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Abstract: A microbiota transplant (MT) originating from mature adult chicken ceca and propagated
in bioreactors was administered to day-old broiler chicks to ascertain the degree to which, and how,
the MT affects Clostridium perfringens (Cp)-incited necrotic enteritis (NE). Using a stress predisposition
model of NE, birds administered the MT and challenged with Cp showed fewer necrotic lesions,
and exhibited a substantially higher α- and β-diversity of bacteria in their jejunum and ceca. Birds
challenged with Cp and not administered the MT showed decreased Lactobacillus and increased
Clostridium sensu strico 1 in the jejunum. In ceca, Megamonas, a genus containing butyrate-producing
bacteria, was only present in birds administered the MT, and densities of this genus were increased
in birds challenged with Cp. Metabolite profiles in cecal digesta were altered in birds administered
the MT and challenged with the pathogen; 59 metabolites were differentially abundant following MT
treatment, and the relative levels of short chain fatty acids, butyrate, valerate, and propionate, were
decreased in birds with NE. Birds administered the MT and challenged with Cp showed evidence of
enhanced restoration of intestinal barrier functions, including elevated mRNA of MUC2B, MUC13,
and TJP1. Likewise, birds administered the MT exhibited higher mRNA of IL2, IL17A, and IL22 at
2-days post-inoculation with Cp, indicating that these birds were better immunologically equipped
to respond to pathogen challenge. Collectively, study findings demonstrated that administering a
MT containing a diverse mixture of microorganisms to day-old birds ameliorated NE in broilers by
increasing bacterial diversity and promoting positive immune responses.

Keywords: necrotic enteritis; Clostridium perfringens; microbiota transplantation; metabolomics;
immune responses

1. Introduction

Microbiota transplantation has emerged as a therapeutic approach to treat a number
of enteric diseases in human beings, and it is beginning to garner interest in agriculture.
The process of microbiota transplantation typically involves the transfer of a complete
microbial community that includes viruses, archaea, bacteria, fungi, protozoa, host cells,
metabolites, and other debris [1]. Beneficial outcomes of microbiota transplantation can
include restructuring microbial communities and increasing community diversity [2].
Furthermore, the introduction of novel microorganisms may stimulate the immune system
in a manner that limits infection [2]. Thus, microbiota transplantation imparts colonization
resistance by promoting positive microorganism-microorganism and microorganism-host
interactions that displace pathogens and reduce pathologic outcomes [3].
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Necrotic enteritis (NE) is primarily a disease of the small intestine of poultry incited
by the bacterium, Clostridium perfringens that results in significant production losses [4].
The administration of in-feed antibiotics has previously controlled NE, but reductions in
antibiotic use have resulted in an increased incidence of NE in broiler chicken production [5].
One antimicrobial alternative for NE that has been widely explored is probiotics. The
administration of probiotics was shown to limit NE via competitive exclusion, stimulation
of immune functions, and production of bacteriocin [6–10]. However, probiotics typically
need to be administered continuously to be effective, which represents an obstacle for
their use in production settings. The administration of a microbiota transplant (MT)
to chicks successfully excluded Salmonella enterica subsp. enterica serovar Infantis from
ceca [11,12]. Microbiota transplantation has also been considered in poultry in the context
of enhancing production efficiency and determining if behavioral phenotypes can be passed
through the microbiota [13–15]. However, the exploration of microbiota transplantation
in poultry has yet to be considered as an alternative to antimicrobials for mitigating NE,
a disease that primarily affects the proximal small intestine of chickens. Moreover, the
mechanisms of colonization resistance conferred by microbiota transplantation in poultry
are currently enigmatic. Given the demonstrated benefits that administering a limited
number of bacterial taxa can have in limiting NE (i.e., probiotics), the application of a MT
as a method to mitigate NE warrants investigation.

The types of sanitation strategies applied in different jurisdictions vary substantially.
The Chicken Farmers of Canada specify that a “wet cleaning” take place at least once a
year (i.e., involving removal of litter followed by the application of a liquid sanitizer),
and that between flocks, dry cleaning by removal and replacement of litter be applied
at minimum (with at least 14 days between flocks as a best practice) [16]. Therefore, in
Canada and elsewhere, broiler chicks are often exposed to hygienic environments after
placement in barns, particularly in situations where new litter has been introduced with
or without liquid sanitation of barn surfaces, and this may result in a delayed exposure
to microorganisms. Chickens populate their gastro-intestinal tract via ingestion of mi-
croorganisms in the environment (e.g., litter), and a diverse microbiota is established by
7 days-of-age [17], although a succession of bacterial taxa occurs over the course of the
broiler production cycle [18]. It is possible that the external application of microorganisms
to broiler chicks early in life may expedite the establishment of a stable enteric bacterial
community structure, and thereby confer positive health benefits to the birds. Probiotics in
poultry have predominantly focused on the use of species that are primary colonizers of the
small intestine, which is rational as the impacts of NE are primarily manifested in the duo-
denum and jejunum. However, ceca are also important in the health of chickens as the cecal
microbiota aids in digestion and promotes immune development. Furthermore, commonly
used probiotics, such as Lactobacillus spp., can facilitate cross-feeding to microorganisms
that utilize lactate to produce butyrate [19] within ceca. We hypothesized that the intro-
duction of a cecal community of bacteria obtained from healthy donors to neonatal broiler
chicks will promote beneficial alterations to bacterial community structure, and modulate
metabolites in the intestine that aid in disease resistance. Moreover, we hypothesized
that the administration of a MT to day-old chicks will promote immune development in
birds resulting in enhanced resistance to NE later in life. To test these hypotheses, primary
objectives of the study were to: (i) propagate cecal bacteria obtained from mature healthy
broiler males within bioreactors; (ii) orally administer the MT generated within bioreactors
to day-old birds; (iii) determine the impacts of the MT on colonization of the intestine by
C. perfringens, and on the composition and function of enteric bacterial communities; and
(iv) ascertain the influence of the MT on NE, including on host immune responses. To
facilitate the evaluation of the impacts of treatments on acute disease, corticosterone was
provided in the diet to mediate a stress response in birds and promote the onset of clinical
NE upon challenge with C. perfringens [20].
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2. Results
2.1. Propagation of Cecal Bacteria from Healthy Adult Donors in Bioreactors Affected the
Community Structure

Propagation of the cecal microbiota with bioreactors temporally affected both the
composition and structure of bacterial communities. In this regard, the α-diversity of
bacteria in the bioreactor medium was reduced relative to the diversity of bacteria present
in the cecal digesta of donor birds; Shannon’s α-diversity of bacterial communities within
bioreactors ranged from 4.2 at day 1 to 3.7 at day 10, as compared to an α-diversity of
6.7 within cecal digesta. The β-diversity of bacterial communities also changed over
time (p < 0.050) (Figure S1A). Within cecal digesta, amplicon sequence variants (ASVs)
representing 128 genera were observed, whereas the bioreactor matrix contained 52 genera.
Bacteria within the genera, Bacteroides, Rikenellaceae, Phascolarctobacterium, and Prevotellaceae
were less abundant in the bioreactors than in cecal digesta of donor birds (Figure S1B,C).
In contrast, bacteria within the genus, Megamonas were substantially more abundant in
bioreactors relative to cecal digesta.

2.2. Administration of the Microbiota Transplant Reduced Pathologies

Experimental treatments were: (i) birds not administered the MT and not challenged
with C. perfringens (i.e., Control treatment, n = 6); (ii) birds administered the MT and not
challenged with C. perfringens (i.e., MT treatment; n = 6); (iii) birds not administered the MT
and challenged with C. perfringens (i.e., NE treatment; n = 6); and (iv) birds administered
the MT and challenged with C. perfringens (i.e., MT + NE treatment; n = 6). Treatment
iii and iv birds were administered corticosterone in their diet. Only birds administered
corticosterone and challenged with C. perfringens exhibited necrotic lesions (i.e., NE and
MT + NE treatments) (Figure 1A,B). However, birds challenged with C. perfringens but
not administered the MT (i.e., NE treatment) exhibited higher (p ≤ 0.006) necrotic lesion
scores in comparison to Control and MT treatment birds (Figure 1B). Birds challenged with
C. perfringens and administered the MT (i.e., MT + NE treatment) exhibited lower (p = 0.037)
lesion scores in comparison to NE treatment birds. Densities of C. perfringens as determined
by qPCR were highest (p ≤ 0.044) in jejunal digesta of NE treatment birds (Figure 1C),
and rod-shaped bacteria characteristic of the pathogen were observed in association with
the epithelium of birds challenged with the pathogen and not administered the MT; the
bacterial cells were pleomorphic bacilli with rounded ends (≈3–8 µm × 0.4–1.2 µm in size)
(Figure 1D). Although a treatment effect was not observed (p ≥ 0.179), cumulative total
histopathologic change scores for MT + NE treatment birds trended lower than for NE
treatment birds (Figure 1E). This was primarily due to lower degrees of villar atrophy,
bacterial invasion, and mucosal necrosis in the jejunum of NE treatment birds relative to
other treatments (Figure 1E and Figure S2A–D).

2.3. The Enteric Bacterial Community Structure was Altered in Birds Administered the Microbiota
Transplant ± Clostridium perfringens Challenge

The administration of the MT resulted in larger numbers of ASVs in the jejunum
(78 and 53 ASVs with and without MT administration, respectively) and ceca (197 and
123 ASVs with and without MT administration, respectively). Despite the decrease in
Bacteroides and Phascolarctobacterium within the bioreactors, these taxa were observed to
predominate in the ceca of birds administered the MT (Figure S3). Megamonas, a bacterial
genus that was enriched within the bioreactors relative to the cecal digesta inoculum, was
also a prominent colonizer of the ceca of birds administered the MT. Overall, α-diversity
was higher in the jejunal digesta (p < 0.001) and cecal digesta (p < 0.001) of birds adminis-
tered the MT (Figure 2A,B). Birds challenged with C. perfringens and administered the MT
(i.e., MT + NE treatment) exhibited a decreased (p = 0.030) α-diversity within cecal di-
gesta relative to birds administered the MT alone (i.e., MT treatment). Although the
structure of bacterial communities in the jejunal digesta of birds administered the MT
were similar, the community structure differed (p ≤ 0.026) among all treatments within
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the jejunum (Figure 2C). In ceca, bacterial community structures differed (p = 0.001) only
between the ±MT administration treatments (Figure 2D). Challenge with C. perfringens
altered (p = 0.043) bacterial community structures in ceca, but only for birds that were not
administered the MT (i.e., NE treatment).
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and MT treatments). (A) Longitudinally incised jejunum showing fibrin development in NE treat-
ment (arrows) relative to a healthy intestine (i.e., Control treatment). (B) Necrotic lesion scoring. (C) 
Densities of the C. perfringens 16S rRNA gene in jejunum digesta as measured by qPCR. (D) Micro-
graphs showing bacteria in association with jejunal mucosa (arrows). (E) Stacked bar plot showing 
total histopathologic scores by metric. Six replicate birds were analyzed per treatment. * p ≤ 0.050. 
** p ≤ 0.010. 
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in the relative abundance of multiple bacterial taxa in the jejunum and ceca (Figure 3A,B). 
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Conversely, the relative abundance of ASVs identified as Clostridium sensu stricto 1 was 
higher (p ≤ 0.008) in the jejunum of NE treatment birds relative to other treatment birds 
(Figure 3C); all the Clostridium sensu stricto 1 sequences were classified as C. perfringens, 
which is consistent with the qPCR data of pathogen abundance (Figure 1C). For cecal 
communities, the relative abundances of Megamonas and Bacteroides spp. were higher (p ≤ 

Figure 1. Gross pathologies, histopathologic changes, and quantitative PCR for Clostridium perfringens
in the jejunum. At 1-day post-hatch, birds were orally administered a microbiota transplant (MT)
originating from adult broiler breeder birds and propagated within bioreactors. On days 12 and
13 post-hatch, birds were orally administered 1–2 × 108 colony forming units of C. perfringens, the
incitant of necrotic enteritis (NE) (i.e., NE and MT + NE treatments) or buffer alone (i.e., Control and
MT treatments). (A) Longitudinally incised jejunum showing fibrin development in NE treatment
(arrows) relative to a healthy intestine (i.e., Control treatment). (B) Necrotic lesion scoring. (C) Densi-
ties of the C. perfringens 16S rRNA gene in jejunum digesta as measured by qPCR. (D) Micrographs
showing bacteria in association with jejunal mucosa (arrows). (E) Stacked bar plot showing total
histopathologic scores by metric. Six replicate birds were analyzed per treatment. * p ≤ 0.050. ** p ≤ 0.010.

The observed change in α- and β-diversity was associated with a conspicuous change
in the relative abundance of multiple bacterial taxa in the jejunum and ceca (Figure 3A,B).
The relative abundance of ASVs identified as Lactobacillus were lower (p ≤ 0.036) in the
jejunum of NE treatment birds in comparison to MT + NE treatment birds (Figure 3C).
Conversely, the relative abundance of ASVs identified as Clostridium sensu stricto 1 was
higher (p ≤ 0.008) in the jejunum of NE treatment birds relative to other treatment birds
(Figure 3C); all the Clostridium sensu stricto 1 sequences were classified as C. perfringens,
which is consistent with the qPCR data of pathogen abundance (Figure 1C). For cecal
communities, the relative abundances of Megamonas and Bacteroides spp. were higher
(p ≤ 0.031) in birds administered the MT (Figure 3D). Moreover, the relative abundance of
Megamonas spp. was higher (p < 0.010) in the cecal digesta of MT + NE treatment birds
relative to MT treatment birds.
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Figure 2. Bacterial diversity within jejunal and cecal digesta. At 1-day post-hatch,
birds were orally administered a microbiota transplant (MT) originating from adult broiler
breeder birds and propagated within bioreactors. On days 12 and 13 post-hatch, birds
were orally administered 1–2 × 108 colony forming units of Clostridium perfringens, the in-
citant of necrotic enteritis (NE) (i.e., NE and MT + NE treatments) or buffer alone
(i.e., Control and MT treatments). (A,B) Faith’s phylogenetic diversity within the jejunum (A) and
ceca (B). (C,D) Unweighted UniFrac principal coordinate analysis plot of β-diversity in the jejunum
(C) and ceca (D). Bacterial community structure between birds ±MT treatment in jejunum and ceca
differed (p = 0.001). Six replicate birds were analyzed per treatment.* p < 0.050 and *** p < 0.001.

2.4. The Metabolome of Cecal Digesta was Altered in Birds Challenged with Clostridium
perfringens Following Administration of the Microbiota Transplant

Water-soluble metabolites were extracted from jejunal digesta, jejunal tissue, and cecal
digesta, and subjected to 1H-Nuclear Magnetic Resonance (NMR) spectroscopy to identify
changes in the metabolome in birds challenged with C. perfringens ± administration of the
MT. In total, 432, 550, and 178 metabolite bins were created from the jejunal digesta, jejunal
tissue, and cecal digesta spectra, respectively. Multivariate supervised orthogonal partial
least squares discriminant analysis (OPLS-DA) score plots showed no significant changes
in the metabolome due to the MT in either jejunal digesta (Q2 = 0.018, p = 0.274; R2 = 0.734,
p = 0.121) or jejunal tissue (Q2 = −0.421, p = 0.685; R2 = 0.989, p = 0.032) as both models
failed permutation testing. However, univariate testing identified that three metabolites in
jejunal digesta and seven metabolites in jejunal tissue of birds administered the MT were
altered (Figure S4A,B). Concentrations of citrate, dimethylamine, and 4,5-dihydroorotic
acid were increased in jejunal digesta of birds not administered the MT. In jejunal tissue of
birds not administered the MT, fructose, glycerophosphocholine, and nicotinamide adenine
dinucleotide (NADH) concentrations were increased, while lysine, proline, uracil, and
cytidine monophosphate concentrations were decreased.

Supervised OPLS-DA separation showed that the administration of the MT resulted
in altered metabolite profiles in cecal digesta (Figure 4; Q2 = 0.873, p = 0.002; R2 = 0.994,
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p = 0.007). In total, 59 metabolites within cecal digesta were differentially affected by the
administration of the MT (Figure 5). In this regard, metabolites involved in amino acid and
short-chain fatty acid (SCFA) metabolism were conspicuously decreased in birds that did
not receive the MT and were challenged with C. perfringens.
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Figure 3. Composition of the microbiota within jejunal and cecal digesta. At 1-day post-
hatch, birds were orally administered a microbiota transplant (MT) originating from adult
broiler breeder birds and propagated within bioreactors. On days 12 and 13 post-hatch,
birds were orally administered 1–2 × 108 colony forming units of Clostridium perfringens,
the incitant of necrotic enteritis (NE) (i.e., NE and MT + NE treatments) or buffer alone
(i.e., Control and MT treatments). (A) Percent abundance of total taxa in jejunal digesta, with
taxa that comprised >1% of total abundance shown. (B) Percent abundance of total taxa in the
cecal digesta, with taxa that comprised >3% of total abundance shown. (C) Percent abundance
of Lactobacillus spp. and Clostridium sensu stricto 1 (including C. perfringens) in jejunal digesta.
(D) Percent abundance of Bacteroides spp. and Megamonas spp. in cecal digesta. # denotes taxa
delineated at the family level. Six replicate birds were analyzed per treatment. * p < 0.050, ** p < 0.010,
and *** p < 0.001.

2.5. Relatively Few Viruses Were Associated with the Cecal Microbiota Propagated within
Bioreactors or Birds Following Administration of the Microbiota Transplant

Metagenomic analysis of the virome revealed that assigned viral reads (family level
of resolution) within the bioreactor matrix and in feces from birds ±MT administration
were low, accounting for <0.025% of read counts (Figure S5A). Notably, many of the
prominent viruses detected have microorganisms as their primary host (e.g., Mimiviridae,
Myoviridae, and Siphoviridae) (Figure S5B). Viral families that contain members that are
potential pathogens were Herpesviridae, Poxviridae, Retroviridae, and Reoviridae, but these
viral families were observed at low relative levels (<0.010%). Assigned read counts of some
viruses were conspicuously more abundant in birds administered the MT (i.e., Microviridae,
Phycodnaviridiae, Podoviridae, and Reoviridae).
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Figure 4. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) scores plot
of metabolites within cecal digesta. At 1-day post-hatch, birds were orally administered a microbiota
transplant (MT) originating from adult broiler breeder birds and propagated within bioreactors.
On days 12 and 13 post-hatch, birds were orally administered 1–2 × 108 colony forming units of
Clostridium perfringens, the incitant of necrotic enteritis (NE) (i.e., NE and MT + NE treatments).
Each triangle or square represents one bird, and data were plotted using metabolites identified to
be significant by a Mann–Whitney U test and/or Variable Importance Analysis based on Variable
Combination (VIAVC) machine learning. Cross-validation of the OPLS-DA model for the cecal
digesta provided an excellent model fit (Q2 = 0.873, p = 0.002) and explained most of the variance
(R2 = 0.994, p = 0.007), indicating that the multivariate difference observed between the NE and
MT + NE treatments was real. Six replicate birds were analyzed per treatment.

2.6. The Administration of a Microbiota Transplant ± Clostridium perfringens Challenge Altered
Expression of Epithelium-Associated Immune Genes

Expression of hallmark genes associated with epithelial function, including barrier
function, was examined at 2 and 4 days post-inoculation (p.i.) with C. perfringens. The
mucin 2 (MUC2B) gene that encodes for the gel-forming mucin, MUC2, showed decreased
(p ≤ 0.025) expression in birds challenged with C. perfringens (i.e., NE treatment) in com-
parison to Control and MT treatment birds (Figure 6A). Birds administered the MT and
challenged with C. perfringens (i.e., MT + NE treatment) showed increased (p = 0.006) expres-
sion of MUC2B at 4-days p.i. with the pathogen in comparison to the 2-day p.i. time point
(Figure 6A). Likewise, mRNA of the membrane bound mucin gene, mucin 13 (MUC13),
was increased (p = 0.027) in MT + NE treatment birds in comparison to Control treatment
birds (Figure 6B). mRNA of the tight junction protein gene, claudin 3 (CLD3) was increased
(p < 0.001) in all birds challenged with C. perfringens (i.e., NE and MT + NE treatments) in
comparison to birds not challenged with the pathogen and administered corticosterone
(Figure 6C). Birds challenged with C. perfringens without MT administration exhibited
decreased (p = 0.015) quantities of tight junction protein 1 (TJP1) mRNA between the
2- and 4-day p.i. time points, while birds challenged with C. perfringens and administered
the MT showed increased (p = 0.007) TJP1 mRNA between the 2- and 4-day p.i. time
points (Figure 6D).

Expression of the host defence peptide (HDP) genes, cathelicidin 1 (CATH1) and
avian β-defensin 6 (AvBD6), were also measured, and decreased (p ≤ 0.048) expression
of these two HDPs were observed at 2-days p.i. in birds challenged with C. perfringens
and administered the MT (i.e., MT + NE treatment) in comparison to Control treatment
birds (Figure 6E,F). The expression of CATH1 increased (p ≤ 0.043) in birds challenged
with C. perfringens regardless of MT administration at the 4-day p.i. time point in compari-
son to the 2-day p.i. time point (Figure 6E). The expression of Toll-like receptor 2 family
member A (TLR2A), interleukin 1 beta (IL1β), and inducible nitric oxide synthase (INOS),
genes that are associated with epithelial inflammation were also examined. Birds chal-
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lenged with C. perfringens exhibited decreased (p ≤ 0.039) expression of TLR2A at the 2-day
but not the 4-day p.i. time point (Figure 7A). Birds challenged with C. perfringens but not
administered the MT showed a trend for increased expression of TLR2A, IL1β, and INOS at
the 4-day p.i. time point in comparison to the 2-day p.i. time point (Figure 7A–C), although
only expression of IL1β was significantly altered (p = 0.008).
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Figure 5. Metabolite profiles and associated functional pathways within cecal digesta. At 1-day
post-hatch, birds were orally administered a microbiota transplant (MT) originating from adult
broiler breeder birds and propagated within bioreactors. On days 12 and 13 post-hatch, birds were
orally administered 1–2 × 108 colony forming units of Clostridium perfringens, the incitant of necrotic
enteritis (NE) (i.e., NE and MT + NE treatments). Metabolites that were differentially abundant
between NE treatment and MT + NE treatment birds are shown. Six replicate birds were analyzed
per treatment.

2.7. The Microbiota Transplant Promoted Immune Responses in the Jejunum of Birds Challenged
with Clostridium perfringens

Birds administered the MT (i.e., MT and MT + NE treatments) showed increased
(p ≤ 0.038) expression of interleukin 2 (IL2) in comparison to NE treatment birds (Figure 8A).
Likewise, MT + NE treatment birds showed higher (p ≤ 0.036) expression of interleukin
17A (IL17A) (Figure 8B). The expression of interleukin 22 (IL22) was higher (p ≤ 0.006)
in MT + NE treatment birds in comparison to all other treatments at the 2-day p.i. time
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point (Figure 8C). The expression of IL22 increased (p = 0.021) in birds challenged with
C. perfringens at the 4-day p.i. time point.
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Figure 6. Relative mRNA gene quantities in jejunal tissue 2- and 4-days post-inoculation of birds
with Clostridium perfringens, the incitant of necrotic enteritis (NE). At 1-day post-hatch, birds were
orally administered a microbiota transplant (MT) originating from adult broiler breeder birds and
propagated within bioreactors. On days 12 and 13 post-hatch, birds were orally administered
1–2 × 108 colony forming units of C. perfringens (i.e., NE and MT + NE treatments) or buffer alone
(i.e., Control and MT treatments). (A) MUC2B. (B) MUC13. (C) CLD3. (D) TJP1. (E) CATH1.
(F) AvBD6. Three replicate birds were analyzed per treatment and time. Histogram bars denoted
with different letters differ (p < 0.050) among treatments for the 2-day post-inoculation (p.i.) time
point. The asterisk indicates a difference between NE and non-NE treatments (* p < 0.001). # denotes
a difference between the 2- and 4-day p.i. time points within the same treatment at p < 0.050,
and ## denotes a difference at p < 0.010.

2.8. Serum Corticosterone Did Not Increase in Birds Challenged with Clostridium perfringens and
Administered the Microbiota Transplant

Chickens challenged with C. perfringens and not administered the MT (i.e., NE treat-
ment) exhibited a higher (p≤ 0.033) serum concentration of corticosterone in comparison to
Control and MT treatment birds (Figure S6). In contrast, birds challenged with C. perfringens
and administered the MT (i.e., MT + NE treatment) did not show elevated (p≥ 0.214) serum
corticosterone concentrations relative to Control and MT treatment birds.
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Figure 7. Relative mRNA gene quantities in jejunal tissue 2- and 4-days post-inoculation (p.i.) of
birds with Clostridium perfringens, the incitant of necrotic enteritis (NE). At 1-day post-hatch, birds
were orally administered a microbiota transplant (MT) originating from adult broiler breeder birds
and propagated within bioreactors. On days 12 and 13 post-hatch, birds were orally administered
1–2 × 108 colony forming units of C. perfringens (i.e., NE and MT + NE treatments) or buffer alone
(i.e., Control and MT treatments). (A) TLR2A; (B) IL1β; and (C) INOS. Three replicate birds were
analyzed per treatment and time. Histogram bars denoted with different letters differ (p < 0.050)
among treatments for the 2-day p.i. time point. Double asterisks denote a difference between the
2- and 4-day p.i. time points within the same treatment (p < 0.010). ns denotes “not significant”.
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Figure 8. Relative mRNA gene quantities in jejunal tissue 2- and 4-days post-inoculation of birds
with Clostridium perfringens, the incitant of necrotic enteritis (NE). At 1-day post-hatch, birds were
orally administered a microbiota transplant (MT) originating from adult broiler breeder birds and
propagated within bioreactors. On days 12 and 13 post-hatch, birds were orally administered
1–2 × 108 colony forming units of C. perfringens (i.e., NE and MT + NE treatments) or buffer alone
(i.e., Control and MT treatments). (A) IL2. (B) IL17A. (C) IL22. Three replicate birds were analyzed per
treatment and time. Histogram bars denoted with different letters differ (p < 0.050) between the two
time points among the same treatment. Asterisks indicate treatments that differ within individual
time points, where * is p < 0.050, and ** is p < 0.010.

3. Discussion
3.1. Overview

Mitigation of NE using microbiota transplantation has not been explored in chick-
ens. We observed that the administration of a MT effectively ameliorated NE in the small
intestine of broilers. This included decreased necrotic lesions and reduced densities of
C. perfringens. To date, limited research in poultry has focused on deciphering how benefi-
cial bacteria confer disease resistance. Thus, a salient objective of the current study was
to explore how the administration of a MT to day-old chicks mitigated NE by examining
the intestinal microbiota, the metabolome of the enteric microbiota and host, and immune
responses mounted by birds (i.e., intestinal barrier function, host defence stimulation, and
impacts on mucins).
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3.2. Enteric Bacterial Community Effects

Changes to bacterial communities in birds developing NE have been previously
described [21,22]. However, it is currently unclear whether the change in the intestinal
microbiota is a predisposing factor to NE, or whether it is the result of the infection [23].
Some predisposing factors to NE, such as a diet containing fishmeal, fumonisins, and/or
Eimeria spp., have been shown to alter the intestinal microbiota [23,24]. Likewise, our
previous research has shown that corticosterone administration decreases α-diversity and
also alters the community structure, and concomitantly increases densities of C. perfringens
in the small intestine of chickens [25]. Production birds lack significant maternal exposure
to microorganisms, and we hypothesized that the enhancement of bacterial richness and
diversity could aid in pathogen resistance. Contact with an adult hen for 24 h has been
shown to increase enteric colonization by Bacteroidetes and Actinobacteria in newly hatched
chicks [26]. Thus, a potential advantage of microbiota transplantation is the opportunity
to increase the diversity of commensal bacteria in chicks, which may confer colonization
resistance via exclusion of the pathogen from enteric niches [3]. In this regard, we showed
a persistent increase in α- and β-diversity in day-old broiler birds administered a MT in the
current study. Notably, we detected an increase in bacterial richness in both the jejunum
and ceca of birds administered the MT. Additionally, birds administered corticosterone and
challenged with C. perfringens displayed different compositions of bacteria with and without
the MT. The increased diversity of potentially beneficial bacteria following microbiota
transplantation has been previously linked to ameliorated disease in mammalian livestock
species [3], which is consistent with our findings in chickens.

3.3. Bioreactor System to Generate the Microbiota Transplant

The MT used in the current study was generated from cecal digesta harvested from
healthy adult broiler breeder males within a bioreactor system. We chose to administer
bioreactor-generated microbiota (opposed to administering cecal digesta to birds) to ensure
that bacteria in the MT were actively growing upon administration to birds, and because
the MT propagated in a bioreactor could provide more consistency in the composition of
the MT across animals (microorganisms, nutrients, etc.). Moreover, the ability to propagate
the MT has logistical advantages for subsequent research using microbiota transplantation
(e.g., cost in addition to quality). Similarly to a previous report [27], we observed that
the diversity of bacteria within the bioreactors was reduced relative to the cecal digesta
obtained from donor birds. This suggests that a restricted number of bacterial taxa are
required to impart a health benefit, and this has implications for utilizing microbiota
transplantation to enhance bird health, including the generation of a bacterial consortium
that is free of pathogens. A salient obstacle facing fecal transplantation is the potential
for inadvertent introduction of pathogenic microorganisms to the recipient [28]. Viruses
are important pathogens of boilers, and we applied shotgun metagenome sequencing to
examine viruses present in the MT within bioreactors, and in birds ±MT. We observed that
although viruses were present within the bioreactor microbiota, and in birds administered
the MT, the relative abundance of viruses was very low relative to other studies [29].
Importantly, bacteriophages are important regulators of bacterial community structures
in intestines [30], and the degree to which propagation of a MT within bioreactors affects
bacteriophages, as well as avian pathogenic viruses, warrants further examination.

3.4. Microbiota Transplantation and Enteric Bacterial Taxa

The examination of specific changes on the enteric microbiota during NE have centered
around disturbances to lactic acid-producing bacteria and dietary fiber-fermenting bacte-
ria [23]. Fishmeal diets and NE can alter the distribution of Lactobacillus species [21,24]. For
example, in the ceca of C. perfringens infected birds, quantities of Lactobacillus johnsonii and
Lactobacillus fermentum decreased, whereas quantities of Lactobacillus crispatus,
Lactobacillus pontis, Lactobacillus ultunese, and Lactobacillus salivarius increased [21]. In
the current study, L. salivarius was introduced with the MT and increased in abundance in
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birds that were administered corticosterone and challenged with C. perfringens. Moreover,
the observed increase in abundance of L. salivarius corresponded with the observed re-
duction in C. perfringens densities as determined by both high-throughput sequencing and
taxon-specific qPCR. Lactic acid bacteria may have played a role in reducing colonization by
C. perfringens in the jejunum of birds administered the MT via several mechanisms. Firstly,
inhibitory compounds produced by Lactobacillus spp. could have reduced the growth
of C. perfringens. Reuterin and nisin, which are compounds produced by Lactobacillus,
have been shown to inhibit the growth of vegetative cells, and inhibit the germination of
C. perfringens endospores [31]. Secondly, Lactobacillus, along with other bacteria introduced
with the MT, may have modulated mucosal responses that resulted in alterations to immune
and barrier function that antagonized colonization by C. perfringens [23,32]. Thirdly, a micro-
bial cross-feeding interaction may have occurred, as lactate produced by Lactobacillus spp.
can be metabolized by butyrate-producing bacteria, such as Megamonas hypermegale [33].

3.5. Short-Chain Fatty Acid-Producing Bacteria

Reductions in butyrate-producing bacteria have also been demonstrated in chickens
fed a diet amended with fishmeal and/or in birds infected with C. perfringens [21,24].
In the current study, a decrease in abundance of M. hypermegale, along with metabolites
involved in SCFA production, was observed in the ceca of birds that were not administered
the MT. As mentioned earlier, M. hypermegale is a butyrate-producing bacterium that is
capable of converting carbohydrates into SCFAs [33]. Birds that were not administered
the MT showed a decrease in butyrate, propionate, and valerate, which are prominent
SCFAs produced in the ceca of birds [34]. Stimulation of SCFA production in the ceca of
MT-treated birds may be one way in which the ceca microbiota was able to aid in disease
resistance in the small intestine. In this regard, butyrate is an important energy source
for colonocytes [35], which may confer overall health benefits. Moreover, butyrate has
been shown to signal enteroendocrine cells leading to the release of glucagon-like peptide
2 into the bloodstream [23]. Notably, the systemic transport of glucagon-like peptide 2
has been demonstrated to activate nerve cells in the small intestine stimulating the release
of cytokines that enhance the expression of barrier function proteins [36]. In addition,
butyrate can be involved in the regulation of glucose and lipid metabolism [37]. Whether
the decrease in SCFAs was due to a lower degree of fermentation of carbohydrates by
the microbiota or the result of rapid uptake by the host due to increased energy demands
(e.g., uptake by enterocytes), or a combination of both, warrants further examination.
Regardless of specific mechanisms, the relative increase in both SCFA concentrations
and the abundance of M. hypermegale in birds administered the MT suggests that the
amelioration of disease in birds that underwent microbiota transplantation involved SCFA
metabolism. Although the function of Megamonas spp. is not fully understood at present,
in addition to production of SCFAs by bacteria within this genus, they may also provide a
health benefit as a result of their ability to remove hydrogen, which may favor beneficial
taxa and provide a direct health benefits to the host by improving recovery of energy
from food [38].

3.6. Amino Acid Metabolism

Additional processes within ceca are known to confer benefits to chickens including
nitrogen cycling, antibody production, and the provision of essential amino acids [38,39].
In the current study, numerous alterations to the cecal metabolome were observed in birds
administered the MT that were subsequently challenged with C. perfringens. Notably, many
amino acids were decreased in birds in which NE was manifested (i.e., in C. perfringens-
inoculated chicks that did not receive the MT). Previous studies have shown that the
branch chain amino acids (BCAAs; isoleucine, leucine, and valine) modulate the immune
response of chickens [40]. We observed that all three BCAAs were down regulated in the
cecal digesta in the NE treatment birds as compared to NE + MT treatment birds. This
suggests that the MT may provide an increase in these amino acids, thereby enhancing
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immune responses resulting in amelioration of NE. Similarly, methionine is an essential
amino acid that was reduced in the cecal digesta of NE treatment birds as compared to
NE + MT treatment birds. Methionine is a precursor for succinyl-CoA, homocysteine,
cysteine, creatine, and carnitine, and plays a key role in the immune system response
of mammals [41]. Importantly, methionine is involved in the production of mucins in
poultry [42]. Mucins are heavily glycosylated proteins that make up a large component of
the mucus layer of the intestine, and provide protection against pathogens [43,44]. Thus, the
observed reduction in methionine could be associated with decreased production of mucins,
ultimately affecting the composition and quantify of mucus. This in turn could decrease the
bird’s ability to protect against infection from C. perfringens and the manifestation of NE.

3.7. Mucin Responses

Additional evidence obtained in the current study indicated that the intestinal barrier
of the jejunum was disrupted in birds with NE. We observed a decrease in MUC2B mRNA
in birds challenged with C. perfringens that were not administered the MT. The produc-
tion of mucins can be modulated by both the microbiota and immune responses [45,46].
Thus, the observed alterations to MUC2B mRNA expression may have corresponded to
corticosterone-mediated suppression of inflammatory responses. This agrees with previ-
ous studies that demonstrated that dexamethasone exposure decreased mRNA of MUC2
in vitro, and that corticosterone administration was implicated with decreased MUC2B
expression in vivo [47,48]. Alternatively, the initial infection with C. perfringens could have
led to an outflux of mucin followed by a reduction in expression, which has been observed
with Citrobacter rodentium-mediated colonic inflammation in mice [49]. In the current
study, we observed that birds administered the MT and subsequently challenged with
C. perfringens showed positive indications of barrier restoration after infection. An increase
in MUC13 was observed 2-days p.i. with C. perfringens. Likewise, an increase in MUC2B
expression was observed between the 2- and 4-days p.i. time points in birds administered
the MT. Although its function has not been investigated in poultry, MUC13 is a transmem-
brane mucin with the potential to mediate cell signalling [50]. Studies conducted in vitro
have demonstrated that MUC13 is involved in pro-inflammatory signalling, which could
stimulate the production of IL8 [51]. The observed increase in MUC13 at 2-days p.i. with
C. perfringens and a subsequent increase in MUC2B at 4-days p.i. in the current study raises
questions on whether MUC13 plays a salient role in mediating mucus production during
pathogen challenge. Our previous research has demonstrated that C. perfringens infection
can modify the composition of mucus glycans [48]. Research to investigate the impacts that
C. perfringens has on host mucins is warranted, as increases to MUC2B expression were only
observed in birds administered the MT and subsequently challenged with the pathogen.

3.8. Epithelial Immune Responses

Commensal bacteria are able to promote the development of mucosal responses that
limit pathogenic infections. We observed that the administration of the MT resulted in
the modulation of epithelial responses that coincided with resistance to NE. In this regard,
birds administered the MT and subsequently challenged with C. perfringens exhibited
increased TJP1 expression at 4-days p.i. with C. perfringens, which coincided with MUC2B
expression. This may denote that post-infection healing responses were promoted in birds
administered the MT. Importantly, an increase in TJP1 expression as infection progressed
was not observed in birds challenged with C. perfringens that were not administered the
MT. These birds showed decreased TJP1 expression at 4-days p.i. with C. perfringens, and
this may indicate a disruption to barrier function. Collectively our findings implicate the
restoration of intestinal barrier function with the clearance of the C. perfringens infection,
which was only observed in birds previously administered the MT.
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3.9. Host-Defense Peptides

Co-challenging birds with C. perfringens and corticosterone to incite NE modulated the
expression of the HDPs, CATH1 and AvBD6. Notably, these two genes showed a similar
expression pattern, suggesting that they are regulated in a similar manner. At 2-days p.i.
with C. perfringens, birds previously administered the MT showed decreased expression of
CATH1 and AvBD6. It has been demonstrated that CATH1 possesses both antimicrobial
and immunomodulatory properties [52]. In this regard, chicken CATH1 has been shown to
recruit neutrophils and modulate macrophage responses in a murine model. It is possible
that the observed initial decrease in CATH1 coincided with corticosterone suppression of
immune defences, and this is consistent with other studies conducted in mice [53]. At
4-days p.i. with C. perfringens, we observed that the expression of CATH1 increased in
birds challenged with C. perfringens, regardless of the administration of the MT. Increased
expression may have been an attempt by birds to limit C. perfringens infection as AvBD6 has
been previously seen to increase in the jejunum of Ross broilers with NE [54]. Alternatively,
increases in HDPs could indicate their involvement in late onset immune responses to
C. perfringens infection. This warrants further examination.

3.10. Epithelial Barrier and Immune-Related Function

Challenging birds with C. perfringens resulted in alterations to immune and barrier
related function. We observed increased expression of CLD3 in birds challenged with
C. perfringens, which is consistent with our previous findings in white leghorn chickens
administered corticosterone [48]. However, it remains unclear whether a corticosterone-
mediated increase in CLD3 expression is indicative of enhanced or reduced barrier function,
as increased expression of this protein has been reported for both scenarios [55,56]. A
decrease in TLR2A mRNA expression was observed in birds administered corticosterone
and challenged with C. perfringens at 2-days p.i. Likewise, a previous study conducted in a
layer breed showed decreased TLR2A expression with corticosterone administration [48].
Early hindrance to the TLR2 pathway upon pathogen challenge may be one way in which
NE manifestation is facilitated in birds challenged with C. perfringens. A first line of
defence against pathogens involves TLR signal activation of nuclear factor (NF)-κB and
activating protein (AP)-1, resulting in the production of pro-inflammatory cytokines [57].
Although unknown, the administration of corticosterone in the current study may have
interfered with feedback mechanisms resulting in decreased TLR2A and subsequent early
immune responses. We also observed a decrease in IL17A mRNA in birds challenged
with C. perfringens. Although knowledge gaps currently exist regarding the importance
of Th17 responses in chickens, the importance of IL17A-mediated host defenses, such
as expression of pro-inflammatory cytokine and chemokines, are recognized in other
animals [58]. Collaborative induction of pro-inflammatory responses by IL17A can form
a positive feedback loop that enhances the effects of IL17A [59]. Thus, it is possible that
the repressive actions of corticosterone could have disrupted this feedback loop, and
thereby resulted in decreased expression of IL17A in birds co-challenged with C. perfringens
and corticosterone.

3.11. Beneficial Immune Responses

At the 4 day p.i. sample time, birds challenged with C. perfringens exhibited increased
expression of INOS, IL1β, and IL22. This was likely due to tissue damage where inflamma-
tory stimulation overrode the immune suppressive impacts of corticosterone administration.
Significantly, birds challenged with C. perfringens and administered the MT did not show
elevated inflammatory responses at 4-days p.i. with the pathogen, and did not develop
necrotic lesions. Birds administered the MT and subsequently challenged with C. perfringens
also exhibited stronger induction of immune responses earlier in infection. In this regard,
at 2-days p.i. with C. perfringens, birds showed increased expression of IL2, IL17A, and
IL22 in comparison to birds challenged with the pathogen and not administered the MT.
Although these cytokines are involved in inflammation, they are important mediators in
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mounting an immune response and limiting infection [60]. The elevation of these cytokines
has been also associated with enhancement of mucosal immune development [61]. Thus,
the elevated expression of IL2, IL22, and IL17A that was observed in the current study may
be indicative of enhanced immune competence in birds as a result of the administration of
the MT. This is consistent with an enhanced ability of these birds to combat infection and
the observed amelioration of NE.

3.12. Corticosterone Levels in Blood

Free corticosterone was measured in birds to confirm that feeding corticosterone
would mediate a physiological stress response. Unexpectedly, only birds challenged with
C. perfringens and not administered the MT showed a high level of corticosterone in serum.
Moreover, birds challenged with C. perfringens and administered the MT exhibited serum
corticosterone levels equivalent to birds not administered corticosterone. Although the
current study was not designed to elucidate why this occurred, several explanations are
plausible. One possibility is that the endogenous production of corticosterone was increased
in birds as a result of the manifestation of disease (i.e., NE treatment). Another possibility
is that microorganisms introduced in the MT metabolized the corticosterone, thus leaving
less corticosterone to enter systemic circulation. The breakdown of prednisolone has been
demonstrated in simulated human colonic fluid [62], and several studies conducted in
mammals have demonstrated that the microbiota can influence corticosterone concentra-
tions. These observations demonstrate some possible mechanisms by which the microbiota
may be involved in modulating stress responses, which requires validation in chickens.

4. Materials and Methods
4.1. Experimental Design

The factorial experiment was arranged as a complete randomized design with four
treatments with two levels of MT administration (±MT), and two levels of pathogen ad-
ministration (± C. perfringens and corticosterone administration). The four experimental
treatments were: (i) the Control treatment (birds not administered the MT and not chal-
lenged with C. perfringens); (ii) the MT treatment (birds administered the MT and not
challenged with C. perfringens); (iii) the NE treatment (birds not administered the MT and
challenged with C. perfringens); and (iv) the MT + NE treatment (birds administered the
MT and challenged with C. perfringens). Treatment iii and iv birds were administered
corticosterone in their diet. Birds from each treatment were euthanized at two time points
(i.e., 2- and 4-days p.i. with C. perfringens), and there were three replicate birds per treatment-
time combination. It is noteworthy that care was taken to ensure that the replicates were
independent (e.g., separately prepared C. perfringens and MT inocula).

4.2. Animals and Husbandry

Ross 308FF broiler eggs were obtained from a local hatchery (Lethbridge, AB, Canada)
and were incubated in a Brinsea Ovation 56 EX fully automatic digital egg incubator (Brin-
sea Products Inc., Titusville, FL, USA) as previously described [20]. After hatch, arbitrarily
chosen chicks were placed within separate individually ventilated cages (1862 cm2 floor
space; Techniplast, Montreal, QC, Canada) with sterile wood shavings for bedding. Birds
were provided free access to water and food at all times. A starter diet was provided for the
first 10 days post-hatch (Table S1). Commencing on day 11 post-hatch until the end of the
experiment, a grower diet was introduced. Fresh feed was provided to birds each morning
and afternoon, and birds were transferred to clean cages daily. Birds were maintained at
30 ◦C for the first 2 days post-hatch, 28 ◦C for the next 2 days, then maintained at 26 ◦C for
the remainder of the experiment. Birds were maintained on an 18 h light: 6 h dark cycle
throughout the experimental period.
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4.3. Microbiota Transplant Generation

Generation of the MT was conducted as described previously [27]. Briefly, digesta
from the ceca of six-month-old healthy male broiler breeders was harvested within 30 min
of death. Ceca were ligated at the ileal-cecal junctions to prevent infiltration of air into ceca,
and excised from the intestinal tract. The ligated ceca were immediately transferred into
a Thermo Forma 1025 anaerobic chamber (Thermo Fisher Scientific Inc., Waltham, MA,
USA) containing a nitrogen-predominant atmosphere (85:5:10% N2:H2:CO2). Digesta was
removed from the ceca and thoroughly mixed, transferred to tubes, and stored at −80 ◦C
until required. A continuous-flow mini-bioreactor system was used to propagate the
MT [62]. Mini-bioreactors were situated within a dedicated Thermo Forma 1025 anaerobic
chamber (Thermo Fisher Scientific Inc.) containing a nitrogen-predominant gas atmosphere
with a 37 ◦C ambient temperature generated with thermostat controlled heaters affixed
to the roof of the anaerobic chamber. Within the anaerobic chamber, cecal digesta was
thawed on ice, and suspended in a reduced medium consisting of 1 g/L tryptone, 2 g/L
proteose peptone, 2 g/L yeast extract, 0.1 g/L arabinogalactan, 0.15 g/L maltose, 0.15 g L
D-cellobiose, 0.4 g/L sodium chloride, 5 mg/L hemin, 0.01 g/L magnesium sulfate, 0.01 g L
calcium chloride, 0.04 g/L potassium phosphate monobasic, 0.04 g/L potassium phosphate
dibasic, and 2 mL/L Tween 80 at pH 6.8 [63]. The diluted cecal digesta was added to
individual bioreactor vessels at a final concentration of 25% (w/v) and allowed to incubate
in the medium for 1 day without continuous flow of media. Each bioreactor vessel had
an inflow and outflow tube that connected to a peristaltic pump that facilitated nutrient
exchange (3.76 mL/h). After 10 days, the MT was collected, and individual chicks (1-day
old) were gavaged with 1 mL of the MT or medium alone using an 18-gauge, 5-cm-long
gavage needle. In addition, a 1 mL sample from each bioreactor was centrifuged at
13,000× g for 5 min, the supernatant was removed, and the pellet was stored at −80 ◦C
until processing for bacterial community analysis by 16S rRNA gene sequencing. Samples
were also stored for virome metagenome analysis.

4.4. Necrotic Enteritis Model

To induce a controlled physiological stress response, NE and MT + NE treatment birds
were administered corticosterone in feed (20 mg/kg) beginning at 11 days post-hatch as
previously described [20]. It is noteworthy that the corticosterone stress-predisposition
model results in a high prevalence of acute enteritis. Corticosterone was not incorporated
into the feed of Control and MT treatment birds. At days 12 and 13 post-hatch, birds were
orally inoculated with 1 mL of C. perfringens containing 1–2 × 108 colony forming units
(i.e., NE and MT + NE treatment birds) or 1 mL of medium alone (i.e., Control and MT
treatment birds) using an 18-gauge gavage needle as described above for administration of
the MT. Briefly, inoculum was generated by growing a starter culture of a virulent Type G
strain of C. perfringens (CP1) [64,65] in heart infusion broth at 37 ◦C within a Thermo Forma
1025 anaerobic chamber containing a nitrogen-predominant atmosphere. The following
day, 2.5 mL of the culture was transferred to 50 mL fluid thioglycolate medium within
the anaerobic chamber, and the culture was incubated at 37 ◦C for 4 h before inoculation
of birds.

4.5. Collection of Feces

For characterization of the virome, fresh feces was collected from birds 9 days after
administration of the MT. Immediately after collection, individual fecal samples were snap
frozen in liquid nitrogen, and stored at −80 ◦C until processed.

4.6. Animal Euthanasia and Sample Collection

At the two defined endpoints, birds were anesthetized with isoflurane (5% isoflurane;
1 L O2/min) and humanely euthanized by cervical dislocation while under general anes-
thesia. Immediately after euthanization, the abdomen was opened, and blood was drawn
directly from the heart, and serum was collected for corticosterone quantification. The small
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intestine was aseptically removed, incised, photographed, examined for disease progres-
sion, and lesions were scored (see below). Within 5 min of euthanization, jejunal tissue was
flash frozen in liquid nitrogen for metabolomic analysis, stored in RNAlater™ Stabilization
Solution (Thermo Fisher Scientific Inc.) for quantification of mRNA, and placed in 10%
neutral buffered formalin (Leica, Concord, ON, Canada) for histopathological examination.
Digesta from the jejunum and ceca was removed using a sterile wooden splint, and snap
frozen. With the exception of samples for histopathologic analysis, all samples were stored
at −80 ◦C until processed.

4.7. Lesion Scoring and Histopathology

The entire length of the small intestine (duodenum to ileal-cecal junction) was exam-
ined for gross lesions and scored on a scale of 0 to 6 as described by Shojadoost et al. [66].
Samples for histopathologic examination were processed as described previously [20].
Briefly, the proximal jejunum was examined, and care was taken to ensure that lesions
were not sampled. Jejunal tissue was fixed in formaldehyde for a minimum of 24 h. Fixed
samples were embedded in paraffin blocks, sectioned (5 µm), de-paraffinized with xylene,
and stained with hematoxylin and eosin [48]. Sections were scored by a pathologist (V.F.B.)
who was blinded to treatments, using a modified scoring system based on a previously
described scoring systems [67–69]. In this regard, sections were graded from 0 to 4 for
villar fusion, villar atrophy, mucosal necrosis, bacterial invasion, and changes to the lamina
propria that ranged from mild edema to coagulative necrosis [20]. Total histologic scores
were determined by calculating the sum of scores from all categories. Data were analyzed
using the Kruskal–Wallis test with Dunn’s test for multiple comparison (Version 9.1.2,
GraphPad Prism; La Jolla, CA, USA). p-values ≤ 0.050 were considered significant.

4.8. Quantification of Clostridium perfringens

DNA was extracted from jejunal digesta using a Qiagen QIAamp DNA Fast Stool
Kit (Qiagen Inc., Toronto, ON, Canada) with modifications described previously [20].
A standard curve of known copies of 16S ribosomal RNA (rRNA) gene DNA specific
to C. perfringens was generated as previously described [25,48]; the standard curve was
generated using a 10-fold dilution series ranging from 101 to 107 copies of the C. perfringens
16S rRNA gene. Primers for C. perfringens were F: 5′-AAAGATGGCATCATCATTCAAC
and R: 5′-TACCGTCATTATCTTCCCCAAA (Integrated DNA Technologies, Coralville,
IA, USA) [70]. Each PCR reaction contained 10 µL of Quantitect SYBR green master mix
(Qiagen Inc.), 1 µL of each primer, 2 µL of bovine serum albumin, 4 µL of DNase-free water,
and 2 µL of template DNA (10 ng/µL). Reaction conditions were: 95 ◦C for 15 min; and
40 cycles of 95 ◦C for 15 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, followed by melt curve analysis
from 55 to 95 ◦C. An Mx3005p thermocycler (Agilent Technologies, Santa Clara, CA, USA)
was used. Each reaction was run in duplicate, and the mean of the two observations was
calculated. Data was log transformed to achieve normality, and analyzed by two-way
analysis of variance (ANOVA) using GraphPad Prism. In conjunction with a significant
main effect, means were compared using a least significant difference test. p-values ≤ 0.050
were considered significant.

4.9. Characterization of Bacterial Communities

Jejunal and cecal digesta DNA was extracted using the Qiagen QIAamp DNA Fast
Stool Kit (Qiagen Inc.) as described previously [20]. Briefly, the Variable 4 (V4) region of the
16S rRNA gene was amplified using a protocol developed by Kozich et al. [71]; the primers
used were F-5′-GTGCCAGCMGCCGCGGTAA-3′ and R-5′-GGACTACHVGGGTWTCTAAT-3′.
Each PCR reaction contained: 12.5 µL of Paq5000 Hi Fidelity Taq Master Mix (Agilent Tech-
nologies Canada Inc., Mississauga, ON, Canada), 1 µL each of primer (10 µM; Integrated
DNA Technologies), 5 µL (jejunum) or 2 µL (ceca) of DNA, and 5.5 µL (jejunum) or 8.5 µL
(ceca) of nuclease-free water (Qiagen Inc.). Reaction conditions were: 95 ◦C for 2 min;
25 (ceca) or 30 (jejunum) cycles of 95 ◦C for 20 s, 55 ◦C for 15 s, and 72 ◦C for 5 min; and
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1 cycle at 72 ◦C for 10 min. AMPure XP beads (Beckman Coulter Diagnostics, Brea, CA,
USA) were used to purify PCR amplicons. Agilent High Sensitivity DNA chips were used
on a Bioanalyzer 2100 (Agilent Technologies Canada Inc.) to check the purified amplicons
for quality and size. Amplicons were quantified using a Qubit 4 fluorometer (Thermo
Fisher Scientific Inc.), DNA samples were normalized to 6 nM, pooled, denatured with
sodium hydroxide, and diluted with HT1 (Illumina Inc., San Diego, CA, USA) to produce a
6 pM library for sequencing analysis. PhiX control DNA (Illumina Inc.; 25%) was added to
the library as a sequencing control. The library was loaded onto a MiSeq Reagent Kit v2
500-cycle and run on an Illumina MiSeq platform (Illumina Inc.).

Quantitative Insights Into Microbial Ecology 2 (QIIME2™, version 2021.2) [72] was
used to execute sequencing analysis. DADA2 was used to filter low quality reads (quality
score < 20) and trim sequences. Forward reads were grouped into exact ASVs, and taxon-
omy was classified using the SILVA bacteria reference database (release 138) [73]. Low count
reads, mitochondrial sequences, and chloroplast sequences were removed. The minimum
sampling depth was 11,012 and 85,403 reads for the jejunal and cecal digesta, respectively.
There was no difference among the two sample time points, and the analysis was averaged
over the two times. Core metrics phylogeny analysis was performed in QIIME2 to obtain
α- and β-diversity. Alpha diversity was analyzed in QIIME2 by pairwise comparisons of
Kruskal–Wallis test. Beta diversity was analyzed by pairwise permutational multivariate
analysis of variance (PERMANOVA) in QIIME2 [74]. A Bejamini and Hochberg correction
was applied to both α- and β-diversity tests when corrected p-values were ≤0.050. Percent
abundance of taxa (e.g., Clostridium sensu stricto 1 and Lactobacillus spp. in the jejunum,
and Megamonas spp. and Bacteroides spp. in the ceca) was assessed for normality. Two-way
ANOVA was applied to normally distributed data, whereas Kruskal–Wallis test was applied
to data that failed to achieve normality. p-values ≤ 0.050 were considered significant.

4.10. Characterization of the Virome

DNA and RNA viruses in fecal samples obtained from birds (2 g) and from MT
bioreactors (2 mL) were examined using metagenome sequence analysis as described
previously [29]. Viral abundance at a family level of resolution was calculated relative to
total microbial read counts (i.e., eukaryotes, prokaryotes, and viruses).

4.11. Characterization of the Metabolome

A 700 MHz NMR spectrometer (Bruker Avance III HD NMR spectrometer; Bruker,
Milton, ON, Canada) was used to collect the metabolomics data as described previously [34].
Briefly, jejunal digesta, jejunal tissue, and cecal digesta samples (150 mg) were suspended in
metabolomics buffer (0.125 M KH2PO4, 0.5 M K2HPO4, 0.00375 M NaN3, and 0.375 M KF;
pH 7.4). Samples were homogenized using one 6-mm-diameter steel bead for 10 min
using a Qiagen Tissue Lyser LT (Qiagen Inc.) operated at 50 Hz. Homogenized samples
were centrifuged for 5 min at 14,000× g. The supernatant of each sample was passed
through a 3000 MWCO Amicon Ultra-0.5 filter (Millipore Sigma, Oakville, ON, Canada)
by centrifuging at 14,000× g for 30 min at 4 ◦C; filters were rinsed with Millipore water
ten times prior to use. For each filtrate, 360 µL was mixed with 200 µL metabolomics
buffer and 140 µL deuterium oxide containing 0.05% v/v trimethylsilylpropanoic acid
(TMSP) to yield a final volume of 700 µL. TMSP was used as a chemical shift reference
for 1H-NMR spectroscopy. To prepare the solution for spectroscopy, it was vortexed,
centrifuged at 12,000× g for 5 min at 4 ◦C, and a 550 µL aliquot of the supernatant was
loaded in a 5-mm NMR tube. NMR spectra were acquired, and both the data collection and
spectral processing were conducted as described previously [34]. MATLAB (MathWorks,
Natick, MA, USA) was used to align spectral peaks through Recursive Segment Wise Peak
Alignment [75] and binning with Dynamic Adaptive Binning [76]. Data were normalized
to the total metabolome, excluding the region containing the water peak, and pareto scaled.

The two time points p.i. were combined, and MATLAB (Math Works) and the Metabo-
analyst R package was used for analysis [77]. To determine which metabolites were
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significantly altered between treatments, spectral bins were subjected to univariate and
multivariate analysis. The univariate measure was calculated in MATLAB using a decision
tree algorithm, as previously described by Goodpaster et al. [78]. The multivariate tests
utilized the Variable Importance Analysis based on the random Variable Combination (VI-
AVC) algorithm. This combines both Partial Least Squares Discriminant Analysis (PLS-DA)
and the area under the Receiver Operating Characteristics (ROC) curve to synergistically
determine the best subset of metabolites for group classifications [79]. All p-values obtained
from the analysis were Bonferroni–Holm corrected for multiple comparisons. MATLAB
was used to calculate the percent difference of bins between treatments. Metaboanalyst R
package was used to facilitate orthogonal partial least squares discriminant analysis (OPLS-
DA). Chenomx 8.2 NMR Suite (Chenomx Inc., Edmonton, AB, Canada) was used to identify
metabolites, and MetaboAnalyst 5.0 was used to determine metabolic pathways that were
associated with relevant metabolites [80]. p-values ≤ 0.050 were considered significant.

4.12. Quantification of mRNA

RNA was extracted from jejunal tissue using RNeasy Plus Mini Kit (Qiagen Inc.) and
assessed for quality and quantity using an Agilent Bioanalyzer (Agilent Technologies).
RNA (1 µg) was reverse transcribed to cDNA using a QuantiTect reverse transcription
kit (Qiagen Inc.). A Mx3005p thermocycler (Agilent Technologies) was used to perform
PCR reactions. Each PCR reaction contained 5 µL of QuantiTect SYBR green master mix
(Qiagen Inc.), 0.5 µL of each primer (10 µM), 3 µL of RNase-free water, and 1 µL of cDNA.
Reaction conditions were: 95 ◦C for 15 min; 40 cycles of 95 ◦C for 15 s, 55–58 ◦C for
30 s, and 72 ◦C for 30 s; followed by melt curve analysis from 55 to 95 ◦C. Unless cited
otherwise, primers were designed using National Center for Biotechnology Information
(NCBI) primer basic local alignment search tool (Table S2). Reactions were run in duplicate,
and the mean of the two observations was used to calculate mRNA concentrations relative
to the reference genes, β-actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
using qBase+ software (Biogazelle, Gent, Belgium) [81]. Data was log transformed to
achieve normality, and analyzed by two-way ANOVA. In conjunction with a significant
main effect, means were compared using a least significant difference test. p-values ≤ 0.050
were considered significant.

4.13. Quantification of Corticosterone Serum Concentrations

Serum corticosterone concentrations were measured by enzyme-linked immunosor-
bent assay (Cayman Chemical Company, Ann Arbor, MI, USA) following the manufac-
turer’s recommendations. Concentrations were computed using a logistic regression model,
and data were analyzed by two-way ANOVA. In conjunction with a significant main effect,
means were compared using a least significant difference test. p-values ≤ 0.050 were
considered significant.

5. Conclusions

A single administration of a MT to day-old chicks ameliorated stress-induced NE. De-
spite a loss in diversity of bacteria propagated within bioreactors, increased α-diversity and
altered β-diversity of bacterial communities in both the jejunum and ceca of the MT-treated
birds were observed. Furthermore, the metabolome of cecal digesta, and to a lesser extent
of jejunal digesta and tissue, showed a significant number of altered metabolites in birds
administered the MT. This included an increase in SCFA-producing bacteria, as well as rela-
tive concentrations of SCFAs, BCAAs, and methionine in cecal digesta. These metabolites
have important roles in the immune response, cell signalling, and mucosal integrity of the
intestine. This suggests that the cecal microbiota imparts a systemic influence on resistance
to NE. Corticosterone-induced stress was observed to promulgate disease via the impair-
ment of immune and barrier function, and the administration of the MT counteracted these
impacts by promoting mucosal immune competence. Collectively, our results demonstrate
the importance of exposing young birds to a diverse set of microorganisms soon after
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hatch. Artificially increasing microbial diversity early in life may aid in the promotion of
positive microorganism-microorganism and microorganism-host interactions that promote
immune development and resistance to important diseases, including NE. Strategies to
cost-effectively apply a microbiota that confers a health benefit (e.g., administration on
eggs), and validation of efficacy in production settings is required. It is anticipated that the
finds from the current study will facilitate studies to address these topics.
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