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Though both clinicians and scientists have long recognized the influence of extracellular

calcium on the function of muscle and nervous tissue, recent insights reveal that the

mechanisms allowing changes in extracellular calcium to alter cellular excitability have

been incompletely understood. For many years the effects of calcium on neuronal

signaling were explained only in terms of calcium entry through voltage-gated calcium

channels and biophysical charge screening. More recently however, it has been

recognized that the calcium-sensing receptor is prevalent in the nervous system and

regulates synaptic transmission and neuronal activity via multiple signaling pathways.

Here we review the multiplicity of mechanisms by which changes in extracellular calcium

alter neuronal signaling and propose that multiple mechanisms are required to describe

the full range of experimental observations.

Keywords: calcium sensing receptor, nervous system, synaptic transmission, action potentials, ion channels,
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CALCIUM AND EXCITABLE TISSUES

The importance of extracellular calcium in regulating the behavior of excitable tissues was first
recognized by Sydney Ringer when he became aware that a very effective physiological saline he
developed was contaminated with calcium (Ringer, 1883). Upon this discovery, Ringer quickly
determined that calcium at a concentration of approximately 1mM was essential to maintain the
viability and function of isolated frog hearts and solutions derived from Ringer’s work have been
employed by physiologists studying the heart and many other organ systems ever since (Miller,
2004). It was some time before the importance of calcium on neuronal excitability was recognized,
but despite more than 100 years of inquiry, the mechanisms by which calcium alters the excitability
of neurons remain incompletely elucidated. In this mini-review we will examine some of the
mechanisms by which extracellular calcium influences neuronal signaling by altering both intrinsic
excitability and synaptic transmission.

EXTRACELLULAR CALCIUM IN THE BRAIN IS DYNAMIC

The distribution of calcium in the brain is characterized by steep transmembrane electrochemical
gradients that are transiently attenuated as a result of large activity-dependent changes in both the
intracellular and extracellular calcium concentration. The blood brain barrier defends extracellular
calcium in the brain from changes in serum calcium (Jones and Keep, 1988) and at rest brain
extracellular calcium is maintained at 1.1mM (Hansen, 1985; Zhang et al., 1990; Nilsson et al.,
1993, 1996). At the same time, neuronal intracellular calcium is orders of magnitude lower ranging
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between 50 and 100 nM, but rising rapidly to 10–100 µM
in microdomains near open voltage-gated calcium channels
when action potentials invade presynaptic terminals (Zucker,
1996). In contrast, during neuronal activity extracellular calcium
can fall sharply as calcium is displaced to the intracellular
compartment. These transient drops in calcium are facilitated
by the small extracellular volume of the brain (only 12–20%
of total volume; Rusakov et al., 1998) and restricted diffusion
(up to five-fold slower than in free solution; Kullmann et al.,
1999). The small volume and limited accessibility of the synaptic
cleft led to the prediction that pre- and postsynaptic calcium
influx during neurotransmission will significantly reduce calcium
in the cleft following an action potential, possibly to as low
as 0.3mM (Smith, 1992; Vassilev et al., 1997b; Egelman and
Montague, 1998, 1999; Rusakov et al., 1998). At the surface of
the brain, ion-selective electrodes have shown that extracellular
calciumfalls to 0.8mM for tens of seconds following focal
stimulation at rates of 20 Hz (Nicholson et al., 1978) and
decreases to 0.1mM have been recorded as a result of focal brain
trauma (Nilsson et al., 1996). Importantly, it has been shown
that short trains of action potentials can reduce extracellular
calcium and impact synaptic transmission (Rusakov and Fine,
2003). The observed fall in extracellular calcium in the cortex
at times of high activity (Nicholson et al., 1978) along with
the extreme sensitivity of synaptic mechanism to extracellular
calcium (Dodge and Rahamimoff, 1967) prompts us to ask how
neurons respond to this change.

EXTRACELLULAR CALCIUM AND THE
INTRINSIC EXCITABILITY OF NEURONS

Even before calcium was identified as the trigger for exocytosis,
reductions in extracellular calcium were known to increase the
likelihood of action potential initiation (Frankenhaeuser and
Hodgkin, 1957) by altering the properties of the neuronal ion
channels. These effects on ion-channel activity can be divided
into two major categories: those mediated by direct activity of
calcium on ion-channel biophysics and those mediated indirectly
by second messenger systems that are coupled to extracellular
calcium concentrations by specific receptors. While many types
of ion channels are involved in fine tuning neuronal excitability,
voltage-gated sodium channels are central. Early work showed
changes in excitability were mediated by shifts in the activation
properties of the sodium conductance (Frankenhaeuser and
Hodgkin, 1957) though subsequently extracellular calcium was
found to alter the activity of other types of ion channels (Hablitz
et al., 1986; Immke and McCleskey, 2001; Ma et al., 2012).

Direct Actions Of Calcium on Neuronal
Excitability
The most widely recognized model for the impact of calcium on
sodium channel activity is surface charge screening (aka, surface
potential theory), whereby interactions between multivalent
cations like calcium and negatively charged phospholipids in the
neuronal membrane serve to alter the intramembrane electric
field that regulates the activity of voltage-gated ion channels

in a concentration dependent manner (Hille, 2001). The idea
is that membrane bound negative charges influence the local
potential (Figure 1A, solid blue curve) and thereby reduce the
intramembranous electric field (broken blue line) established by
the transmembrane electrochemical gradient (black broken line).
Extracellular divalents are adsorbed to the membranous negative
charges and attenuate their impact on the existing voltage field
(red broken line). Hence voltage-dependent channels within the
intramembranous electric field have altered activity. In the case of
a high extracellular calcium concentration, the intramembranous
field is increased and the probability of channels being activated
is decreased resulting in a reduction in excitability.

However, surface charge screening does not account for all of
the calcium-dependent gating phenomena exhibited by voltage-
gated channels. At its simplest the surface potential theory
predicts a uniform action on all types of voltage-dependent
channels. While sodium channel activation is enhanced by
reductions in extracellular calcium other types of voltage-
gate ion-channels exhibit different dependence on extracellular
calcium, ranging from sensitive to indifferent (Han et al., 2015).
Beyond charge screening, other work has identified at least two
other distinct biophysical mechanisms through which changes
in extracellular calcium can alter the activity of voltage-gated
sodium channels (Armstrong and Cota, 1991). Voltage-gated
sodium channels have a number of extracellular moieties that
also interact directly with calcium and so alter channel kinetics
through changes in conformation or stability (Armstrong and
Cota, 1990). Also, calcium ions are able to directly block sodium
channels likely through interactions with specific amino acid
residues lining the channel’s pore (Santarelli et al., 2007).

Direct activation of non-selective cation channels following
reductions in extracellular calcium, also depolarizes neurons
and increases excitability (Hablitz et al., 1986; Xiong et al.,
1997; Immke and McCleskey, 2001). Calcium homeostasis
modulator 1 (CALHM1) is another non-selective cation channel
that is both voltage- and calcium-dependent (Ma et al., 2012)
positioning it to be a strong mediator of calcium-dependent
excitability. In fact, neurons deficient in CALHM1 lost all
calcium-dependent excitability (Ma et al., 2012) implying that
in some neurons surface charge screening may not contribute to
calcium-dependent excitability.

Receptor-Mediated Signaling of
Extracellular Calcium
The excitability of neurons is also influenced indirectly by
complex second messenger systems coupled to membrane
receptors (Figure 1B). The calcium-sensing receptor (CaSR),
a widely expressed G-protein coupled receptor, exhibits a
punctate staining pattern in the cortex and cerebellum consistent
with localization to nerve terminals (Ruat et al., 1995). Direct
recordings from neocortical terminals, demonstrated that
extracellular calcium regulated a membrane receptor and
indirectly modulated a non-selective cation channel (Smith
et al., 2004). Using a combination of pharmacological probes
and a mutant mouse the terminal extracellular calcium receptor
was identified as CaSR (Chen et al., 2010). In hippocampal
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FIGURE 1 | Summary of important neuronal targets of extracellular calcium. (A) Impact on resting membrane electric field of surface charge screening. The

transmembrane potential is illustrated in three scenarios: without fixed anions (black line), with fixed anions (blue line), and with fixed anions and divalent cations (red

line). The electric field produced by the transmembrane electrochemical gradient alone (black line) is attenuated by membrane associated negative charges in the

absence of divalent cations (blue line). When divalent cations interact with (screen/adsorp to) the fixed anions, the influence of the fixed charges on intramembranous

electric field is reduced (red line). Consequently, the activity of ion channels within the membrane and sensitive to the electric field may be altered by changes in the

concentration of divalent cations. (B) Summary of targets of extracellular calcium on neuronal excitability and (C) synaptic transmission. BK, calcium-activated

potassium channel; CALHM1, calcium homeostasis modulator 1; CaSR, calcium-sensing receptor; NALCN, Na-leak channel non-selective; NCX, sodium/calcium

exchanger; NSCC, non-specific cation channel; VGCC, voltage-gated calcium channel; VGNaC, voltage-gated sodium channel. Dashed arrows reflect direction of

current under typical conditions. Inwards arrows are depolarizing/excitatory. During high activity levels, the NCX replenishes extracellular calcium in the synaptic cleft.

neurons reductions in extracellular calcium increased
neuronal excitability via another indirect mechanism. A
non-selective cation channel (NSCC) NALCN (Na-Leak Channel
Non-selective), was activated by decreases in extracellular
calcium and mediated the vast majority of calcium-dependent
excitability (Lu et al., 2010). This signaling pathway required
two intracellular proteins, UNC-79 and UNC-80, and an
unidentified membranous receptor (Lu et al., 2010). The authors
went on to hypothesize that CaSR may be the receptor that
detected and transduced changes in extracellular calcium into
changes in neuronal excitability. In this model, low extracellular
calcium was transduced into activation of a depolarizing current
mediated by NALCN and increased neuronal excitability,
controversially minimizing the contribution of surface charge
screening (Lu et al., 2010). Other consequences of extracellular
calcium signaling are suggested by work showing that CaSR
may inhibit some neuronal potassium channels (Vysotskaya
et al., 2014). Interestingly, CaSR activation was also proposed to
activate other types of neuronal potassium channels (Vassilev
et al., 1997a). Similarly, an unusually non-selective channel in
neuronal soma was reported to be activated by CaSR agonists
(Ye et al., 1996). The impact of decreased extracellular calcium
on CaSR modulation seems to favor channel activation but the
overall effect will depend on the balance of channel activation
and block.

Intracellular changes in calcium, as a result of changes
in extracellular calcium, may modulate channel activity and
neuronal excitability. Calmodulin, a calcium sensitive signaling
protein that is modulated by calcium entry, regulated sodium
channel activity (Kim et al., 2004). Specifically, calmodulin
interacted with an intracellular domain of voltage-gated sodium

channels and so modified their gating behaviors (Sarhan et al.,
2012). Notably, calmodulin has also been shown to regulate the
cell surface expression and signaling from the CaSR providing
a potential mechanism for cross-talk between these distinct
calcium signaling pathways in the modulation of neuronal
excitability (Huang et al., 2010). Thus, there are multiple direct
and indirect mechanisms by which extracellular calcium can
impact the intrinsic excitability of neurons and while surface
charge theory provides a common mechanism across all neurons
it would be surprising if these other mechanisms did not
operate in parallel and mediate variability in calcium dependent
excitability between neuronal types.

EXTRACELLULAR CALCIUM AND
SYNAPTIC FUNCTION

Calcium is a Key Determinant of Synaptic
Efficacy
Calcium is an important signal on both the pre- and post-
synaptic sides of the synapse where it triggers exocytosis
(Douglas, 1968; Katz, 1969), plasticity (Lynch et al., 1983;
Malenka et al., 1988; Bliss and Collingridge, 1993) and alters gene
expression (Greenberg et al., 1992). The early and reproducible
observation that synaptic efficacy is dependent on the fourth
power of extracellular calcium highlights the importance of
calcium in the exocytotic process and has been confirmed
in a number of preparations (Dodge and Rahamimoff, 1967;
Dudel, 1981; Augustine and Charlton, 1986; Zucker et al.,
1991; Bollmann et al., 2000; Schneggenburger and Neher,
2000). Calcium activates the exocytotic machinery after entry
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throughN-, P/Q-, and R- type voltage-activated calcium channels
(Wheeler et al., 1994; Jun et al., 1999; Wu et al., 1999; Rozov et al.,
2001). Numerous forms of synaptic plasticity have been described
with varied rates of onset and durations lasting frommilliseconds
to hours (Katz andMiledi, 1969; Lynch et al., 1983;Malenka et al.,
1988; Bliss and Collingridge, 1993; Zucker, 1993; Fisher et al.,
1997; DeMaria et al., 2001; Kreitzer and Regehr, 2001; Rozov
et al., 2001), all of which are affected by cleft calcium emphasizing
its important regulatory role on synaptic function.

The Impact of Falls in Cleft Calcium
The broad dynamic range of extracellular calcium along with
the exceedingly steep dependence of synaptic release probability
on extracellular calcium (Dodge and Rahamimoff, 1967) leads
to the hypothesis that even modest falls in cleft calcium will
render the synapse much less effective at conducting signals.
Indeed, a widely observed fourth-order proportionality implies
that a reduction of the cleft calcium by one third could reduce
synaptic efficacy by up to 80%. Accordingly, maneuvers reducing
cleft calcium reduce synaptic efficacy (Borst and Sakmann,
1999a). Nevertheless, sustained phasic synaptic transmission
has been observed at rates of up to 800 Hz (Taschenberger
and von Gersdorff, 2000), indicating that either falls in cleft
calcium do not occur at all synapses or there are compensatory
mechanisms to reduce the effect of the fall of extracellular
calcium at the synaptic cleft. The mechanism by which
reductions in extracellular calciumreduce release probability
and potential compensatory mechanisms remain incompletely
understood, but similar to the impact of extracellular calcium
on synaptic transmission can be divided into direct biophysical
mechanisms and indirect mechanisms mediated by second
messenger systems.

Direct Compensatory Mechanisms
Dissociation of calcium from negative charged macromolecules,
release from synaptic vesicles, and extracellular cation exchangers
have been proposed to attenuate the fall in cleft calcium during
episodes of high activity (Grohovaz et al., 1996; Borst and
Sakmann, 1999a; Hartig et al., 2001), but the functional impact is
uncertain. Similar to its impact on overall neuronal excitability,
at the terminal reduced calcium is predicted to left-shift the
voltage-dependence of sodium and calcium channels increasing
the probability of release. Another putative, but incompletely
understood compensatory mechanism observed at the calyx of
Held and hippocampal nerve terminals is the broadening of
presynaptic action potentials with repeated stimulation (Borst
and Sakmann, 1999b; Geiger and Jonas, 2000). As calcium
entry occurs during the repolarization phase of an action
potential, spike broadening is a highly effective way of increasing
calcium entry by prolonging depolarization (Sabatini and Regehr,
1997). Ion exchangers may also provide a mechanism to
sustain synaptic transmission during periods of high activity.
In parallel fiber-to-Purkinje neuron synapses, transient reversal
of the sodium/calcium exchanger promotes calcium influx and
enhanced glutamatergic transmission (Roome et al., 2013).

Indirect Compensatory Mechanisms
There is considerable evidence that the CaSR is intimately
involved with regulating synaptic transmission Figure 1C. The
CaSR is present in 80–90% of nerve terminals in the cerebral
cortex (Smith et al., 2004; Chen et al., 2010) and its impact
on synaptic transmission is complex indicating that it may be
mediated by several mechanisms. In acutely isolated neocortical
nerve terminals, decreases in extracellular calcium activated
voltage-dependent NSCC currents indirectly via the CaSR (Smith
et al., 2004; Phillips et al., 2008; Chen et al., 2010). Theoretically,
NSCC activation at the nerve terminal following decreased CaSR
activation (Smith et al., 2004) may depolarize the local membrane
potential, inactivate voltage-dependent calcium channels, and
thereby reduce the probability of evoked release. However,
the voltage-dependence of the terminal NSCC means very
few of the NSCCs would be activated at negative potentials
making this unlikely to be a major effect. Another possibility
is that NSCC activity following reduced CaSR activation could
lead to action potential broadening which might prolong the
duration of calcium entry and facilitate synaptic transmission.
The absence of delay of activation of NSCC currents following
rapid depolarizations (sub millisecond) and the ability of action
potential waveforms to trigger these currents supported this
hypothesis (Smith et al., 2004). Consistent with this idea, CaSR
activation reduced excitatory transmission between pairs of
neocortical neurons (Phillips et al., 2008). Furthermore, deletion
of CaSR substantially increased excitatory synaptic transmission
in neocortical neurons, and variance-mean analysis indicated this
was due to an increase in release probability (Phillips et al., 2008).
Thus, CaSR-NSCC signaling in nerve terminals would seem
ideally placed to serve to increase release probability in situations
where extracellular calcium was low thereby maintaining the
fidelity of synaptic transmission during periods of high activity.
However, although the NSCC currents were rapidly activated and
likely to influence action potential shape the CaSR is a GPCR
and unlikely to respond rapidly. Indeed in isolated terminals the
pathway took a few seconds to respond to changes in extracellular
calcium. These relatively slow kinetics indicate the CaSR-NSCC
signaling pathway in terminals is more likely to detect and
respond to sustained changes in calcium that persist for a few
seconds and not those that develop over a few milliseconds
(Smith et al., 2004; Chen et al., 2010). Endogenous modulators
of CaSR in the periphery include magnesium, L-amino acids,
polyamines, and γ-glutamyl peptides besides calcium (Leach
et al., 2015). It remains unclear how much these agents modulate
signaling in neurons but identification of central actions may
reveal other physiological roles for CaSR in neurons as suggested
for beta-amyloid (Conley et al., 2009).

Increasing attention has turned to spontaneous release of
neurotransmitters with the recognition that action potential-
evoked and spontaneous release mechanisms are distinct
(Kavalali, 2015). Interestingly, CaSR activation by direct and
allosteric agonists stimulate release of glutamate independent
of intracellular calcium (Vyleta and Smith, 2011). In addition,
deletion of CaSR substantially reduced spontaneous glutamate
release. In other words, CaSR activation had opposite effects
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on evoked and spontaneous release of the major excitatory
neurotransmitter (Phillips et al., 2008; Vyleta and Smith, 2011).
It is as yet unclear how CaSR could have opposite effects on
exocytosis of these apparently distinct populations of vesicles
that reside in the same nerve terminals. However, we recognize
that these apparently opposite actions mechanistically mirror
the actions that CaSR stimulation has on release of parathyroid
hormone and calcitonin (Garrett et al., 1995). The importance
of CaSR signaling at nerve terminals has also been emphasized
by the finding that spontaneous release of GABA, the major
inhibitory neurotransmitter, is also strongly enhanced by CaSR
activation (Smith et al., 2012).

Given the apparent abundance of CaSR it seems
surprising that a role for CaSR was not suggested sooner.
However, CaSR signaling may have been difficult to detect
because “physiological” experiments frequently employed
supraphysiological levels of calcium and magnesium
concentrations (Smith et al., 2004; Chen et al., 2010). This
approach ensured CaSR was at near-saturation attenuated our
ability to detect changes in CaSR signaling. Another confounder
is that in studies of the effects of decreased extracellular calcium,
magnesium concentrations were often increased with the
presumption that magnesium would only obviate the effects
of surface charge screening. Since CaSR and spontaneous
release are stimulated by magnesium (Vyleta and Smith, 2011;
Smith et al., 2012) this experimental approach minimized
the contribution of CaSR. The importance of employing
physiological concentrations of divalent ions was emphasized by
comparing neuronal activity and synaptic transmission in vivo
and in acute brain slices (Sanchez-Vives and McCormick, 2000;
Lorteije et al., 2009).

CLINICAL RELEVANCE IN THE NERVOUS
SYSTEM

Over the past decade a number of reports have underlined
the potential of CaSR as a therapeutic target in diseases of
the nervous system. Familial idiopathic epilepsy was linked to
dominantly inherited CaSR mutations across three generations
(Kapoor et al., 2008). The signaling pathways by which changes

in CaSR activity might relate to epilepsy are not known, but

the evidence implicating the CaSR in neuronal excitability and
maintenance of high-frequency synaptic transmission suggests a
plausible mechanism by which changes in CaSR activity could
underpin a disorder of neuronal activity. In parallel, CaSR levels
have been found to be increased in animal models following
induction of seizures as well as traumatic brain injury (Mudo
et al., 2009; Kim et al., 2011) hinting at a potential role for
CaSR in the development of epilepsy following status epilepticus
or traumatic brain injury. Intriguingly, CaSR antagonists were
shown to reduce CaSR expression levels, brain tissue loss and
neurological deficits, in animal models of traumatic brain injury
and cerebral ischemia (Kim et al., 2013, 2014). Furthermore, links
between beta amyloid and CaSR signaling may be important in
the development of Alzheimer’s disease and hypoxic brain injury
(Bai et al., 2015; Dal Pra et al., 2015).

CONCLUSIONS

Extracellular calcium ions are recognized, like intracellular
calcium ions, as important regulators of neuronal function
in the central and peripheral nervous systems. The action
of extracellular calcium is complex and its actions via
CaSR and surface charge screening affect numerous ion
channels impacting neuronal excitability and many forms
of synaptic transmission. An important goal for the field
is to determine the relative contributions of these signaling
pathways to neuronal function to facilitate our understanding
behind the role of CaSR signaling in pathogenesis of acute
neurological diseases like stroke, traumatic brain injury, and
epilepsy.
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