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Congenital hemolytic anemias (CHAs) are a heterogeneous group of rare hereditary

conditions including defects of erythrocyte membrane proteins, red cell enzymes, and

disorders due to defective erythropoiesis. They are characterized by variable degree of

anemia, chronic extravascular hemolysis, reduced erythrocyte life span, splenomegaly,

jaundice, biliary lithiasis, and iron overload. Although few data are reported on the

role of the immune system in CHAs, several immune-mediated mechanisms may be

involved in the pathogenesis of these rare diseases. We reported in ∼60% of patients

with hereditary spherocytosis (HS), the presence of naturally-occurring autoantibodies

(NAbs) directed against different membrane proteins (α- and β-spectrin, band 3, and

dematin). Positive HS subjects showed a more hemolytic pattern and NAbs were

more evident in aged erythrocytes. The latter is in line with the function of NAbs in

the opsonization of damaged/senescent erythrocytes and their consequent removal

in the spleen. Splenectomy, usually performed to reduce erythrocyte catheresis and

improve Hb levels, has different efficacy in various CHAs. Median Hb increase is 3

g/dL in HS, 1.6–1.8 g/dL in pyruvate kinase deficiency (PKD), and 1 g/dL in congenital

dyserythropoietic anemias (CDA) type II. Consistently with clinical severity, splenectomy is

performed in 20% of HS, 45% of CDAII, and in 60% of PKD patients. Importantly, sepsis

and thrombotic events have been registered, particularly in PKD with a frequency of∼7%

for both. Furthermore, we analyzed the role of pro-inflammatory cytokines and found

that interleukin 10 and interferon γ, and to a lesser extent interleukin 6, were increased

in all CHAs compared with controls. Moreover, CDAII and enzymatic defects showed

increased tumor necrosis factor-α and reduced interleukin 17. Finally, we reported that

iron overload occurred in 31% of patients with membrane defects, in ∼60% of CDAII

cases, and in up to 82% of PKD patients (defined by MRI liver iron concentration >4mg

Fe/gdw). Hepcidin was slightly increased in CHAs compared with controls and positively

correlated with ferritin and with the inflammatory cytokines interleukin 6 and interferon γ.

Overall the results suggest the existence of a vicious circle between chronic hemolysis,

inflammatory response, bone marrow dyserythropoiesis, and iron overload.

Keywords: congenital hemolytic anemias, splenectomy, inflammation, cytokines, iron overload, naturally
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INTRODUCTION

Congenital hemolytic anemias (CHAs) are a heterogeneous
group of rare hereditary conditions characterized by reduced
life span and premature removal of the erythrocytes from
the circulation. They comprise defects of the erythrocyte
membrane proteins and of red cell enzymes metabolism, as well
as alterations at the level of erythrocyte precursors, resulting in
defective bone marrow erythropoiesis. The typical examples of
membrane defects are hereditary spherocytosis (HS), hereditary
elliptocytosis (HE), and the group of hereditary stomatocytosis
(HSt). Glucose-6-phosphate dehydrogenase (G6PD) and
pyruvate kinase (PK), are the most common enzyme deficiencies,
and congenital dyserythropoietic anemia (CDA) type II is the
best studied form among defective erythropoiesis. The role of the
immune system has been poorly investigated in these conditions,
at variance with the several reports in hemoglobinopathies such
as sickle cell disease and thalassemia, which are beyond the scope
of this review.

In this review the role of naturally-occurring autoantibodies
will be discussed focusing on their ability to opsonize
damaged/senescent erythrocytes that are consequently removed
in the spleen. Furthermore, as splenectomy is one of the
therapeutic options in these conditions, we will describe the
immunological abnormalities following this procedure, with
particular reference to increased infectious and thrombotic
risk. Finally, given the increasing interest in the occurrence
of iron overload in CHAs and consequent relevant clinical
complications, we will review available literature on this topic.
We will focus on the pathophysiology of iron overload which
is closely linked to inflammatory cytokines and to the hepcidin
pathway, which in turn is straightly linked to the immune system.

CLINICAL AND MOLECULAR FINDINGS IN
CHAs

Although some hemolytic features are present also in
hemoglobinopathies, the classic CHAs are characterized by
chronic extravascular hemolysis, splenomegaly, jaundice, biliary
lithiasis, and a variable degree of anemia and iron overload. The
most relevant genetic basis of CHAs are shown in Table 1 and
more detailed description of the different forms is given in the
following sections.

Red Cell Membrane Disorders
Inherited RBC membrane disorders are caused by quantitative
or qualitative defects in transmembrane or cytoskeletal proteins
of erythrocytes (1–3). HS is the most frequent congenital
hemolytic anemia in Caucasians, with reported prevalence
ranging from 1:2,000 to 1:5,000, and is characterized by a highly
heterogeneous molecular defect, involving the genes coding
for RBC membrane proteins SPTA1 (α-spectrin), SPTB (β-
spectrin), SLC4A1 (band 3), ANK1 (ankyrin), EPB42 (protein
4.2). In general, these abnormalities affect the vertical interactions
between phospholipid bilayer and the cytoskeleton of RBC
membrane, resulting in a progressive change of the discocytes
into osmotically fragile spherocytes that are recognized and

sequestered by the spleen (4). HE, characterized by the presence
of elliptocytes in peripheral blood smear, is more prevalent
in malaria endemic regions in West Africa; it is usually
an asymptomatic condition, but moderate to severe anemia
may be present in ∼10% of cases (5). The severe recessive
variant is hereditary pyropoikilocytosis, in which the significant
membrane fragmentation and reduced surface area is mostly
caused by a pathogenic mutation in SPTA1 gene inherited in
trans to the hypomorphic variant αLELY (Low Expression LYon)
(6). In HSt the inability to regulate the cation homeostasis
lead to inappropriate shrinkage (dehydrated HSt) or swelling
(overhydrated HSt) of the RBCs (7–13). Finally, “Gardos
cahnnelopathy” is a recently described form of HSt with some
differences in the clinical phenotype and hematological features,
caused by mutations in KCNN4 gene (14–18).

Defects of Red Cell Metabolism
CHAs also occur as a consequence of RBC metabolism defects,
affecting one of the three main metabolic pathways: the Embden-
Myerhof pathway (glycolysis), the nucleotide metabolism, and
the exose-monophosphate shunt. G6PD deficiency is the
most common erythroenzymopathy, usually causing acute
hemolysis during oxidative stress, with the exception of the
class-I variants, which also result in chronic hemolysis (19,
20). Among the abnormalities of glycolytic enzymes, the
most common is PK deficiency (PKD) (21–25), followed by
glucosephosphate isomerase and hexokinase deficiency (26–
29). Pyrimidine 5′-nucleotidase is the most frequent defect of
nucleotidemetabolism (30), whereas adenylate kinase deficicency
has been reported in 12 families only (31). When the involved
gene is ubiquitously expressed, the enzymopathy may be
associated to extra-hematological signs such neuromuscular
abnormalities, myopathy and mental retardation, as in the case
of triosephosphate isomerase (32, 33), phosphoglycerate kinase
deficiency (34) and phosphofructokinase deficiency (35).

Congenital Dyserythropoietic Anemias
Congenital dyserythropoietic anemias (CDA) comprise a
group of rare/very rare diseases characterized by ineffective
erythropoiesis and morphological abnormalities of bone marrow
erythroblasts (36, 37), caused by different molecular mechanisms
affecting cell maturation and division. Three major types and
other more rare or sporadic variants can be classified, on the
basis of the typical morphology and on the affected genes
(38–40). CDA type I, caused by biallelic mutations in CDAN1
(CDAIa) or c15orf41 (CDAIb) genes, is characterized by the
presence of 2-5% binucleated erythroblasts of different size
and shape in bone marrow, chromatin bridges between nuclei,
and dense heterochromatin with a “Swiss cheese” appearance
when observed at electron microscopy (41). CDA type II
(CDAII) is a recessive disease caused by mutations in the
SEC23B gene (42, 43), characterized by 10–35% binucleated and
multinucleated erythroblasts which present with a peripheral
double membrane, and hypoglycosylation of band 3 as a
biochemical hallmark. CDAIII is caused by the dominant P916R
mutation of KIF23 gene with large multinucleated erythroblasts
(44), whereas E325K mutation of KLF1 gene is responsible for
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TABLE 1 | Genetic basis of congenital hemolytic anemias.

Gene Gene location Function Trasmission

RBC membrane defects

Hereditary spherocytosis SPTA1 1q23.1 Membrane skeletal network AR

SPTB 14q23.3 Membrane skeletal network AD

SLC4A1 17q21.31 Anion exchange channel

Link to glycoltytic enzymes

Vertical interactions

AD

ANK1 8p11.21 Vertical interactions AD, de novo

EPB42 15q15.2 Stabilize band3/ankyrin complex AR

Hereditary elliptocyosis SPTA1 1q23.1 Membrane skeletal network AD

SPTB 14q23.3 Membrane skeletal network AD

EPB41 1p35.3 Stabilize spectrin-ankyrin contact AD

Hereditary

pyropoikylocytosis

SPTA1/ SPTA1LELY

SPTA1/ SPTB

SPTB/SPTB

1q23.1 Membrane skeletal network AR

Hereditary stomatocytosis

Dehydrated PIEZO1 16q24.3 Mechanosensitive ion channel AD

Overhydrated RHAG 6p12.3 Rh -blood group AD

Gardos Channelopathy KCNN4 19q13.31 Potassium Ca2+-Activated Channel AD, de novo

RBC enzyme defects

Glucose-6-phosphate

dehydrogenase deficiency

G6PD Xq28 Hexose-monophosphate shunt X-linked

Pyruvate kinase deficiency PK-LR 1q22 Glycolysis AR

Glucosephosphate

isomerase deficiency

GPI 19q13.11 Glycolysis AR

Triosephosphate isomerase

deficiency

TPI1 12p13.31 Glycolysis AR

Hexokinase deficiency HK1 10q22.1 Glycolysis AR

Phosphofructokinase

deficiency

PFK-M

PFK-L

12q13.31

21q22.3

Glycolysis AR

Phosphoglycerate kinase

deficiency

PGK1 Xq21.1 Glycolysis X-linked

Pyrimidine-5′-nucleotidase

deficiency

NT5C3A 7p14.3 Nucleotide metabolism AR

Adenylate kinase deficiency AK1 9q34.11 Nucleotide metabolism AR

Congenital dyserythropoietic anemias

CDAI CDAN1

C15ORF41

15q15.2

15q14

Microtubule attachments

Restriction endonuclease

AR

CDAII SEC23B 20p11.23 Vescicle trafficking AR

CDAIII KIF23 15q23 Cytokinesis AD

CDA variants GATA1 Xp11.23 Transcription factor X-linked

KLF1 19p13.13 Transcriptional activator AD

AR, Autosomic recessive; AD, Autosomic dominant.

CDAIV (45) and mutations in GATA1 gene cause an X-linked
sporadic form (46).

THE ROLE OF NATURALLY OCCURRING
ANTIBODIES IN CHAs

Natural antibodies (Nabs) are circulating antibodies that, in
healthy subjects, occur without known immune exposure or
vaccination. They are mainly moderate affinity polyreactive IgM
and are secreted by B1 cells, a subset of B cells that have

been identified as CD20+CD27+CD43+ memory B cells without
activation markers (47, 48). NAbs play different roles in health
and disease (49). They contribute as a first line of defense from
infection of bacterial, viruses, protozoa, and fungi (50, 51). This
activity is mediated by opsonisation and neutralization of the
pathogens, by activation of T cell and B cell responses, and by the
induction of long-term immunememory cells (52, 53). NAbs play
also a crucial role in the maintenance of the immune homeostasis
by recognizing apoptotic cells membranemarkers and promoting
the process of their phagocytic clearance (54). Moreover, there is
evidence that NAbs binding to inflammatory cytokines protect
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FIGURE 1 | The several roles of Naturally Occurring Antibodies (NAbs).

against improper inflammation (55). In addition, they concur to
the opsonisation and removal of potentially harmful elements,
thus exerting a physiologic antitumor surveillance (56). Finally,
NAbs are closely related to autoimmunity, acting in a dual
manner. On one hand, they prevent autoimmune disease by
binding to immune-complexes and promoting their removal,
or to self-antigens by increasing their exposure to immature
B cells, and thus inducing tolerance (57, 58). On the other
hand, in systemic autoimmune diseases, NAbs can bind to
different self-molecules, such as nucleic acids, phospholipids,
erythrocytes, serum proteins and cellular components, and cause
disease through the formation of immune complexes (49, 59, 60)
(Figure 1).

Regarding CHAs, NAbs anti-spectrin and anti-band 3 had
been described long ago in sera from healthy subjects and
in β-thalassemia patients, hypothesizing a physiologic role in
the clearance of debris of lysed cells (61, 62). In particular,

Reliene et al. (63) demonstrated the presence of high-affinity
NAbs directed against RBCs (up to 140 molecules per cell) in
band 3-deficient HS patients. Moreover, their number increased
in with cell age, suggesting a possible role in removal of
senescent cells. In line with these results, Zaninoni et al. (56)
found that 61% of HS cases showed RBC-bound IgG positive
values (up to 330 ng/mL), detected by mitogen-stimulated direct
antiglobulin test (MS-DAT). The latter, is a sensitive test that
may amplify autoantibody secretion, including NAbs production,
through mitogen stimulation in vitro (64, 65). RBC-bound IgG
were directed against different membrane proteins (α- and β-
spectrin, band 3, and dematin) and were more evident in aged
samples obtained after several days of storage at 4◦C (56). As
shown in Table 2, positive HS cases, mainly spectrin-deficient
cases, had an increased number of spherocytes and showed
a more hemolytic pattern (increased number of reticulocytes,
unconjugated bilirubin and LDH values), suggesting that these
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TABLE 2 | Hematological characteristics of HS patients divided according to

MS-DAT positivity.

MSDAT negative MSDAT positive

Non-splenectomized

N◦ patients 30 48

Hemoglobin (g/dL) 12.5 ± 2.2 12.3 ± 1.8

Spherocytes (%) 5 (2–24) 7 (1–68)

Reticulocytes ×103/mmc 147 ± 98 278 ± 133

Unconjugated bilirubin 2.7 ± 2.3 3.0 ± 2.1

LDH (U/L) 396 ± 158 473 ± 163

Haptoglobin <20 mg/dL (N) 22/30 (73%) 43/48 (89%)

IgG bound to RBC (ng/mL) 105 ± 31 331 ± 217

Splenectomized

N◦ patients 6 3

Hemoglobin (g/dL) 15 ± 0.65 13.9 ± 1.6

Spherocytes (%) 8 (5–11) 4 (3–20)

Reticulocytes ×103/mmc 85 ± 29 95 ± 77

Unconjugated bilirubin 0.5 ± 0.17 1.5 ± 1.8

LDH (U/L) 342 ± 54 322 ± 93

Haptoglobin <20 mg/dL (N) 0/6 (0%) 2/7 (35%)

IgG bound to RBC (ng/mL) 100 ± 44 277 ± 131

Values are expressed as median (range) or mean±DS. Normal values are Hb: 13.6–16.7

g/dL; MCV 78-99 fL; reticulocytes: 16–84 × 103/mmc; unconjugated bilirubin <0.75

mg/dL, aptoglobin: 30–200mg/dL; LDH: 135–214 U/L. Data obtained from Zaninoni et al.

(56).

antibodies may have a pathogenic role, participating in the loss of
membrane area and reduction of surface-to-volume ratio (66).
This phenomenon is less evident in splenectomised patients
who lack the main organ in which RBC clearance occurs. In
fact, the amount of RBC-bound IgG is slightly lower in these
patients compared to non-splenectomised ones. Although there
is no direct evidence that RBC antibodies induced by mitogen
stimulation are NAbs, their increase with RBC age, and their
greater amount in more hemolytic HS subjects are in favor of
this hypothesis. Altogether these findings suggest that a humoral
immune response has a role in removing senescent and damaged
HS cells, thus participating in the clinical picture, and severity of
the disease.

THE ROLE OF THE SPLEEN AND EFFECTS
OF SPLENECTOMY IN CHAs

It is well-established that the spleen is the main catheretic organ
involved in the removal of damaged or abnormal red blood
cells, mainly via the macrophage system. In fact, splenectomy
has been suggested as a possible therapeutic approach for various
hemolytic diseases including CHAs. Its efficacy greatly varies
among different pathologies, being maximal in HS, moderate
in red cell enzyme defects, and minimal in dyserythropoietic
anemias. Autoimmune hemolytic anemia (AIHA) and immune
thrombocytopenia (ITP) are two acquired autoimmune disorders
were splenectomy has been the only second line therapy
for many years (67, 68). In recent years, the percentage of

patients with CHAs or autoimmune cytopenias subjected to
this therapeutic option has progressively declined due to the
availability of new drugs and to the increasing awareness
of possible complications. They include short- and long-
term infections by encapsulated microorganisms (Streptococcus
pneumonie, Neisseria meningitides, and Hemophilus influenza)
(69), thrombotic events and pulmonary hypertension (70, 71).
The mechanism underlying thrombotic complications are poorly
understood. Early thrombotic events have been related to stasis in
the splenic vein remnant, increased numbers of platelets, and to
large spleen size previous surgery. Additional mechanisms, under
investigation, are endothelial alterations, presence of activated
platelets, and increased amounts of circulating procoagulant
microvescicles. Moreover, there is an interplay between the
coagulation and the immune system, particularly with the
complement cascade as highlighted in paroxysmal nocturnal
hemoglobinuria (72).

Concerning CHAs, a large retrospective analysis reported that
splenectomy has been performed in 21% of HS patients and
induced a median Hb increase of 3 g/dL (from 10.8 g/dL to 13.9
g/dL) (73). After splenectomy no infectious complications have
been reported in a recent meta-analysis (74). On the contrary,
episodes of stroke, pulmonary emboli or pulmonary arterial
hypertension have been described with an overall risk 5.6-fold
higher than in non-splenectomised (71, 75–77).

Regarding PKD, Zanella et al. (21, 22) reported that 18/61
(30%) patients had been splenectomised with an amelioration of
the hemoglobin levels (median Hb increase of 1.8 g/dL, range
0.4–3.4). In the more recent and larger international series of
splenectomised PKD cases, Grace et al. (23) showed that 59%
of patients have been splenectomised at a median age of 6.5
years (range 0.4–37.8) with a median Hb increase of 1.6 g/dL.
Sepsis and thrombotic events have been registered in 7 and
8%, respectively.

Regarding HSt, splenectomy is contraindicated in both
dehydrated and overhydrated types, due to the highly increased
risk of thromboembolic complications. In old case reports, severe
thrombotic complications after surgery have been documented
in 100% of cases, of which 3 were fatal (78–80). More recently,
Andolfo et al. (81) reported that Hb levels did not improve
and severe thrombotic episodes occurred in 5 PIEZO1-mutated
splenectomized cases. Moreover, Picard et al. (82) described 12
cases in which splenectomy has been performed at a median
age of 24 years (range, 4–41) and before the diagnosis of
DHSt. Surgery didn’t ameliorate hemolysis (mean Hb level
11.2±1.9 g/dL and reticulocytes count 280 ± 134 × 109/L after
splenectomy). Thrombotic complications occurred in all the 8
splenectomised patients with PIEZO1mutation, while in none of
the 4 subjects with KCNN4mutation.

Finally, splenectomy has been described in 13/53 (25%)
CDAI patients with severe anemia and mainly transfusion-
dependent. Surgery has been performed mainly in adulthood
(range 27–42 yrs) and 6/13 patients became transfusions-
independent. However, the long follow-up performed revealed
that 3 patients died, 1 of pulmonary arterial hypertension and
2 of overwhelming sepsis (83, 84). Concerning CDAII, Heimpel
et al. (85) described that splenectomy has been performed in
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22/48 (46%) patients at a median age of 19.9 years (range 1–
50) with a median Hb improvement of about 1 g/dL, remaining
below the reference values. The analysis of a larger series of
101 CDAII patients from 91 families, with a median follow-up
of 23 years (range 0–65), is in line with these results (86): 40/
101 cases underwent splenectomy, 16 of whom before diagnosis
of CDAII, and at median age of 19 years (range 3–56). The
rate of splenectomy dropped from 40 to 24% by considering
only patients splenectomised after the diagnosis of CDAII, and
further decreased to 7.5% by considering only the patients
splenectomised in the past 15 years. The median Hb increase
was 1.7 g/dL (range 1–6,7 g/dL, and splenectomy abrogated
transfusion requirement in all patients but three. Information on
splenectomy complications was available in 12 patients: one child
had a thromboembolic event soon after surgery, and two patients
had sepsis after 3 and 15 years. Table 3 summarizes available
studies on splenectomy in CHAs with the relative efficacy and
safety data.

In conclusion, the efficacy of splenectomy in CHAs mainly
resides in the removal of the catheretic organ. However,
as the spleen plays an important role in the immune
system, this therapeutic option may be accompanied by a
reduction of the immune competence with possible serious
consequences. To reduce their development, patient education
and immediate interventions in case of febrile episodes are
pivotal. Additional important prophylaxis includes continuous
antimicrobial therapy and periodical re-vaccination.

CYTOKINE AND ERYTHROPOIETIN
LEVELS IN CHAs

It is well-known that there is a complex interplay between
hemolysis, inflammation, and erythropoiesis (87). Although
intravascular hemolysis is not the main pathogenic mechanism
in CHAs, it may occur in acute and severe hemolytic
crisis, and results in the release of cell-free hemoglobin
that has pro-inflammatory properties (88). Moreover, it is
clearly demonstrated that anemia of chronic inflammatory
disease is driven by alterations of several immune-regulatory
cytokines. In particular, overproduction of pro-inflammatory
mediators, such as interleukin (IL)1-β, tumor necrosis factor
(TNF)-α, IL-6, and interferon (INF)-γ, have been reported
in several conditions including autoimmune diseases, chronic
kidney and pulmonary disease, cancer, and chronic infections
(89). In particular, in autoimmune hemolytic anemia several
abnormalities of immune regulatory cytokines have been
reported: high serum levels of IL-10 and IL-12 (90) and
increased IL-1α, IL-2/IL-2R, IL-6, and IL-21. In cell supernatants,
the T helper (Th)-1 cytokines IL-2 and IL-12 were reported
elevated, whereas IFN-γ was found reduced, and the Th-2
cytokines IL-4 and IL-13 were increased, together with elevated
production of IL-6, IL-10, and IL-17 (64, 91). Moreover,
AIHA patients with active hemolysis showed further reduction
of IFN-γ and increased secretion of transforming growth
factor (TGF)-β that favor the differentiation of a Th-17
subset, which amplifies the pro-inflammatory and autoimmune

response (92). It is known that inflammatory cytokines down-
regulate erythropoietin (EPO) production, thus compromising
erythropoiesis, and can activate erythrophagocytosis, especially
in acute inflammation (89, 93).

Regarding CHAs, little is known about cytokine levels.
Barcellini et al. (94) described cytokine status and EPO levels
in 52 patients with membrane or enzymatic defects and CDAII.
As shown in Figure 2, IL-10 and IFN-γ were increased in
all groups compared to age and sex matched controls, being
particularly evident in membrane defects. IL-6 was increased
as well, although to a lesser extent. Interestingly, CDAII and
enzymatic defects showed a similar pattern regarding TNF-α and
IL-17 with increased values of TNF-α and reduced levels of IL-
17. Finally, EPO levels were increased in CHAs compared with
controls, particularly in CDAII, possibly reflecting an attempt to
compensate anemia. These alterations showed no relationship
with severity of the clinical phenotype, i.e., degree of anemia
and hemolysis. This was the first evaluation of cytokines in these
diseases and results should be interpreted with caution due to
the limited sample size and to the high inter-individual variation
of the cytokine signature. However, it can be speculated that a
chronic inflammation exists also in CHAs and may affect proper
bone marrow compensatory erythropoiesis. Moreover, it may
play a role in the complex interplay between hemolysis and
iron overload.

THE VICIOUS CIRCLE OF IRON AND THE
IMMUNE SYSTEM IN CHAs

It is well-recognized that iron overload (IO) occurs in
hemoglobinopathies, also because of transfusion support.
Complication of IO are well-described in these diseases, and
include cardiac dysfunction (arrhythmia, cardiomyopathy,
hemosiderosis), liver cirrhosis, liver cancer and hepatitis,
metabolism dysfunction (diabetes, hypogonadism, thyroid
disorders, parathyroid, and less level of adrenal glands), and
delays in sexual maturity, impotence and infertility (95–97).

Occurrence of iron overload is well-documented in
dyserythropoietic anemias, PKD and HSt. Russo et al. (98)
reviewed data of 205 CDAII showing that 57% patients had
a serum ferritin level of >500µg/ml, of whom 15% never
transfused, and a transferrin saturation (TfSat) value of about
60%. More recently, IO was reported in 45% of PKD patients,
as defined by ferritin levels >1,000 µg/L or chelation. A liver
iron concentration (LIC) > 4mg Fe/gdw was observed in 82% of
patients by magnetic resonance imaging (MRI), even in absence
of regular transfusions (23, 99). Moreover, van Strateen et al.
(100), showed that LIC ≥ 3mg Fe/gdw was present in 71%
(31/44) of patients with CHAs and LIC ≥ 7mg Fe/gdw was
present in 36% (16/44), regardless of transfusion dependency
and ferritin levels >1,000 µg/L. None of the patients had
cardiac iron overload. Iron overload has been also described in
HSt, particularly in the DHSt form and Gardos chanellopathy,
where hyperferritinemia, high transferrin saturation or clinical
iron overload are very frequent (81, 82, 101). In these cases
hyperferritinemia is not related to transfusions since usually

Frontiers in Immunology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 1309

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zaninoni et al. Immune Mechanisms in Congenital Hemolytic Anemias

TABLE 3 | Effect of splenectomy in congenital hemolytic anemias.

Main hematological findings Complications References

Hereditary Spherocytosis Median Hb increase of 3 g/dL

Normalization of reticulocytosis

Decrease of unconjugated bilirubin and

LDH levels

No infectious complications Thrombotic

events (risk 5.6-fold higher)

(75)

(76)

(73)

(77)

(71)

(74)

Dehidrated Hereditary

Stomatoytosis (PIEZO1)

Hb amelioration in few reported cases

No amelioration of Hb levels

Severe/fatal thrombotic complications

(PHT, PE; priapism)

Severe thrombotic events

(78)

(79)

(80)

(81)

(82)

Gardos Chanellopathy

(KCNN4)

Amelioration of Hb levels No thrombotic events (81)

(82)

Piryuvate Kinase deficiency Median Hb increase of 1.6–1.8 g/dL

Decrease of unconjugated bilirubin

Reduction in the number of patients

receiving regular transfusions

Sepsis in 7% of cases

Thrombotic events in 8% of cases

(21)

(22)

(23)

Congenital

Dyserythropoietic anemia

type I

Amelioration of Hb levels

Transfusion-independency in some cases

Fatal complications: 1 pulmonary arterial

hypertension and 2 overwhelming sepsis

(83)

(84)

Congenital

Dyserythropoietic anemia

type II

Hemoglobin concentration improved in all

patients but remaining below reference

values

Decrease of bilirubin levels

Median Hb increase of 1.7 g/dL

Transfusion-independency in almost

all cases

No infectious or thrombotic episodes

Sepsis: 2 episodes

Thrombotic event: 1 episode

(85)

(86)

PE, pulmonary embolism; PHT, pulmonary hypertension.

FIGURE 2 | Cytokine and erythropoietin serum levels in congenital hemolytic anemias. Values are expressed as mean±SD. Data obtained from Barcellini et al. (94).

patients are not transfused on a regular basis. Serum ferritin
level up to ∼1,000 µg/L, TfSat value of about 60–70%, LIC ≥

4mg Fe/gdw, and cardiac T2∗ < 10ms, have been described in
case reports (102–105). Similar results have been reported in a
large series of 126 patients were the mean±SD ferritin level at

diagnosis was 764±480 µg/L (1,702 ± 1,048 µg/L in 5 KCNN4
gene mutated cases, and 656 ± 428 µg/L in 40 PIEZO1 mutated
patients); mean liver iron content, evaluated by MRI, was 200 ±
103µmol/g at diagnosis (82). Finally, Barcellini et al. (94) studied
52 patients with different CHAs showing that 60% of subjects had
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TABLE 4 | Iron overload in congenital haemolytic anemias.

Main hematological findings Complications Reference

Hereditary Spherocytosis Median ferritin value 634 µg/L (192–1,171) (n = 26)

Median TfSat value 36 % (23–67)

Median NTBI value −0.08 µmol/L (−1.1 to 4.05)

Mean ± SD hepcidin value 29.7 ± 4 ng/mL

LIC > 4mg Fe/gdw in 8/26 cases

1 patient showed moderate cardiac IO

(T2* 13ms)

(94)

Dehidrated Hereditary

Stomatoytosis (PIEZO1)

Ferritin value up to ∼1,000 µg/L

TfSat value of ∼60–70%

LIC ≥ 4mg Fe/gdw

Cardiac IO with T2* < 10ms

(102)

(103)

(105)

(104)

Mean ± SD ferritin value 656 ± 428 µg/L (n = 40) Mean liver iron content, evaluated by MRI,

was 200±103 µmol/g

(82)

Median ferritin value 425 µg/L (n = 20) Not reported (81)

(106)

Gardos Chanellopathy

(KCNN4)

Mean ± SD ferritin value 1,702 ± 1,048 µg/L (n = 5) Mean liver iron content, evaluated by MRI,

was 200±103 µmol/g

(82)

Piruvate Kinase Deficiency Median ferritin value 425 µg/L (182–1,605) (n = 17)

Median TfSat value 52% (22–89)

Median NTBI value 0.26 µmol/L (−0.48 to 2.37), Mean

± SD hepcidin value 15.15 ± 3 ng/mL.

LIC > 4mg Fe/gdw in 6/17 cases.

Overall prevalence of IO was 45% (82/181)

as defined by ferritin or chelation; 82%

(67/82) as define by LIC > 4mg Fe/gdw

(94)

Median ferritin value 583 ng/mL (17–5,630).
7% (5/75) of cases had cardiac IO

(99)

(23)

Congenital

Dyserythropoietic Anemia

type II

Median ferritin value 441 µg/L (206–1,605) (n = 9)

Median TfSat value 85% (13–92)

Median NTBI value 1.07 µmol/L (0.9–2.15)

Mean ± SD hepcidin value 17.6 ± 6.5 ng/mL.

LIC > 4mg Fe/gdw in 7/9 cases

1 patient showed moderate cardiac IO

(T2* 12.7ms)

(94)

Median ferritin value 464.8 ± 55.9 µg/L (n = 109)

Median TfSat value of ∼60%

Not reported (98)

Median max ferritin value 668 µg/L (27–5,267) (n = 98)

Median max TfSat value of 81% /20–157) (n = 79)

Not reported (86)

n, number of patients; TfSat, Transferrin saturation; NTBI, Non-transferrin-bound serum iron; LIC, liver iron concentration.

ferritin values> 500 µg/L. TfSat was > 50% in 31% of patients
with membrane defects, in 66% with CDAII, and in 53% with
enzymopathies. Moreover, non-transferrin-bound serum iron
(NTBI) serum levels were increased in CDAII and moderately
augmented in enzymatic defects. By MRI, median LIC value was
3.4mg Fe/gdw (range 1.4–16.1) and 40% of patients, almost all
CDAII, had a LIC ≥4 mg Fe/gdw (Table 4).

Among factors possibly involved in IO, low hepcidin levels,
ineffective erythropoiesis and an altered pro-inflammatory
cytokine profile have been suggested to play different roles
in CHAs (107–109). Ineffective erythropoiesis is probably the
leading mechanism, since the greater frequency of IO is observed
in CDAII, and dehydrated stomatocytosis (13, 110). In line with
this hypothesis a correlation was observed between LIC and
EPO levels (94). In the same series, hepcidin, the main hormone
involved in the regulation of iron homeostasis, was slightly
increased in CHAs compared with controls, and positively
correlated with ferritin. Moreover, hepcidn positively correlated
with the inflammatory cytokines IL-6 and IFN-γ, and has a direct
pro-inflammatory activity (89, 93). Further evidence for the
interplay between iron and inflammation comes from studies in
DHSt, where hepcidin levels were decreased and erythroferrone
(ERFE), the negative regulator of hepcidin, slightly increased. In
patients with gain-of-function mutations in PIEZO1, inhibition
of the bone morphogenetic proteins (BMP)/small mother against
decapentaplegic (SMADs) pathway was involved in hepatic iron
metabolism impairment (106). In addition, another important

FIGURE 3 | Vicious circle among chronic hemolysis, inflammatory response

and iron overload. IL, Interleukin; IFN, Interferon; TfSat, Transferrin saturation;

NTBI, Non-transferrin-bound serum iron.

factor for iron balance is emojuvelin (HJV), a co-receptor of
BMP that is degraded in juvenile hemochromatosis, causing
severe hepcidin deficiency and iron overload. Fillebeen et al.
(111) showed that HJV knocked-out mice failed to mount an
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appropriate hypoferremic response to acute inflammation caused
by lipopolysaccharide. Finally, it is well-known that hemolytic
crisis in CHAs may be triggered by infectious episodes that may
therefore fuel the inflammatory loop. Overall the results suggest
the existence of a vicious circle between chronic hemolysis,
inflammatory response and IO (Figure 3).

CONCLUSION

Although few data are reported on the role of the immune
system in CHAs, several immune-mediated mechanisms are
certainly involved in the pathogenesis of these rare diseases,
namely naturally-occurring autoantibodies, spleen catheresis,
overexpression of inflammatory cytokines, and iron overload.
Regarding the first, naturally-occurring autoantibodies have a
function in the opsonization of damaged/senescent erythrocytes
and consequently further increase of their removal in the
spleen, participating in the clinical picture and severity of
the disease. Furthermore, splenectomy is performed in CHAs

with variable degree of efficacy related to reduction of
erythrocyte catheresis. However, it is important to remind

that spleen is part of the immune system and its removal
is associated with a variable immune deficiency, infections,
and a higher thrombotic risk. Regarding the third mechanism,
there is undoubtedly a role for pro-inflammatory cytokines
in perpetuating chronic inflammation, which in turn may
affect proper bone marrow compensatory erythropoiesis. This
may account for a vicious circle among low-grade chronic
inflammation, chronic hemolysis, and increased production of
hepcidin, resulting in iron overload in a considerable and
underestimated proportion of CHAs.
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