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Abstract
In practice, there are many physical systems that can have only positive inputs, such as
physiological systems. Most conventional control methods cannot ensure that the main
system input is positive. A positive input observer‐based controller is designed for an
intravenous glucose tolerance test model of type 1 diabetes mellitus (T1DM). The
backstepping (BS) approach is employed to design the feedback controller for artificial
pancreas (AP) systems, based on the Extended Bergman's Minimal Model (EBMM). The
EBMM represents the T1DM in terms of the blood glucose concentration (BGC), insulin
concentration, and plasma level and the disturbance of insulin during medication due to
either meal intake or burning sugar by doing some physical exercise. The insulin con-
centration and plasma level are estimated using observers, and these estimations are
applied as feedback to the controller. The asymptotic stability of the observer‐based
controller is proved using the Lyapunov theorem. Moreover, it is proved that the sys-
tem is bounded input‐bounded output (BIBO) stable in the presence of uncertainties
generated by uncertain parameters and external disturbance. For realistic situations, we
consider only the BGC to be available for measurement and additionally inter‐and intra‐
patient variability of system parameters is considered.
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1 | INTRODUCTION

Positive input systems are a subset of dynamic systems whose
input is limited to being positive or non‐negative. It is very
difficult to control these systems due to the fact that these
systems are restricted to have a positive input. Most conven-
tional control methods are designed in such a way that their
input can have any signal, so they cannot take into account the
restrictions imposed on the input. Most physiological systems
are positive input, such as blood sugar control systems, tumour
growth modelling systems [1]. One of the challenges of control
science is controller design for these types of systems [2].

Diabetes is a chronic disease caused by insulin inadequacy
to burn sugar or impaired insulin functioning due to numerous
processes in the human body. Diabetes is categorised as type 1,
noted as insulin‐dependent diabetes, and type 2, noted as non‐
insulin‐dependent diabetes.

The normal range of BGC is 70–130 mg/dl, which is called
the euglycaemic range. The case in which the BGC rises above
the normal level is called hyperglycaemia. On the other hand,
hypoglycaemia is the case in which the BGC falls below the
normal glucose level.

Diabetes type 1 affects 5%–10% of people and is caused
due to the destruction of pancreas β‐cells and results in
hyperglycaemia. Type 2 diabetes is characterised as non‐
insulin‐based diabetes, which affects 90%–95% of people
and occurs due to defective insulin production.

Hyperglycaemia, if lasts for a long time, may cause mac-
rovascular disorders and severely damage the kidneys, blood
vessels, heart, and other body organs and reduce the expec-
tancy of life. Diabetes is considered a life‐threatening disease
that burdens billions of dollars to the economy of societies.
Accordingly, every 8 seconds, diabetes takes one person’s life
and every 30 seconds, causes a loss of limb. The World Health
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Organization (WHO) announced that necessary action for
diabetes treatment could decrease diabetes' negative effect on
the economy.

To cure diabetes, the BGC should be monitored and
controlled to its normal range. The traditional strategy for
diabetes treatment requires the intermittent measurement of
BGC and controlling the BGC by injecting the required insulin
advised by the doctor [3]. Monitoring the BGC is incredibly
difficult during the night.

The AP is a precise method used to control the BGC
automatically. Research around the development of this treat-
ment is still going on. Designing an AP controller is a chal-
lenging task due to variable meal intake, physical exercise,
which is represented as a disturbance during medication, and
also insulin sensitivity.

Artificial pancreas is a feedback controlled system
involving three individual subsystems: continuous glucose
measurement (CGM), feedback control unit, which determines
the required quantity of insulin, and the insulin pump, which
injects the required insulin via the intravenous or the subcu-
taneous route [4].

The schematic of the AP controlled system is shown in
Figure 1.

A stabilising controller should be designed for regulating
the BGC to the euglycaemic range. Designing a controller for
AP systems requires the mathematical modelling of a T1DM
patient. Bergman's minimal model is a simplistic but effective
way for the mathematical modelling of T1DM.

The majority of controllers designed for AP systems
require the measurement of all system states, which does not
sound practical. Different linear and non‐linear algorithms are
presented in literature for the regulation of BGC to the normal
level.

In Ref. [5], the linear quadratic Gaussian controller is
proposed for the AP system to regulate the BGC to its normal
level. The controller is designed based on the linear parameter‐
varying model. In Ref. [6], the linear quadratic algorithm is
applied to control the BGC to its normal level.

The linear PID controller is employed in Ref. [7] to reduce
the steady‐state regulation error. In Ref. [8], the linear PD
controller is designed to eliminate the oscillations in the PID
controller regulating errors. In Ref. [9], the fuzzy approach is
employed to improve the regulating performance of AP
controlled systems. However, this method is computationally
costly.

In the research studies mentioned above, linear control
approaches are utilised for AP systems based on Bergman's
minimal model (BMM). The BMM is intrinsically non‐linear,
and using the linear method for controlling non‐linear systems
may reduce the performance of the controller and cause the
controller to ensure local stability only in a domain close to the
operation point.

To ensure global stability, non‐linear control approaches
should be applied to control AP systems.

In Ref. [10], the non‐linear control techniques are
employed to stabilise AP systems; nevertheless, the internal
dynamic's stability was not proved. In Ref. [11], the BS

technique is employed to design the controller for AP systems.
BS is the recursive non‐linear control approach. However, BS
controllers designed for AP systems provide bounded regula-
tion errors.

In Ref. [12], a novel fully automated AP system based on the
model predictive framework was proposed to treat subjects with
T1DM. The controller requires the measurement of BGC and
its time derivative. In Refs. [13–15], the sliding mode control
(SMC) approach is used to design the controller for AP systems.
However, the controller suffers from chattering, which may
cause hypoglycaemia due to aggressive exogenous insulin in-
fusions. In Refs. [16, 17], theH∞ control technique is employed
to design a robust controller for AP systems. Nevertheless, H∞
controllers are of high order and fragile.

In Ref. [18], the BMM is linearised at specific points and
the gain scheduling method is employed to design a controller,
however, only local convergence is ensured. In Ref. [19], the
controller is designed upon the state‐dependent Riccati equa-
tion. Nevertheless, the controller ensures satisfactory control
performance only in a region close to the equilibrium point,
and in a realistic environment, the control performance is not
acceptable.

In Ref. [20], the fuzzy approach is integrated with the SMC
approach to design the AP controlled systems. However, these
methods suffer from long settling time and chattering. In Ref.
[21], the BS approach is employed to design an exponentially
stable variable structure robust controller for T1DM.

All previously reviewed papers require the explicit mea-
surements of the system states, including glucose concentra-
tion, remote insulin concentration, and plasma insulin
concentration. The glucose concentration can be measured via
glucose sensors, while the remote insulin concentration and the
plasma insulin concentration are not measurable in practice. As
mentioned in Refs. [22–24], the insulin measurement is costly
and cumbersome due to reliability issues.

In Ref. [22], a linear Luenberger‐like observer is designed
to estimate the system states. In Ref. [25], linear quadratic (LQ)
controllers and min–max controllers are designed using the
estimation of states as feedback.

The blood glucose model is non‐linear. In Refs. [25, 26], an
observer is designed for the quasi‐model of the non‐linear
blood glucose system. The quasi‐model is the EBMM, which
is linearised in the region close to the equilibrium point. In Ref.
[27], the LMI approach is applied to design a robust observer‐
based controller for AP systems exposed to meal disturbance.
The controller guarantees the boundedness of the BGC to the
attractive ellipsoid.

In the aforementioned observer‐based controllers designed
for AP systems [22–27], controllers and observers are designed
separately. In fact, in previous research studies, a stabilising
observer is designed to estimate the system states, and a sta-
bilising controller is designed considering that all the system
states are available for measurement. These estimations are
then used in place of actual states in the control law. In fact, in
all the previous research studies, the stability of the controller
and observer are analysed separately. As mentioned in Refs.
[28, 29], studying the stability of the observer and controller
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separately may destabilise the system for some initial
conditions.

In this manuscript, the BS technique is employed to design
an observer‐based controller for AP systems. The stability of
the observer and controller are analysed simultaneously using
the Lyapunov theorem.

Recursive BS is an applicable control technique used for
stabilising a special class of non‐linear systems by combining
the selection of the Lyapunov function with feedback system
design. In BS methodology, due to its recursive structure, the
full system is radiated out from a fundamental subsystem,
which can be stabilised using other control techniques.

In Refs. [30, 31], a model predictive digital feedforward and
feedback controller is designed with application to the type 1
diabetes control. In Ref. [32], feedforward controller is
designed for a class of positive input linear systems. The
controller is designed for the linearised model of the BGC. In
Ref. [33], a feedforward controller is designed for a class of
positive input non‐linear systems. Because the BGC model is
non‐linear in nature, the system is modelled by linear and non‐
linear subsystems.

In this paper, two individual observers are designed to
asymptotically estimate the insulin concentration and plasma
concentration level. The controller guarantees the asymptotic
stability of the system in the absence of measurements of
remote insulin and plasma insulin concentrations. Finally,
control variability grid analysis (CVGA) of 100 virtual T1DM
patients using the proposed control law is introduced to
evaluate the efficiency as well as confirm the reliability and
robustness of the proposed control technique.

The principal novelties of the proposed control method are
as follows:

1. Unlike most previous controllers designed to control BGC,
the proposed controller ensures that the control input al-
ways remains positive.

2. Unlike Refs. [8–21], the controller just requires the mea-
surement of the BGC, which can be easily measured by
BGC sensors, and two individual observers are designed to
estimate the insulin and plasma concentrations.

3. Unlike Refs. [4–9], the controller is designed using non‐
linear control methods, and the system's asymptotic

stability is analysed using the Lyapunov theorem. The sta-
bility of the observer and observer‐based controller are
analysed simultaneously. Consequently, the controller en-
sures global asymptotic stability, and the performance of the
system is improved compared with previous research
studies.

4. The BS technique is employed to design the controller, and
consequently, all the states concerning the EBMM are
controlled. As a consequence, unlike Ref. [10], the instability
of the internal dynamics does not occur using the proposed
control method.

5. The controller is robust upon external disturbance and
uncertainties in system parameters. It is proved mathe-
matically and numerically that the system is BIBO stable in
the presence of uncertainties.

6. Unlike Ref. [21], the control structure is not variable.
Hence, the chattering phenomena is prevented.

7. Unlike Refs. [32, 33] in which feedforward controllers are
designed, in this paper, a feedback approach is utilised to
design the controller. The conclusion proposed in Refs. [32,
33] has to be understood with the caveat that the result
assumes that the food pattern and the patient model are
sufficiently well known so that the required feedforward
bolus can be accurately computed. In practice, this
assumption may not be valid. To address the caveat
mentioned in Ref. [33], in this paper, we have designed a
feedback controller using the BS approach. As a result, the
proposed controller has the best advantages of feedback
control compared to feedforward control.

8. In this paper, an analogue controller is designed while in
Refs. [30, 31], a digital controller is presented. Also, digital
control of a process over analogue control has the advan-
tage that complex control calculations can be done easily;
on the other hand, digital control has the disadvantages that
sampling and quantisation processes lead to more errors
that degrade system performance, and the design of digital
controllers to compensate for such degradation is far more
complex than the design of analogue controllers at an
equivalent performance level [34].

The rest of the paper is arranged in the following manner:
In Section 2, the system model is presented in terms of state

F I GURE 1 Closed‐loop artificial pancreas (AP)
controlled system
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space, and the controller, the state observers and error dy-
namics are introduced in Section 3. The system stability is
analysed using the Lyapunov theorem in Section 4. In Sec-
tion 5, simulation results are presented, and in Section 6, some
concluding remarks are presented.

2 | SYSTEM REPRESENTATION

In this section, initially, the system model is presented in state
space, and afterwards, an appropriate transformation is given
by which the system is transformed into the controllable ca-
nonical form.

2.1 | System modelling

Bergman modelled the T1DM using a three‐state non‐linear
mathematical model as [17]

_x1 ¼ −p1x1 − x2ðx1 þGbÞ þ d; ð1aÞ

_x2 ¼ −p2x2 þ p3x03; ð1bÞ

_x03 ¼ −nðx03 þ IbÞ þ uðtÞ; ð1cÞ

where x1, x2, x03 represent the glucose concentration, remote
insulin concentration, and plasma insulin concentration,
respectively, the control input u denotes the external insulin
infusion rate and d denotes the meal disturbance. All the sys-
tem parameters used in the simulation have been presented in
Table 1. In the BMM, the meal disturbance effect is considered
to be constant.

In Refs. [13, 16], the EBMM is suggested, which includes
the meal disturbances as a time‐varying dynamical state (here
defined by x4).

_x1 ¼ −p1ðx1 − GbÞ − x1x2 þ x4; ð2aÞ

_x2 ¼ −p2x2 þ p3ðx03 − IbÞ; ð2bÞ

_x03 ¼ −p4ðx03 − IbÞ þ uðtÞ; ð2cÞ

_x4 ¼ −p5 x4: ð2dÞ

The EBMM is more sensible compared with the BMM
[16]. Let us define

x3 ¼ −x03; v¼ −u: ð3Þ

Considering Equation (3), Equations (2b) and (2c) can be
rewritten as

_x2 ¼ −p2x2 þ p3ð − x3 − IbÞ; ð4aÞ

_x3 ¼ − _x03 ¼ p4ðx03 − IbÞ − uðtÞ ¼ −p4ðx3 þ IbÞ þ vðtÞ ð4bÞ

2.2 | Equivalence transformation

Let us define the auxiliary state X1 as

X1 ¼ Ln x1: ð5Þ

Similarly, the auxiliary reference state X1r is defined as

X1r ¼ Ln x1r; ð6Þ

where the constant x1r defines the desired magnitude of state
x1.

Differentiating Equation (5) with respect to time and
substituting Equation (2a) in the result, we have

_X1 ¼
_x1
x1
¼

−p1ðx1 − GbÞ − x1x2 þ x4
x1

¼ −p1 þ
p1Gb

x1

− x2 þ
x4
x1
: ð7Þ

Consequently, we obtain

_X1 ¼ −p1 þ p1 Gb e−X1 − x2 þ x4 e−X1 : ð8Þ

Let us define the regulation error z1 as

z1 ¼ X1 − X1r: ð9Þ

Differentiating Equation (9) with respect to time and
considering that the reference magnitude x1r is constant, we
obtain

_z1 ¼ _X1; ð10aÞ

€z1 ¼ €X1: ð10bÞ

Differentiating Equation (8) with respect to time, we
obtain

TABLE 1 System parameters

Parameters Values

Glucose effectiveness factor ( p1) 1 � 10−7 min−1

Delay in insulin actions ( p2) 0.025 min−1

Patient parameters ( p3) 0.000013 mU L−1 min−2

Insulin degradation rate ( p4) 0.021 min−1

Meal disturbance ( p5) 0.05 min−1

Basal plasma insulin (Ib) 4.5 mU L−1

Basal plasma glucose (Gb) 4.5 m Mol L−1
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€X1 ¼ −p1 Gb
_X1 e−X1 − _x2 þ _x4 e−X1 − x4 _X1 e−X1 : ð11Þ

Considering Equation (8), we have

x2 ¼ − _X1 − p1 þ p1 Gb e−X1 þ x4 e−X1 : ð12Þ

Substituting Equation (4a) with Equation (11) and
considering Equation (12), we obtain

€X1 ¼ €z1 ¼ −p1Gb
_X1e−X1 þ p2

�
− _X1 − p1

þ p1Gb e−X1 þ x4e−X1
�
þ p3ðx3 þ IbÞ

− p5x4e−X1 − x4 _X1e−X1 : ð13Þ

Let us define

f
�
X1; _X1

�
¼ − p1Gb

_X1e−X1 þ p2
�
− _X1 − p1

þ p1Gbe−X1
�
þ p3Ib;

Y
�
X1; _X1

�
¼ p2e−X1 − p5e−X1 − _X1e−X1 : ð14Þ

Consequently, Equation (13) can be rewritten as

€z1 ¼ €X1 ¼ f
�
X1; _X1

�
þ Y

�
X1; _X1

�
x4 þ p3x3: ð15Þ

2.3 | Canonical form

Let us define

z1 ¼ X1 − X1r; ð16aÞ

z2 ¼ _X1 þ ΛðX1 − X1rÞ: ð16bÞ

where Λ is a positive constant. The state z2 can be considered
as z1 which passes the filter with the transfer function of
GðsÞ ¼ 1

sþΛ.
By simultaneously considering Equations (10a) and (16b),

we obtain

_z1 ¼ z2 − Λ z1: ð17Þ

Differentiating Equation (16b), we have

_z2 ¼ €X1 þ Λ _z1: ð18Þ

Substituting Equation (15) in Equation (18), we obtain

_z2 ¼ f
�
X1; _X1

�
þ Y

�
X1; _X1

�
x4 þ p3x3

þΛðz2 − Λz1Þ: ð19Þ

Let us define

f ð ⋅ Þ ¼ f ð ⋅ Þ þ Λ z2 − Λ2 z1: ð20Þ

Considering definition Equation (20), Equation (19) can be
rewritten as

_z2 ¼ f
�
X1; _X1

�
þ Y

�
X1; _X1

�
x4 þ p3x3: ð21Þ

In Appendix A, it is shown that Equation (21) can be
rearranged as

_z2 ¼ F1z1 þ F2z2 þ f ðX1r; 0Þ þ Y ðX1r; 0Þx4 þ p3x3: ð22Þ

In order for the actual input of the system (i.e. v) to always
remain positive, the dummy input (i.e. u) is designed in such a
way that the relationship between the actual and dummy input
is calculated from the following equation

_v¼ −u v: ð23Þ

Considering Equation (23), it is clear that

Z vðtÞ

vð0Þ

dv
v
¼ −

Z t

0
u dt ⇒ v¼ vð0Þ e−

R t

0
uðτÞ dτ

; ð24Þ

where v(0) represents the initial magnitude of the dummy
input variable v(t). It is clear that if the initial value of the
dummy input is selected as positive (i.e. v(0) > 0), the actual
input of the system will always be positive.

3 | CONTROLLER DESIGN

In this section, initially, the procedure of designing the
controller through the BS approach is introduced, and after-
wards, the controller is given in theorem 1.

3.1 | Control procedure

In the following, two observers are designed to estimate the
remote insulin and plasma concentrations. Initially, the state z2
is estimated using an observer and afterwards, an observer is
designed to estimate the state x3. Let us define the estimation
errors as

~z2 ¼ z2 − bz2; ð25aÞ

e1 ¼
1
α
ðx3 − bx3Þ; ð25bÞ

where α is a positive constant, bz2 represents an estimation
of the state z2 and bx3 represents the estimation of the state x3.

Considering the definition of Equation (25b), we can
rewrite Equation (22) as
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_z2 ¼ F1z1 þ F2z2 þ f ðX1r; 0Þ þ Y ðX1r; 0Þx4 þ p3 ðαe1
þ bx3Þ: ð26Þ

Let us define

e2 ¼ bx3 − x∗
3 ; ð27Þ

where x∗
3 represents the desired magnitude of bx3 and x∗

3
calculated using Equation (28) is designed using the BS
approach as

x∗
3 ¼

1
p3
½ − f ðX1r; 0Þ − Y ðX1r; 0Þx4 − k2bz2�; ð28Þ

where k2 is a positive constant. Considering the definition of
Equation (27), Equation (26) can be rearranged as

_z2 ¼ F1z1 þ F2z2 þ f ðX1r; 0Þ þ Y ðX1r; 0Þx4 þ p3
�
αe1

þ e2 þ x∗
3

�
: ð29Þ

Considering Equation (29), the desired variable x∗
3 repre-

sents the governing variable designed for controlling the state
z2. Let us define

e3 ¼ v − v∗; ð30Þ

where v∗ represents the desired magnitude of dummy control
input v and is calculated using Equation (31), which is designed
using the BS approach as

v∗ ¼ p4ðbx3 þ IbÞ þ
�

p3αþ
1
p3
k2k1

�

bz2 þ
1
p3
Y ðX1r; 0Þ

�
�
p5x4

�
−

1
p3

k2k1k3e2; ð31Þ

where the positive constant k3 represents the control gain,
bx3; bz2 represent the estimation of system states provided as an
output of the observers proposed in Section 3.2, and e2 rep-
resents the tracking error defined previously in Equation (27).

The control procedure using the BS approach is as follows:

1. Asymptotically stable observer is designed for the estimation
of filtered state z2, that is, bz2 tends to z2 or ~z2 tends to zero.

2. The desired variable x∗
3 is appropriately designed such that

z2 tends to zero.
3. Asymptotically stable observer is designed to estimate state

x3, that is, the estimate state bx3 asymptotically converges to
x3 or ~x3 tends to zero.

4. The desired variable v∗ is designed properly such that the
estimation error e2 asymptotically converges to zero, that is,
x∗
3 tends to bx3.

5. The control law for dummy input (i.e. u) is designed
properly such that the error e3 asymptotically converges to
zero, that is, v∗ tends to v.

The schematic of the proposed observer‐based control
method is shown in Figure 2.

3.2 | Observer design

Let us design an observer for the estimation of state z2 as

bz2 ¼ k1z1 þ η; ð32Þ

where the positive constant k1 is the observer gain and bz2
represents the estimation of state z2 and η is the co‐state
calculated using the following differential equation

_η¼
�
k1 Λ − k1

2
�
z1 − k1 η: ð33Þ

Moreover, let us design an observer to estimate the state x3
as

bx3 ¼ 2α p3 z1 þ σ; ð34Þ

where bx3 represents the estimate of state x3 and σ is the co‐
state calculated as

F I GURE 2 Observer‐based AP controlled
system
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_σ ¼ 2αp3Λz1 − p3α bz2 − p4ðbx3 þ IbÞ þ v: ð35Þ

The schematic of block diagram and Bode diagram of the
filter, calculated using Equarion (32), is shown in Figure 3.

Remark 1 Lead compensation essentially yields an appreciable
improvement in transient response and a small change in
steady‐state accuracy. It will suppress the effects of high‐
frequency noise signals. As seen from Figure 3, the lead
compensator is basically a high‐pass filter (the high frequencies
are passed, but low frequencies are attenuated). The primary
function of the lead compensator is to reshape the frequency‐
response curve to provide a sufficient phase‐lead angle to
offset the excessive phase lag associated with the components
of the fixed system. Lead compensation is commonly used for
improving stability margins. Lead compensation achieves the
desired result through the merits of its phase‐lead contribution.

Lead compensation yields a higher gain crossover frequency,
which means a larger bandwidth. A large bandwidth means
reduction in the settling time or fast response.

3.3 | BS controller design

In this subsection, the BS approach is employed to design the
controller. The controller used the state x1 as feedback. The
states x2 and x3 are estimated using the observers proposed in
Section 3.2. The controller is designed using the measurement
of BGC (i.e. x1) and bz2, bx3 (estimations of system states) as
feedback.

Theorem 1 The blood glucose control system is asymptotically
stable ensuring that the actual system input (i.e. v) always
remains positive using the control input calculated as

F I GURE 3 The schematic of block diagram and bode diagram of the filter

u¼ −
1
v

�

p4
�
2αp3

�
bz2 − Λz1

�
þ 2αp3Λz1 − p3αbz2 − p4

�
bx3 þ Ib

�
þ v
�

−
p52

p3
Y
�
X1r; 0

�
x4 þ k4e3 −

1
p3
k1k2k3

�
αp3bz2 − p4ðbx3

þ IbÞ þ v −
p5
p3
Y ðX1r; 0Þx4

�
�

ð36Þ
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where the positive constant k3 represents the control gain
and bx3; bz2 represent the estimation of system states provided
as an output of the observers proposed in Section 3.2, and e2
represents the tracking error defined previously in
Equation (27).

Remark 2 It is true that we designed the control law for the
dummy input of the system, but in fact, we control the actual
input of the system; in other words, the control law for the
main input will be calculated then using Equation (24).

3.4 | Error dynamics

In Section 3.1, it was shown that the variable x∗
3 could be

considered as the governing variable to control the state z2.
Replacing x∗

3 from Equation (28) in Equation (29), we have

_z2 ¼ F1z1 þ F2z2 − k2bz2 þ p3ðαe1 þ e2Þ: ð37Þ

Considering the definition of Equation (25a), we can
rearrange Equation (37) as

_z2 ¼ F1z1 þ F2z2 − k2ðz2 − ~z2Þ þ p3αe1 þ p3e2: ð38Þ

Moreover, in Appendix B, it is proved that the dynamic
equation governing the estimation error ~z2 is obtained as

_~z2 ¼ F1z1 þ F2z2 − k2ðz2 − ~z2Þ þ p3αe1 þ p3e2 − k1~z2: ð39Þ

In Appendix C, the estimation error governing e1 is ob-
tained as

_e1 ¼
1
α
�

−p3αðz2 þ ~z2Þ − p4αe1
�
: ð40Þ

As mentioned in Section 3.3, the control input v is
considered as the guiding variable to control the state e2. In
Appendix D, it is proved that the dynamic governing the state
e2 can be considered as

_e2 ¼ 2α p3 z2 þ
1
p3
k2 k1 z2 −

1
p3
k2 k1 k3 e2: ð41Þ

In Appendix E, it is proved that the error dynamics for e3
is obtained as

_e3 ¼ β ~z2 − k4e3; ð42Þ

where

β ¼ 2αp3p4 þ p3αk1 − 2αk2k1k3 −
1
p32
ðk2k1Þ

2k3 þ p3αk1

þ
1
p3
k2k1

2
:

ð43Þ

4 | STABILITY ANALYSIS

In this section, initially the stability of the origin is analysed.
Afterwards, the BIBO (bounded input‐bounded output) sta-
bility of the system is analysed in the existence of uncertainties
in system parameters using the Lyapunov theorem.

4.1 | Stability of the equilibrium point

Consider the positive definite Lyapunov function

V ¼
1
2

ε z12 þ
1
2
z22 þ

1
2
~z22 þ

1
2

α e12 þ
1
2

p3
k1k2

e22

þ
1
2

γ e32; ð44Þ

where ε, α, γ are positive constants and k1, k2 are positive gains
defined previously in Section 3.

In Appendix F, it is shown that the time derivative of the
Lyapunov function can be upper‐bounded as

_V ≤ −λ1 z12 − λ2 z22 − λ3 ~z22 − λ4 e12 − λ5 e22

− λ6 e32; ð45Þ

provided that control gains are selected as

Λ >
1
2
þ
f1
ε
; ð46aÞ

k2 >
ε
2
þ

f1
2
þ
3
2
f2 þ

p3
2
þ
2αp32

k1k2
þ
1
2
; ð46bÞ

k1 > k2 þ
f1
2
þ

f2
2
þ
1
2
p3 þ

1
2

γ β; ð46cÞ

α > 0; ð46dÞ

k3 > p3 þ
2αp32

k1k2
þ
1
2
; ð46eÞ

k4 >
1
2

β: ð46fÞ

Equation (45) implies that _V ≤ 0. Integrating both sides of
Equation (45) with respect to time, we obtain

V ðtÞ ≤ V ð0Þ − λ1
Z t

0

z21ðτÞdτ − λ2
Z t

0

z22ðτÞdτ

− λ3
Z t

0

~z22ðτÞdτ − λ4
Z t

0

e21ðτÞdτ − λ5
Z t

0

e22ðτÞdτ

− λ6
Z t

0

e23ðτÞdτ: ð47Þ
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Since V is a positive definite function, from Equation (47),
it can be deduced that

lim
t→∞

z1 ¼ 0; lim
t→∞

z2 ¼ 0; lim
t→∞

~z2 ¼ 0; lim
t→∞

e1

¼ 0; lim
t→∞

e2 ¼ 0; lim
t→∞

e3 ¼ 0: ð48Þ

Clearly, Equation (9) can be reconsidered as z1 ¼ Ln x1 −
Ln x1r ¼ Ln x1

x1r
. Considering definitions of (5), (6), and (16a),

the condition lim
t→∞

z1 ¼ 0 deduces

lim
t→∞

�

Ln
x1
x1r

�

¼ 0 ⇒ lim
t→∞

�
x1
x1r

�

¼ e0 ¼ 1: ð49Þ

Consequently, we obtain

lim
t→∞

x1ðtÞ ¼ x1r: ð50Þ

4.2 | Robustness to parametric uncertainties

In this section, the robustness of the system is analysed in the
existence of uncertainties in system parameters. In this paper,
the nominal magnitude of system parameters are defined by
the “‾” notation; for instance, p1 represents the nominal
magnitude of parameter p1.

Theorem 2 For the system (2a)–(2d) in the presence of para-
metric uncertainties, the controller is calculated as

u¼
1
v

�

p4
�
2αp3ðbz2 − Λz1Þ þ 2αp3Λz1 − p3αbz2

− p4ðbx3 þ IbÞ þ v
�

−
p5

2

p3
Y ðX1r; 0Þx4 þ k4e3

−
1
p3
k1k2k3

�

αp3bz2 − p4ðbx3 þ IbÞ þ v

−
p5
p3

Y ðX1r; 0Þx4
��

ð51Þ

and ensures the boundedness of system errors, where bz2
represents the estimation of system states provided as an
output of the observer calculated using Equation (32). The
variable e3 = v − v∗ represents the deviation of the actual input
from its desired magnitude v∗ which is calculated using the
nominal magnitude of system parameters as

v∗ ¼ p4
�
bx3 þ Ib

�
þ

�

p3αþ
1
p3
k2k1

�

bz2

þ
1
p3

Y ðX1r; 0Þ
�
p5x4

�
−

1
p3
k2k1k3e2; ð52Þ

The variable bx3 represents the estimation of state x3 calculated as
bx3 ¼ 2α p3 z1 þ σ; ð53Þ

and σ is the co‐state calculated as

_σ ¼ 2αp3Λz1 − p3αbz2 − p4
�
bx3 þ Ib

�
þ v: ð54Þ

Following the same procedure in Section 4.1, the error dy-
namics of the system in the presence of parametric un-
certainties are calculated by

_z2 ¼ F1z1 þ F2z2 − k2ðz2 − ~z2Þ þ p3αe1 þ p3e2 þ d1; ð55aÞ

_~z 2 ¼ F1z1 þ F2z2 − k2ðz2 − ~z2Þ þ p3αe1 þ p3e2

− k1~z2 þ d2; ð55bÞ

_e1 ¼
1
α
�
−p3αðz2 þ ~z2Þ − p4αe1

�
þ d3; ð55cÞ

_e2 ¼ 2αp3z2 þ
1
p3
k2k1z2 −

1
p3
k2k1k3e2 þ d4; ð55dÞ

_e3 ¼ β~z2 − k4e3 þ d5: ð55eÞ

where di i = 1, …, 5 lumped the deviation of system param-
eters from their nominal magnitudes.

Proof Consider the Lyapunov function as

V ¼
1
2

ε z12 þ
1
2
z22 þ

1
2
~z22 þ

1
2

α e12 þ
1
2

p3
k1k2

e22

þ
1
2

γ e32; ð56Þ

Consider the system errors in the presence of uncertainties
calculated using Equations (55a–e) and take r > 0 and rd > 0
such that kxk ≤ r and kdk ≤ rd . The Lyapunov function V
satisfies

1
2
c1kXk2 ≤ V ≤

1
2
c2kXk2; ð57Þ

where c1 ¼min
n

ε; α; p3
k1k2
; 1
o
and c2 ¼max

n
ε; α; p3

k1k2
; 1
o
.

The time derivative of the Lyapunov function can be
calculated as

_V ≤ −c3 kXðtÞk2 þ c4kXðtÞk kdðtÞk; ð58Þ

where X ¼ ½z1; z2;~z2; e1; e2; e3�
T , d = [d1, d2, d3, d4, d5]T.

Take W ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V ðXÞ

p
, when V(X ) ≠ 0, and use _W¼

_V�2
ffiffiffiffiffi
V
p and Equation (58) to obtain

_W ≤ −
1
2

�
c3
c2

�

W þ
c4

2
ffiffiffiffi
c1
p kdðtÞk; ð59Þ

when V(X) = 0, it can be verified that
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DþW ≤
c4

2
ffiffiffiffi
c1
p kdðtÞk: ð60Þ

Hence,

DþW ≤ −
1
2

�
c3
c2

�

W þ
c4

2
ffiffiffiffi
c1
p kdðtÞk; ð61Þ

for all values of V(x(t)). By the comparison Lemma, W(t)
satisfies the inequality

W ðtÞ ≤ e−c3=2c2
tW ð0Þ þ

c4
2
ffiffiffiffi
c1
p

Z t

0

e−c3=2c2
ðt−τÞ
kdðτÞk dτ:

ð62Þ

Using Equation (57), we obtain

kXðtÞk ≤
ffiffiffiffi
c2
c1

r

kxð0Þk e−c3=2c2
t
þ

c4
2c1

Z t

0

e−c3=2c2
ðt−τÞ
kdðτÞk dτ:

ð63Þ

It can be easily verified that

kXð0Þk ≤ r
ffiffiffiffi
c2
c1

r

; sup
0≤σ≤t
kdðσÞk ≤

c1c3r
c2c4

; ð64Þ

ensure that kXðtÞk ≤ r; hence, X(t) stays within the domain of
validity of the assumptions.

5 | SIMULATION RESULTS

In this section, theoretical findings are evaluated by simulating
the proposed method for glycaemic regulation in T1D patients
in the presence of a high initial meal disturbance in MATLAB/
Simulink software.

The proposed controller is simulated considering three
scenarios: (i) the simulation results on the T1DM with exog-
enous meal disturbance and without uncertainties in system
parameters, (ii) a 24 h (1440 min) multiple‐meal scenario for
random virtual T1DM patients to evaluate the robustness of
the control method, considering uncertainties in system pa-
rameters and meal disturbance, and (iii) simulation for random
initial conditions.

The control purpose is regulating the BGC to the reference
range, assuring that (i) the control input always remains posi-
tive, (ii) only the BGC is accessible for feedback and the
remote insulin and plasma concentration are not accessible for
feedback, (iii) the BGC must not descend below the severe
hypoglycaemic level (i.e. x1 > 50 mg/dl), (iv) the BGC must
not raise the postprandial hyperglycaemia level in the presence
of external meal disturbance, (v) the magnitude of the control
signal should be non‐negative, and (vi) bringing the BGC

below 180 mg/dl from the hyperglycaemic condition within a
specified time of 120 min, which is a clinically recommended
physiological necessity for T1DM.

5.1 | Scenario 1: Simulation with nominal
magnitude of system parameters

In this scenario, the proposed control method and the BS and
PID controller proposed in Ref. [11] and the variable structure
controller proposed in Ref. [21] are simulated for the T1DM
patients in the presence of meal disturbance modelled by
Equations (2a)–(2d). In this scenario, the system parameters
are considered to be certain and selected for all three con-
trollers according to Table 1, and the control gains and initial
conditions of plasma glucose–insulin are selected similar to
Ref. [11] for a patient in the state of hyperglycaemia as
x1(0) = 250 mg/dl, x2(0) = 0.001 min−1, x3(0) = 7 mU/L. As
noted earlier, the level of BGC for a healthy person should be
70–180 mg/dl. The reference range of BGC for simulation is
considered as x1r = 80 mg/dl and the controller is designed to
control the BGC to the reference level by the intravenous
injection of insulin.

The system parameters and control gains used in the
simulation are listed individually in Tables 1 and 2. Control
gains are selected such that conditions (46a)‐(46f) are satisfied.
The PID and BS control gains are selected similar to Ref. [11].
For all three simulations, the same data set has been selected to
make the results comparable with each other.

The time history of BGC is shown in Figure 4. The x‐
axis represents the time in seconds and the y‐axis the BGC
in mg/dl. In Figure 4, results of the proposed controller with
and without observers are compared with the results of the
PID and BS controller presented in Ref. [11] and the variable
structure controller proposed in Ref. [21]. The comparisons
confirm that the PID controller response has some steady‐
state error and has a very large settling time. The PID and
BS controllers need the measurement of BGC, remote in-
sulin, and plasma concentration. However, the proposed
controller only requires the measurement of BGC, and the
remote insulin and plasma concentrations are estimated by
observers. It is worth mentioning that the proposed
controller ensures asymptotic stability while the controllers
proposed in Ref. [11] ensure bounded regulation error. As
mentioned in Remark 1, the filter designed to estimate the
system states represents as the lead compensator and the
lead compensator improves the transient response and steady
state accuracy of the system, which can be also verified from
Figure 4.

Comparisons verify the improvement made by the pro-
posed controller even in the presence of a lack of knowledge of
remote insulin and plasma concentrations. Consequently, it can
be observed that the performance of the PID controller is not
satisfactory as compared with the proposed controller
considering steady‐state error and convergence time.

The time history of the required insulin that should be
injected as the control input for the proposed controller, PID
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and BS controllers and the variable structure controller are
shown in Figure 5. The first control pulse of the proposed
method in Figure 5 causes the BGC to fall from a higher to a
lower level, and then other pulses are injected to regulate the
BGC to the reference level. The insulin infusion rate is
diminished as the BGC approaches the reference level of
80 mg/dl. Figure 5 verifies that the control input is always
positive. As shown in Figure 5, the value of the controller
presented in Ref. [21] for some time intervals is equal to zero.
Since the controller produces negative values in these segments
and the insulin injection can only be positive, the controller
cannot control the system during these intervals. Hence, this
may destabilise the system for some initial conditions. In this
paper, the controller structure is designed to ensure that the
control input is always positive.

The time history of estimation errors ~z2; ~x3 are shown in
Figure 6. From Figure 6, it can be observed that the observers
proposed in Section 3.2 can asymptotically estimate system
states (z2, x3).

The time history of remote insulin concentration and
plasma insulin concentration for the proposed control method
is shown in Figures 7 and 8.

5.2 | Scenario 2: Simulation with random
system parameters

In this section, the performance of the proposed controller is
evaluated considering the intra‐patient variability. The simula-
tion is performed for 1 day (1440 min), considering three meal
disturbances during the day.

The initial conditions of system states are considered as
x1 = 80 mg/dl, x2 = 0 min−1, x3 = 7 mU/L and no initial meal
disturbance is considered, that is, x4 = 0 mg/dl/min. The
subsequent aspects are considered in this outline for inter‐
patient variability: (i) 100 Monte‐Carlo simulations are
considered at the beginning of each new simulation. We
simulate the controller with nominal magnitudes of system
parameters. The model parameters are varied randomly from
the range mentioned in Table 3. The value of the parameter
p1 is randomly selected between �30% of its nominal value.

TABLE 2 Control and observer gains

Controller and observer gains Values

Controller gain (k2) 2

Controller gain (k3) 1

Filter gain (Λ) 0.1

Observer gain (α) 1

Observer gain (k1) 1

F I GURE 4 Time history of blood glucose
concentration (BGC)

F I GURE 5 The time history of insulin infusion rate
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(ii) To make the simulation more realistic, for the simulation
purpose, the three meals with a high rate of glucose appearance
in the blood, 5 mg/dl/min, 8 mg/dl/min, 5 mg/dl/min at 255,

575, and 750 min, accordingly. The control and observer gains
for the simulation are considered similar to scenario 1.

To analyse the robustness of the controller against un-
certainties in system parameters and external disturbance, the
performance of the controller is analysed for 100 different
random patients with different parameters, and the control grid
variability analysis (CGVA) is shown in Figure 7. Inter‐ and
intra‐patient variability is performed considering the fact that
the system parameters change randomly during the simulation,
and the results are shown in Figure 8.

Figures 9 and 10 verify that 100% of the minimum BGC
are greater than 70 mg/dl and 95% of the maximum BGC are
less than 250 mg/dl.

F I GURE 6 The time history of estimation errors

F I GURE 7 The time history of insulin concentration

F I GURE 8 The time history of plasma concentration

TABLE 3 Uncertainty in system parameters

Parameters Nominal value Range

p1 1 � 10−7 [0.7, 1.3] � 10−7

p2 0.015 [0.015, 0.055]

p3 2 � 10−6 [1.4, 2.6] � 10−6

p4 0.2 [0.14, 0.26]

p5 0.05 [0.04, 0.06]

F I GURE 9 Control grid variability analysis (CVGA) plot of the type 1
diabetes mellitus (T1DM) subjects

F I GURE 1 0 Blood glucose trajectories for virtual type 1 diabetes
mellitus (T1DM) patients under parametric uncertainty
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5.3 | Scenario 3: Simulation with random
initial conditions

The proposed observer‐based controller is simulated in this
section for different initial conditions selected within the range
x1(0) ∈ [80, 350] mg/dl, x2(0) ∈ [0, 0.01] min−1, x3(0) ∈
[0,20] mU/L. Figure 11 verifies that the proposed controller is
asymptotically stable for different initial conditions, which are
predictable, since the proposed controller ensures global
asymptotic stability.

Remark 3 The simulation results in different scenarios verify
that the proposed controller ensures asymptotic stability of the
system without requiring the measurement of insulin and
plasma concentrations. The controller also ensures that the
system input always remains positive.

6 | CONCLUSION

This paper proposed a novel positive input observer‐based
blood glucose control method for EBMM using the BS
approach. The asymptotic stability of the system was proved
using the Lyapunov theorem. The proposed controller only
requires the measurement of the BGC and ensures the
asymptotic stability of the system. Simulation results verify the
satisfactory performance of the proposed controller compared
to previous related studies. Better regulation results were
achieved without requiring the measurement of the remote
insulin and plasma insulin concentration and without requiring
a higher amount of insulin as the control input.
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APPENDIX A
Considering that the reference signal is constant, hence
_X1r ¼ 0. Adding and subtracting f

�
X1r; _X1

�
and f(X1r,0) to the

right side of Equation (21), we obtain

_z2 ¼
�
f
�
X1; _X1

�
− f
�
X1r; _X1

��
þ
�
f
�
X1r; _X1

�

− f ðX1r; 0Þ
�
þ f ðX1r; 0Þ þ

��
Y
�
X1; _X1

�

−Y
�
X1r; _X1

��
þ
�
Y
�
X1r; _X1

�
− Y ðX1r; 0Þ

�

þY ðX1r; 0Þ
�
x4 þ p3x3: ð65Þ

Considering that

f
�
X1; _X1

�
− f
�
X1r; _X1

�
¼ F1 ðX1 − X1rÞ ¼ F1 z1; ð66aÞ

f
�
X1r; _X1

�
− f ðX1r; 0Þ ¼ F2

�
_X1 − 0

�

¼ F2 ðz2 − Λ z1Þ; ð66bÞ

Y
�
X1; _X1

�
x4 − Y

�
X1r; _X1

�
x4 ¼ F3ðX1 − X1rÞ

¼ F3 z1; ð66cÞ

Y
�
X1r; _X1

�
x4 − Y ðX1r; 0Þx4 ¼ F4

�
_X1 − 0

�

¼ F4 ðz2 − Λ z1Þ; ð66dÞ

we obtain

_z2 ¼ F1 z1 þ F2 z2 þ f ðX1r; 0Þ þ Y ðX1r; 0Þx4 þ p3 x3; ð67Þ

where

F1 ¼ F1 − F2 Λþ F3 − F4 Λ; ð68Þ

F2 ¼ F2 þ F4:

APPENDIX B
Differentiating Equation (32) with respect to time, we obtain

_bz2 ¼ k1 _z1 þ _η: ð69Þ

Substituting _z1 from Equation (17) and _η from Equa-
tion (33), we obtain

_bz2 ¼ k1ðz2 − Λ z1Þ þ
�
k1 Λ − k1

2
�
z1 − k1 η¼ k1ðz2

− k1 z1 − ηÞ ¼ k1 ~z2: ð70Þ

Differentiating the definition of Equation (25a) with
respect to time and substituting for _z2 from Equation (38) and
_bz2 from Equation (70), we obtain

_~z2 ¼ _z2 − _bz2 ¼ F1 z1 þ F2 z2 − k2ðz2 − ~z2Þ þ p3 α e1

þ p3 e2 − k1 ~z2: ð71Þ
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APPENDIX C
Differentiating Equation (34) with respect to time, we obtain

_bx3 ¼ 2α p3 _z1 þ _σ: ð72Þ

Substituting for _z1 and _σ, respectively, from Equations (17)
and (35), we obtain

_bx 3 ¼ 2αp3ðz2 − Λz1Þ þ 2αp3Λz1 − p3αbz2 − p4ðbx3

þ IbÞ þ v: ð73Þ

Differentiating Equation (25b) with respect to time, we
obtain

_e1 ¼
1
α
�

_x3 − _bx3
�
: ð74Þ

Substituting _x3 from Equation (4b) and _bx3 from Equa-
tion (73) in Equation (74), we obtain

α _e1 ¼ −p4ðx3 þ IbÞ þ vðtÞ −
�
2αp3ðz2 − Λz1Þ

þ 2αp3Λz1 − p3αbz2 − p4ðbx3 þ IbÞ þ v
�
: ð75Þ

Simplifying equal terms, we obtain

α _e1 ¼ −p3αðz2 þ ~z2Þ − p4αe1: ð76Þ

APPENDIX D
Differentiating x∗

3 from Equation (28) with respect to time to
obtain

_x∗
3 ¼

1
p3

�
−Y ðX1r; 0Þ

�
− p5x4

�
− k2k1~z2

�
: ð77Þ

Differentiating the definition of e2 from Equation (27), we
obtain

_e2 ¼ _bx3 − _x∗
3 : ð78Þ

Substituting Equations (73) and (77), we obtain

_e2 ¼ 2αp3z2 − p3αbz2 − p4ðbx3 þ IbÞ þ e3 þ v∗

−
1
p3

�
− Y ðX1r; 0Þ

�
− p5x4

�
− k2k1~z2

�
: ð79Þ

Substituting v∗ from Equation (31) in the result, we obtain

_e2 ¼ 2α p3 z2 þ
1
p3
k2 k1 z2 −

1
p3
k2 k1 k3 e2 þ e3: ð80Þ

APPENDIX E
Differentiating v∗ from Equation (31) with respect to time to
obtain

_v∗ ¼ p4 _bx3 þ p3α _bz2 þ
1
p3
Y ðX1r; 0Þ

�
p5 _x4

�

−
1
p3
k2k1k3 _e2 þ

1
p3
k2k1 _bz2; ð81Þ

Substituting _bx3 by Equation (73), _bz2 by Equation (70), _x4
by Equation (2d), and _e2 by Equation (79) in Equation (81), we
obtain

_v∗ ¼ p4
�
2αp3ðz2 − Λz1Þ þ 2αp3Λz1 − p3αbz2 − p4ðbx3 þ IbÞ

þ v
�
þ

�

p3αþ
1
p3
k2k1

�

ðk1~z2Þ

þ
p5
p3
Y ðX1r; 0Þ

�
− p5x4

�

−
1
p3
k2k1k3

�

2αp3z2 − αp3bz2 − p4½bx3 þ Ib� þ v

−
1
p3

�
p5Y ðX1r; 0Þx4 − k1k2~z2

�
�

; ð82Þ

Differentiating the definition of e3 from Equation (30) and
substituting Equation (23), we obtain

_e3 ¼ _v − _v∗;

¼ − uv − _v∗: ð83Þ

Substituting u by Equation (36), _v∗ by Equation (82) and
simplifying equal terms, we obtain

_e3 ¼
�

2αp3p4 þ p3αk1 − 2αk2k1k3 −
1
p32
ðk2k1Þ

2k3

þ p3αk1 þ
1
p3
k2k1

2
�

~z2 − k4e3 ð84Þ

APPENDIX F
Differentiating Equation (44) with respect to time to obtain

_V ¼ ε z1 _z1 þ z2 _z2 þ ~z2 _~z2 þ α e1 _e1 þ
p3
k1k2

e2 _e2

þ γ e3 _e3: ð85Þ

Substituting Equations (17), (38)–(42) in Equation (85) to
obtain
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Considering that for any arbitrary variables a and b we have

ja bj ≤ 1
2

�
a2 þ b2

�
. Consequently, we obtain

Considering that for any arbitrary variables a and b we have

ja bj ≤ 1
2

�
a2 þ b2

�
. Consequently, we obtain

Consequently, we have

Consequently, if the gains are selected such that Equa-
tions (46a)–(46f) are satisfied, we have

_V ≤ −λ1z12 − λ2z22 − λ3~z22 − λ4e12 − λ5e22 − λ6e32: ð89Þ

where λi i¼ 1 : 6 are positive constants.

_V ¼ εz1½z2 − Λz1� þ z2
�
F1z1 þ F2z2 − k2ðz2 − ~z2Þ þ p3αe1 þ p3e2

�
þ ~z2

�
F1z1 þ F2z2 − k2ðz2 − ~z2Þ þ p3αe1 þ p3e2

− k1~z2
�
þ e1

�
−p3αðz2 þ ~z2Þ − p4αe1

�
þ

p3
k1k2

e2
�

2αp3z2 þ
1
p3
k2k1z2 −

1
p3
k2k1k3e2

�

þ γe3½β~z2 − k4e3�: ð86Þ

_V ≤
ε
2
�
z12 þ z22

�
− εΛz12 þ

1
2
f1
�
z12 þ z22

�
þ f2z22 þ ðz2 þ ~z2Þð − k2ðz2 − ~z2ÞÞ þ

1
2
p3
�
z22 þ e22

�
þ
1
2
f1
�
~z22 þ z12

�

þ
1
2
f2
�
~z22 þ z22

�
þ
1
2
p3
�
~z22 þ e22

�
− k1~z22 − p4αe12 þ

2αp32

k1k2

�
z22 þ e22

�
þ
1
2
�
e22 þ z22

�
− k3e22 þ

1
2

γβ
�
e32 þ ~z22

�

− γk4e32: ð87Þ

_V ≤ z12
�

ε
2

− εΛþ
1
2
f1 þ

1
2
f1
�

þ z22
�

ε
2
þ
1
2
f1 þ f2 − k2 þ

1
2
p3 þ

1
2
f2 þ

2αp32

k1k2
þ
1
2

�

þ ~z22
�

k2 þ
1
2
f1 þ

1
2
f2 þ

1
2
p3 − k1

þ
1
2

γβ
�

þ e12
�

− p4α
�
þ e22

�
1
2
p3 þ

1
2
p3 þ

2αp32

k1k2
þ
1
2

− k3
�

þ e32
�
1
2

γβ − γk4
�

: ð88Þ
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