degeneration (Cipriani et al., 2012), cardiovascular disease 
(Middelberg	 et	 al.,	 2011),	 cognitive	 decline	 (Davies	 et	 al.,	 2014),	
immunity (Reiner et al., 2008), and lipid metabolism/dyslipidemia 
(Aulchenko	 et	 al.,	 2009).	 FGD3, a putative regulator of cell mor-
phology and motility, was associated with longevity in the NECS 
study, and its expression plays a prognostic role in breast cancer 
(Renda et al., 2019). AKT1 is relevant to longevity (Deelen et al., 
2013;	Nojima	et	al.,	2013),	and	the	dysregulation	of	AKT	signaling	
leads to diseases for which there are major unmet medical needs, 
such as cancer, diabetes, and cardiovascular and neurological dis-
eases	(Hers	et	al.,	2011).	The	two	novel	signals	were	also	linked	to	
multiple age- related phenotypes not only in this cohort but also 
in	 GWASs	 from	 the	 Japan	 BioBank,	 whose	 cohort	 is	 ethnically	
closer to the Chinese population. The BMPER locus was associated 
with	 arthritis,	 prostate	 cancer,	 and	BMI.	 The	TMEM43 locus was 
associated	with	Parkinson's	disease,	AST,	and	UA.	These	findings	
consistently revealed the genetic overlap between exceptional lon-
gevity and age- related diseases and traits (Fortney et al., 2015). It is 
noted	that	five	SNPs	including	rs10757274,	rs4977574,	rs2891168,	
rs10965235,	and	rs944797	 located	 in	well-	known	CDKN2B locus, 
which	is	associated	with	CVD,	were	also	associated	with	longevity	
with nominal significance in our study.



16 of 20  |     LIU et aL.

While	 comparing	 our	 current	 results	 with	 other	 GWAS	meta-	
analyses and our previous results, inconsistencies were found. 
SNP	 rs17169634	 in	BMPER showed different directions of effects 
in multiple studies. One possible reason could be that the true 
causal variants are hidden in this area, but due to different linkage 
disequilibrium	 (LD)	 structures	 among	 European	 and	 Chinese	 pop-
ulations, the alleles tagging true causal variants may be different. 
Future	fine-	mapping	with	denser	makers	or	genome	sequencing	will	
be	required	to	illuminate	the	hidden	information.	SNP	rs17169634	
was not significantly associated with longevity in our dataset 2; 
therefore, the direction of effects in dataset 2 could not be deter-
mined that the confidence interval of effect size included zero. The 
significant signal was driven by dataset 1, where we also tested its 
association	with	complex	diseases.	The	G	allele	 for	 rs17169634	 in	
BMPER has reduced effects on the risk of arthritis (p	=	3.76	×	10−6) 
and prostate cancer (p	 =	6.32	×	10−3). Taken together, the results 
in	our	data	showed	that	 the	G	allele	 for	 rs17169634	 in	BMPER in-
creased the probability of being longevity in our logistic regression 
and has increased effects for life expectancy in survival analysis 
and reduced the risks of age- related diseases. Notably, the causal 
effects from an increased chance of longevity to reduced risk of 
arthritis	were	 also	 identified	 in	 our	MR	 analysis.	 These	 directions	
of effects are as expected that long- lived individuals show a delay 
in overall morbidity through having beneficial effects for diseases 
(Andersen	 et	 al.,	 2012).	 As	 for	 our	 previously	 reported	 SNPs	 in	
IL6 and ANKRD20A9P,	 they	did	not	pass	 the	quality	control	 in	our	
current	analysis.	Therefore,	 they	cannot	be	replicated.	We	further	
checked	the	frequency	of	reported	SNPs	on	these	two	genes.	The	
minor	allele	of	rs2069837	in	IL6 has	a	lower	frequency	(0.075)	than	it	
is	in	the	dbSNP	Asian	population	(0.179),	and	this	allele	has	reduced	
effects for longevity. Since the proportion of centenarians is much 
higher	in	our	previous	study	(48%;	Zeng	et	al.,	2016)	than	in	other	
GWAS	studies	for	 longevity,	 the	underrepresentation	of	this	allele	
in our dataset is plausible. The inconsistency of the results could be 
caused by the differences in proportions of centenarians between 
our	two	datasets	and	also	among	different	ethnic	populations.	As	for	
SNP	rs2440012	in	ANKRD20A9P, the minor allele G was overrepre-
sented	in	our	previous	study	(0.076)	compared	with	Asians	in	dbSNP	
(G	=	0).	 It	 has	 been	 filtered	out	 in	Deelen's	meta-	analysis	may	be	
due to multi- allelic problems in the European population (C = 0.90, 
A	=	0.0015,	G	=	0.098).	Additional	independent	datasets	are	needed	
for a detailed look into these loci.

One existing major problem of longevity genetic studies is that 
the findings from different studies are difficult to replicate. The rea-
sons could be ethnic differences in genetic background and varia-
tion of phenotype definitions. Furthermore, when considering the 
complex relationships between age- related diseases and longevity 
(Andersen	et	al.,	2012;	Ukraintseva	et	al.,	2016),	the	health	manage-
ment systems and culture could also introduce distinctions among 
populations. For instance, if the age- related diseases could be man-
aged well, the patients could still survive longer. Therefore, the lon-
gevous individuals are mixed with people who carry true protective 
alleles for the disease and individuals who accepted excellent health 

care.	While	the	healthcare	systems	are	quite	different	among	coun-
tries,	 especially	 for	older	generations,	 the	 frequency	of	 longevity-	
related	 alleles	 could	 be	 different	 in	 the	 elderly.	 Hence,	 further	
studies should also take health care and lifestyle into account when 
classifying cases and controls for comparisons.

Second, we found some sex- specific loci related to longev-
ity. Numerous studies have reported remarkable sex differences 
in	 longevity	and	 life	span	 (Austad	&	Fischer,	2016;	Candore	et	al.,	
2006;	 Ostan	 et	 al.,	 2016;	 Yuan	 et	 al.,	 2020);	 however,	 very	 few	
studies have reported the sex- differential effect of genetics for 
longevity. TOMM40/APOE is well- characterized longevity locus that 
could	be	split	 into	4	LD	blocks.	We	found	that	 two	of	 these	4	LD	
blocks were associated with longevity in females but not in males 
(pdifference	<	0.05),	in	line	with	our	previous	study	(Zeng	et	al.,	2018).	
This may indicate sex- specific genetic associations of longevity may 
be caused by differences during meiosis between males and fe-
males. The distinction of recombination rates between sex groups 
has	been	 reported	 in	both	human	and	animals	 (Li	&	Merila,	2010;	
Tapper et al., 2005). Since the recombination was closely interacted 
with natural selection (Schumer et al., 2018), differences in recom-
bination are plausible to lead to sex or population stratification and 
thereby causing a small group of people having enriched evolution-
ary benefit alleles. Therefore, it is necessary to use strand- specific, 
long-	segment	sequencing	technologies	or	family	studies	to	detailed	
look into the LD structure for longevity people in future studies.

Interestingly,	the	predictive	effectiveness	of	SNPs	for	longevity	is	
slightly	better	in	females	(AUC	=	0.732)	than	in	males	(AUC	=	0.707).	
For	life	span	predictions,	SNPs	could	explain	7%	of	the	variance	for	
life span in females (p = 1.25 × 10−6) but failed to provide a signifi-
cant prediction for life span in males (p	=	0.10).	All	these	results	are	
consistent	with	our	previous	finding	(Zeng	et	al.,	2018)	that	the	ge-
netic association with longevity is stronger in females than in males. 
Notably, we found that some diseases also presented sex- differential 
patterns	associated	with	longevity.	For	example,	T2D	and	CVD	were	
more	 significantly	 correlated	 with	 longevity	 in	 females.	 Previous	
studies have reported sex differences between cardiovascular dis-
eases and aging, in which it is assumed that genetic traits and sex 
hormones play the key roles (Rodgers et al., 2019).

Our	 PRS	 and	 MR	 analyses	 revealed	 negative	 correlations	 be-
tween	 longevity	 and	 multiple	 diseases,	 including	 CVD,	 T2D,	 and	
arthritis. The results were generally in consistent with those in 
a meta- analysis of the European population (Joshi et al., 2017). 
However,	 other	 studies	 indicated	 different	 conclusions.	One	 pub-
lication based on the Leiden Longevity Study (LLS) suggested that 
disease risk alleles do not compromise human longevity (Beekman 
et	 al.,	 2010).	 The	 authors	 only	 considered	 30	 disease	 risk	 SNPs,	
while	our	analyses	 included	more	carefully	selected	SNPs	for	age-	
related	diseases	 (Erikson	et	 al.,	 2016),	 and	 the	obtained	polygenic	
risk scores reflected an overall significant decrease in genetic dis-
ease risk in exceptionally long- lived individuals. Taken together, 
these	 findings	 suggested	 that	 some	disease	 risk	SNP	alleles	might	
increase	 the	 chance	 of	 longevity	 (McDaid	 et	 al.,	 2017),	 but	 there	
are	more	effective	disease	 risk	SNP	alleles	 associated	with	earlier	
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mortality	(Erikson	et	al.,	2016;	Joshi	et	al.,	2017).	The	benefits	of	uti-
lizing polygenic risk scores are that it summed the effects of multiple 
alleles instead of looking at the count of each risk allele. Therefore, 
when considering the additive effects aggregating all risk alleles, the 
genetic risks of multiple diseases were found to be reduced in long- 
lived populations.

There is growing interest in predicting the risks for diseases 
and	complex	traits	using	polygenic	risk	scores	 (Khera	et	al.,	2018).	
Previous	 studies	 have	 predicted	 longevity	 and	 life	 span	 based	
mainly	 on	 animal	 models	 (Huang	 et	 al.,	 2004;	 Shen	 et	 al.,	 2014;	
Swindell	et	al.,	2008)	or	the	use	of	single	biomarker	(Ho	et	al.,	2019;	
Whittemore	et	al.,	2019).	One	 recent	study	using	 the	UK	Biobank	
dataset applied polygenic risk score for life span prediction with 
good performance but was limited by utilizing summary statistics for 
life span based on parental data (Timmers et al., 2019). Our newly 
developed prediction models including genetic markers performed 
nicely	in	the	classification	of	longevity	(AUC	=	0.767)	but	were	not	
very effective in the prediction of life span (explaining only 15.3% 
of	the	variance).	When	disease	status	and	lifestyle	information	were	
added, the longevity-  and life span- prediction models produced bet-
ter	 predictions	 for	 both	 longevity	 (AUC	=	 0.86)	 and	 life	 span	 (ex-
plaining	19.8%	of	the	variances).	Additionally,	for	the	classification	of	
longevity,	the	performance	of	SNPs	is	similar	to	that	of	diseases	and	
lifestyles, indicating that genetics and phenotypes may have inde-
pendent components that influence aging.

A	limitation	of	the	present	study	is	the	candidate-	gene	approach,	
which might preclude the discovery of new possible causative genes 
or	biological	pathways.	However,	our	selection	of	candidates	was	pri-
marily based on our previous genome- wide association studies con-
ducted in 4477 Chinese individuals from the Chinese Longitudinal 
Healthy	Longevity	Survey	(CLHLS).	The	SNPs	with	p- values smaller 
than	0.015	in	our	previous	GWAS	were	all	selected	for	inclusions	on	
our	customized	chip.	We	collected	additional	candidate	SNPs	from	
existing studies, including studies not only on longevity genetics but 
also	 on	 other	 age-	related	 complex	 diseases	 and	 traits.	 Moreover,	
by	 leveraging	 on	 imputation	 technology,	 the	 candidate	 SNP	 sets	
were	 further	 expanded.	By	 incorporating	 all	 these	SNPs	 together,	
we performed multi- candidate genes association analyses, which is 
suboptimal for genome- wide associations but still very informative. 
Secondly, in order to identify sex- specific genetic markers associ-
ated with longevity, we stratified our sample into male and female 
groups. The benefit of stratifying the sample is an increased chance 
to	find	those	sex-	specific	SNPs	tagging	different	causal	variants	in	
different	sex	groups.	However,	this	strategy	also	has	the	drawback	
that the reduced sample size for each analysis group caused de-
creased	 power.	We	 only	 replicated	 half	 of	 the	 previous	 identified	
sex-	specific	 loci,	 and	more	 replication	 studies	 are	 required	 in	 the	
future. Thirdly, we noted that the predicted life span was generally 
shorter than the true life span, indicating undefined missing con-
founders contributing to the life span (genetic and other confound-
ing factors or their interactions). Future genetic studies of longevity 
based	on	affordable	exome	and	whole-	genome	sequencing	might	be	
helpful to further identify a larger number of longevity- associated 

genetic variants by applying the analysis of rare genetic and copy 
number variants. Together, these findings provide a benchmark 
for the development of longevity-  and life span- predictive models. 
Further studies are warranted to improve the models through the 
identification of an additional panel of predictive variables and the 
development of innovative computational approaches.

In summary, our results not only identified novel longevity genes 
but also depicted the landscape of genetic contributors to longev-
ity and life span through a complex of sex- differential and disease- 
related interactive circuits, which could be more precisely predicted 
in the near future.
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