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VCAM1 expression 
in the myocardium is associated 
with the risk of heart failure 
and immune cell infiltration 
in myocardium
Tongyu Wang1,2, Jiahu Tian1,2 & Yuanzhe Jin1*

Ischemic heart disease (IHD) and dilated cardiomyopathy (DCM) are the two most common etiologies 
of heart failure (HF). Both forms share common characteristics including ventricle dilation in the 
final stage. Immune mechanisms in HF are increasingly highlighted and have been implicated in 
the pathogeneses of IHD and DCM. A better understanding of adhesion molecule expression and 
correlated immune cell infiltration could enhance disease detection and improve therapeutic targets. 
This study was performed to explore the common mechanisms underlying IHD and DCM. After 
searching the Gene Expression Omnibus database, we selected the GSE42955, GSE76701, GSE5406, 
GSE133054 and GSE57338 datasets for different expressed gene (DEGs) selection and new cohort 
establishment. We use xcell to calculate immune infiltration degree, ssGSEA and GSEA to calculate the 
pathway and biological enrichment score, consensus cluster to identify the m6A modification pattern, 
and LASSO regression to make risk predicting model and use new combined cohort to validate the 
results. The screening stage revealed that vascular cell adhesion molecule 1 (VCAM1) play pivotal 
roles in regulating DEGs. Subsequent analyses revealed that VCAM1 was differentially expressed in 
the myocardium and involved in regulating immune cell infiltration. We also found that dysregulated 
VCAM1 expression was associated with a higher risk of HF by constructing a clinical risk-predicting 
model. Besides, we also find a connection among the m6A RNA modification ,expression of VCAM1 
and immune regulation. Those connection can be linked by the Wnt pathway enrichment alternation. 
Collectively, our results suggest that VCAM-1 have the potential to be used as a biomarker or therapy 
target for HF and the m6A modification pattern is associated with the VCAM1 expression and immune 
regulation.

Heart failure (HF) is a clinical syndrome characterized by fatigue, dyspnea, and fluid retention, commonly caused 
by left-sided or whole-heart systolic dysfunction and accompanied by congestion1. The growth of the aging 
population and the increased prevalence rates of HF risk factors, including hypertension, diabetes, and obesity, 
have resulted in an increased prevalence of HF worldwide. A Rotterdam study showed that after adjusting for 
age, HF patients had a two-fold increased risk of total mortality and a 4–sixfold increased risk of sudden death 
compared with control subjects2.

Ischemic heart disease (IHD) and dilated cardiomyopathy (DCM) are the primary causes of HF. Both syn-
dromes present with clinical manifestations of cardiac insufficiency and overlapping symptoms and signs, but 
they lack specific manifestations. DCM is typically characterized by nonischemic left ventricular expansion, 
accompanied by changes in cardiac structure and function, and is the most prevalent cause of chronic congestive 
HF among individuals between the ages of 20 and 60 years3,4. The ventricular structure and function can change 
due to genetic variations, infections, inflammatory responses, and autoimmune diseases. Therefore, the American 
Heart Association classifies DCM as inherited, mixed, or acquired based on etiology, with idiopathic and famil-
ial diseases representing the most commonly reported causes of DCM5. Most HF due to DCM (approximately 
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70% of DCM-related cases) is attributed to a decrease in the myocardial contractile force caused by ventricular 
dilatation, whereas IHD causes chronic ventricular remodeling, eventually leading to ventricular dilatation and 
HF development6, suggesting that these two conditions may share a common underlying mechanism that causes 
HF. In addition to pathological conditions, genetic variations are also known to play roles in the progression 
of DCM. During recent decades, microarray technology and bioinformatics analyses have been widely used 
to screen genetic alterations at the genome level, leading to the identification of differentially expressed genes 
(DEGs) and functional pathways involved in the pathogeneses of many diseases7. After searching the Gene 
Expression Omnibus (GEO), we selected the GSE42955 and GSE57338 gene sets, derived from myocardial array 
data, for further analysis. The results revealed that vascular cell adhesion molecule 1 (VCAM1) was abnormally 
expressed in both DCM and IHD patients. Therefore, we speculated that VCAM1 plays an important role in the 
development of both conditions and could serve as a useful biomarker for prognostic assessments in patients 
with HF. The goal of this study was to further explore the utility of VCAM1 as a biomarker in HF induced by 
DCM and IHD.

Studies have implicated chronic inflammation in the development of myocardial structural and functional 
abnormalities during HF pathogenesis8. Inflammatory biomarkers play an important role in the prognostic 
assessment of patients with HF. For example, Alonso-Martinez et al. showed that patients with acute HF are at 
increased risk of hospitalization when their C-reactive protein (CRP) levels are > 9 mg/L, and CRP levels have 
also been associated with HF severity. VCAM1 is an adhesion molecule expressed on the activated endothelial 
surface, promoting leukocyte adhesion and cross-epithelial migration by binding leukocyte ligands, initiating 
an inflammatory response9. VCAM1 expression levels are significantly increased in patients with HF caused by 
acute myocardial infarction compared with healthy controls, and VCAM1 levels have good predictive value for 
patient prognosis10. Michowitz et al. showed that VCAM1 mediated the production of reactive oxygen species 
(ROS) by NADPH oxidase and further activated matrix metalloproteinases to induce ventricular remodeling11. 
The myocardium can be affected by numerous pathophysiological processes that can be broadly classified as 
ischemic and nonischemic. Ischemic injury is the primary pathophysiological mechanism underlying myocardial 
injury, and irreversible HF often follows acute ischemic injury or the progressive impairment of cardiac function 
due to various clinicopathological causes12. When the myocardium experiences an ischemic insult, the death of 
damaged and necrotic cardiomyocytes leads to the activation of tissue-resident immune and non-immune cells. 
The neutrophil and macrophage populations expand to remove dead cells and matrix debris, leading to the release 
of cytokines and growth factors that stimulate the formation of highly vascularized granulation tissue (i.e., con-
nective tissue and new vasculature)13. The pro-inflammatory cytokines and chemokines produced by immune 
cells can recruit inflammatory white blood cells from the bloodstream into damaged areas14. The immune sys-
tem drives acute inflammatory and regenerative responses after heart tissue damage15, and immune cells are 
involved in heart damage, ischemia, inflammation, and repair16. Although the immune system is known to play 
an important role in the pathogenesis of heart damage, more research remains necessary to identify the specific 
underlying mechanisms17. This study investigated the influence of VCAM1 expression on immune infiltration 
and HF occurrence and assessed the prognostic impact of VCAM1 expression by building an HF risk prediction 
model. In addition, we investigated the influence of the N6-methyladenosine (m6A) RNA modification on the 
expression of VCAM1 and immune modulation, which has not been explored in-depth.

Methods
Acquisition of array data and high‑throughput sequencing data.  The GSE42955, GSE76701, 
GSE5406, and GSE57338 gene expression profiles were obtained from the GEO database. The GSE42955 dataset 
was acquired using the GPL6244 platform (Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]) 
from a cohort comprised of 29 samples, including heart apex tissue samples from 12 idiopathic DCM patients, 
12 IHD patients, and 5 healthy controls. The GSE57338 dataset was acquired using the GPL11532 platform 
(Affymetrix Human Gene 1.1 ST Array [transcript (gene) version]) from a cohort comprised of 313 cardiac 
muscle (ventricle tissue) samples obtained from 177 patients with HF (95 IHD patients and 82 idiopathic DCM 
patients) and 136 healthy controls. The GSE5406 dataset was acquired using the GPL96 platform (Affymetrix 
Human Genome U133A array) from a cohort containing 210 samples from 16 healthy controls and 194 patients 
with HF (86 IHD and 108 idiopathic DCM patients). The GSE76701 dataset was acquired using the GPL570 
platform (Affymetrix Human Genome U133 Plus array 2.0) from a cohort containing 8 samples obtained from 4 
healthy controls and 4 patients with HF (IHD). The raw data in GSE133054, acquired using the GPL18573 plat-
form (Illumina NexSeq 500 [homo sapiens]), was obtained from the GEO database, consisting of samples from 
a cohort of 8 healthy controls and 7 patients with HF. After acquiring the original data, we annotated the raw 
data and performed normalization among samples using the SVA package in R. The raw counts from the RNA 
sequencing (RNA-seq) dataset were transformed into transcripts per million (TPM) to allow for direct com-
parison of VCAM1 expression levels. The specific details and raw data can be found in Supplemental Materials.

DEG screen.  We screened DEGs between patients with HF and healthy controls using the limma package in 
R (limma powers differential expression analyses for RNA-seq and microarray studies). Significance analysis for 
microarrays was utilized to select significantly different genes with p < 0.05 and log2 fold change (FC) ≥ 1. After 
obtaining DEGs, we generated a volcano plot using the R package ggplot2. We generated a heat map to better 
demonstrate the relative expression values of specific DEGs across specific samples for further comparisons. 
The heat map was generated using the ComplexHeatmap package in R (https://​joker​goo.​github.​io/​Compl​exHea​
tmap-​refer​ence/​book/). After the raw RNA-seq data were obtained, the edgeR package was used to normal-
ize the data and screen for DEGs. We used the Wilcoxon method to compare the levels of VCAM1 expression 
between the HF group and the normal group.

https://jokergoo.github.io/ComplexHeatmap-reference/book/
https://jokergoo.github.io/ComplexHeatmap-reference/book/
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Integration of protein–protein interaction (PPI) networks and core functional gene selec-
tion.  DEGs were mapped onto the Search Tool for the Retrieval of Interacting Genes (STRING) database 
(version 9.0) to evaluate inter-DEG relationships via protein–protein interaction (PPI) mapping (http://​string-​
db.​org). PPI networks were mapped using Cytoscape software, which analyzes the relationships between can-
didate DEGs that encode proteins found in the cardiac muscles of patients with HF. The cytoHubba plugin was 
employed to identify core molecules in the PPI network, where were identify as hub genes.

Establishment of the clinical risk prediction model.  The differentially expressed genes showing sig-
nificant (p < 0.05) correlations with VCAM1 expression by Spearman’s correlation analysis were further filtered 
using a least absolute shrinkage and selection operator (LASSO) model. The basic mechanism of a LASSO 
regression model is to identify a suitable lambda value that can shrink the coefficient of variance to filter out 
variation. The error plot derived for each lambda value was obtained to identify a suitable model. The entire risk 
prediction model was based on a logistic regression model. The glmnet package in R was used with the family 
parameter set to binomial, which is suitable for a logistic model. The cv.glmnet function of the glmnet package 
was used to identify a suitable lambda value for candidate genes for the establishment of a suitable risk predic-
tion model. The nomogram function in the rms package was used to plot the nomogram. The risk score obtained 
from the risk prediction model was expressed as:

 where β is the value of the coefficient for the selected genes in the risk prediction model and gene represents the 
normalized expression value of the gene according to the microarray data.

To build a validation cohort, after downloading and processing the data from the gene sets GSE5046, 
GSE57338, and GSE76701, using the inherit function in R software, we retracted the common genes among the 
three gene sets, and the ComBat function in the R package SVA was used to remove batch effects.

Immune and stromal cells analyses.  The novel gene signature–based method xCell (http://​xCell.​ucsf.​
edu/) was used to investigate 64 immune and stromal cell types using extensive in silico analyses that were also 
compared with cytometry immunophenotyping17. By applying xCell to the microarray data and using the Wil-
coxon method to assess variance, the estimated proportions of immune and stromal cell types were obtained 
for each myocardial tissue sample using a cut-off value of p < 0.05. Cell types were categorized into lymphoid (B 
cells, CD4+ memory T cells, CD4+ naive T cells, CD4+ T cells, CD4+ central memory T cells [Tcm], CD4+ effector 
memory T cells [Tem], CD8+ naive T cells, CD8+ T cells, CD8+ Tcm, CD8+ Tem, Class-switched memory B-cells, 
natural killer [NK] cells, NK T cells [NKT], plasma cells, T helper [Th]1 cells, Th2 cells, T regulatory cells [Tregs], 
Memory B cells, naive B cells, pro B cells, γδ T cells [Tgd]), myeloid (monocytes, macrophages, macrophage M1, 
macrophage M2, immature dendritic cells [iDCs], plasmacytoid dendritic cells [pDCs], activated dendritic cells 
[aDCs], conventional dendritic cells [cDCs], dendritic cells [DCs], neutrophils, eosinophils, mast cells, baso-
phils), stromal (mesenchymal stem cells [MSCs], adipocytes, preadipocytes, fibroblasts, pericytes, microvascular 
[mv] endothelial cells, endothelial cells, lymphatic endothelial cells, smooth muscle, chondrocytes, osteoblasts, 
skeletal muscle, myocytes), stem cells (hematopoietic stem cells [HSCs], common lymphoid progenitors [CLPs], 
common myeloid progenitors [CMPs], granulocyte–macrophage progenitors [GMPs], megakaryocyte-eryth-
roid progenitors [MEPs], multipotent progenitors [MPPs], megakaryocytes, erythrocytes, platelets), and others 
(epithelial cells, sebocytes, keratinocytes, mesangial cells, hepatocytes, melanocytes, astrocytes, neurons).

Gene set enrichment analysis (GSEA) and single‑sample GSEA (ssGSEA) analysis.  To further 
explore the potential functions of identified genes in HF, samples in the GSE57338 dataset were divided into 
HF and control groups prior to gene set enrichment analysis (GSEA)18. We selected Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways related to immune infiltration that were also associated with the occur-
rence of HF. We also subdivided the samples according to VCAM1 expression level (high- and low-expression 
groups) and performed GSEA for each subgroup. The R package clusterprofiler was utilized to perform the 
GSEA. The c2.cp.kegg.v7.1.symbols and c5.go.bp.v7.2.symbols gene sets were used as the reference gene sets, 
and p-adjusted < 0.05 was selected as the cut-off criterion.

To further investigate the pathways that connect m6A modification, immune regulation, and VCAM1 expres-
sion, we used the single-sample GSEA (ssGSEA), which is a specific method for calculating the enrichment scores 
for pathways in a single sample. We used the GSVA and GSEABase R packages to perform the ssGSEA analysis. 
The c2.cp.kegg.v7.1.symbols gene set was selected as the reference gene set, and p-value < 0.05, log2FC > 1 or 
log2FC <  − 1 were chosen as the cut-off criteria for enriched pathway selection.

Consensus clustering and analysis of immune parameters among clusters.  The expression pat-
terns of 23 m6A regulators identified in the 313 samples contained in gene set GSE57338 were examined using a 
consensus clustering analysis using a K-means algorithm with Spearman distance, which allowed for the identi-
fication of a new gene expression phenotype associated with the occurrence of HF. The analysis was performed 
using the ConsensusClusterPlus R package, with a maximum cluster number set to 10. The final cluster number 
was determined by the change in the area under the curve (AUC) for the consensus distribution fraction (CDF) 
curve.

Riskscore =
∑

β × gene

http://string-db.org
http://string-db.org
http://xCell.ucsf.edu/
http://xCell.ucsf.edu/
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Figure 1.   (a) Heat map of DEGs screened in myocardial tissue samples of subjects with DCM and controls in 
the GSE42955 dataset. (b) Volcanogram showing DEG screening of myocardial tissue from subjects with DCM 
and controls in the GSE42955 dataset. (c) Heat map of differently expressed genes (DEGs) in myocardial tissue 
samples of subjects with IHD and controls in the GSE42955 dataset. (d) Volcanogram showing DEG screening 
of myocardial tissue from subjects with IHD and controls in the GSE42955 dataset. (e) Intersection of DEGs 
in the IHD and DCM cohorts. (f) Protein–protein interaction (PPI) network for common DEGs. (g) The core 
function modules of the PPI network and the color refers to the connectivity.
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Results
DEGs in the GSE42955 gene set and hub gene selection.  The microarray data included in the 
GSE42955 dataset was divided into two groups (DCM vs. Control and IHD vs. Control) prior to the DEG 
analysis. With log2 FC = 1 as the threshold and p > 0.05 as the standard, 41 DEGs were identified in the DCM vs. 
Control cohort (21 upregulated and 20 downregulated, Fig. 1a,b), whereas 41 DEGs were selected in the IHD 
vs. Control cohort (10 upregulated and 31 downregulated, Fig. 1c,d). All the DEGs were shown in Table S1 with 
detailed p value and log FC. The intersection between the screened genes was identified, and 25 common DEGs 
were selected (Fig. 1e). The common DEGs were uploaded to the STRING database to form a network of gene 
interactions (Fig. 1f). The core functional modules were identified using the cytoHubba plugin for Cytoscape 
software. VCAM1 and intercellular adhesion molecule 1 (ICAM1) had the highest connectivity scores (Fig. 1g).

Screening DEGs in the GSE57338 dataset and clinical risk prediction model construction.  The 
DEGs in the heart tissue samples from the GSE57338 dataset were identified by comparing the HF group 
(n = 177) with the non-HF control group (n = 136). A total of 50 DEGs were selected using the thresholds of 
log2FC = 1 and p > 0.05 (Fig. 2a,b). VCAM1 expression was significantly higher in the HF group, suggesting that 
VCAM1 expression may serve as a potential biomarker for HF occurrence and development (Fig. 2c). Spear-

Figure 1.   (continued)
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man’s correlation analysis was subsequently performed on the DEGs identified in the GSE57338 dataset, and 34 
DEGs associated with VCAM1 expression were selected (Fig. 2d) and used to construct a clinical risk prediction 
model. Variables were screened through the LASSO regression (Fig. 2e,f), and 12 DEGs were finally selected for 
model construction (Fig. 2g) based on the number of samples containing relevant events that were tenfold the 
number of variants with lambda = 0.005218785. The Brier score was 0.033 (Fig. 2h), and the final model C index 
was 0.987. The model showed good degrees of differentiation and calibration. The final risk score was calculated 
as follows:

Risk score = (− 1.064 × FCN3) + (− 0.564 × SLCO4A1) + (− 0.316 × IL1RL1) + (− 0.124 × CYP4B1) + (0.919 
× COL14A1) + (1.20 × SMOC2) + (0.494 × IFI44L) + (0.474 × PHLDA1) + (2.72 × MNS1) + (1.52 × FREM1) 
+ (0.164 × C6) + (0.561 × HBA1).

In addition, a new validation cohort was established by merging the GSE5046, GSE57338, and GSE76701 
datasets to validate the effectiveness of the risk model. The principal component analysis (PCA) results before 
and after the removal of batch effects are shown in Figure S1a and b. The Brier score in the validation cohort was 
0.03 (Fig. 2i), and the final model C index was 0.984, which demonstrated that this model has good performance 
in predicting the risk of HF. We further explored the individual effectiveness of each biomarker included in the 
risk prediction model. As is shown in Table 1, the effectiveness of VCAM1 alone for predicting the risk of HF 
was the lowest, with the smallest AUC of the receiver operating characteristic (ROC) curve. However, the AUC 
of the overall risk prediction model was higher than the AUC for any individual factor. Thus, this model may 
serve to complement the risk prediction based on VCAM1 expression. After a thorough literature search, we 
found that HBA1, IFI44L, C6, and CYP4B1 have not been previously associated with HF.

Based on VCAM1 expression levels, the samples from GSE57338 were further divided into high and low 
VCAM1 expression groups relative to the median expression level. Comparing the model-predicted risk scores 
between these two groups revealed that the high-expression VCAM1 group was associated with an increased 
risk of developing HF than the low-expression group (Fig. 2j,k).

Immune infiltration analysis for the GSE57338 dataset.  The immune infiltration analysis was per-
formed on HF and normal myocardial tissue using the xCell database, in which the infiltration degrees of 64 
immune-related cell types were analyzed. The results for lymphocyte, myeloid immune cell, and stem cell infil-
tration are shown in Fig. 3a–c. The infiltration of stromal and other cell types is shown in Figure S2. Most T 
lymphocyte cells showed a higher degree of infiltration in HF than in normal myocardial tissue, including CD4+ 
memory T cells, CD4+ naive T cells, CD4+ T cells, CD8+ naive T cells, NK cells, and CD8+ T cells. The infiltration 
of myeloid immune cells, including mast cells, cDCs, and pDCs, also showed increasing trends. We subsequently 
explored the influence of VCAM1 expression on immune infiltration. As shown in Fig. 3d, VCAM1 expression 
positively correlated with Tcm cells, CD4+ T cells, CD8+ T cells, CD8+ naive T cells, cDCs, and CMPs, which 
were significantly elevated in the HF group relative to the normal group. Conversely, M1 macrophages, myeloid 
stem cells, and Th1 cells showed negative correlations with VCAM1 expression, with reduced infiltration in the 
HF group compared with the normal group. These findings suggest that higher VCAM1 expression increased the 
risk of HF by influencing the degree of immune cell infiltration. Using the clusterprofiler package, we explored 
immune pathway enrichment by performing separate GSEAs in the HF and control groups and in the high 
and low VCAM1 expression groups. The HF group showed obvious enrichment of immune infiltration–related 
pathways (Fig. 3e,f). Subsequent Gene Ontology (GO) Biological Process (BP) enrichment analyses showed the 
enrichment of BPs related to immune cell activation and differentiation in the high VCAM1 expression group 
and in the HF group (Fig. 3g,h). Collectively, these findings indicate that VCAM1 expression is associated with a 
higher degree of immune infiltration, which is often associated with an increased risk of HF. To further validate 
the effects of VCAM1 expression on the immune infiltration–related pathway and other BPs, we repeated this 
analysis using an independent RNA-seq gene set (GSE133054). We also identified a significant difference in the 
VCAM1 expression levels between patients and healthy controls (Fig. 3i). The subsequent GSEA of the RNA-seq 
data revealed no significant differences in the immune infiltration–related pathway components between HF 
patients and healthy controls (Fig. 3j). However, the high VCAM1 expression group showed significant enrich-
ment in the graft-versus-host pathway and the allograft rejection pathway (Fig. 3k). When examining significant 
BPs, HF patients were associated with the enrichment of B cell–mediated immunity and lymphocyte-mediated 
immunity (Fig. 3l), which were also associated with high levels of VCAM1 expression (Fig. 3m). However, the 
statistically significant enrichment of the biological process of B-cell mediated immunity and lymphocyte medi-
ated immunity in the RNA-seq results was not maintained when using adjusted p-values.

Figure 2.   (a) Heat map of DEG patterns in myocardial tissue from patients with HF compared with controls 
in the GSE57338 dataset. (b) Volcanogram of DEGs in cardiac tissue from patients with HF compared with 
controls in the GSE57338 dataset. (c) Box plot showing significantly increased VCAM1 gene expression in 
patients with HF. (d) Correlation analysis between VCAM1 gene expression and DEGs. (e) LASSO regression 
was used to select variables suitable for the risk prediction model. (f) Cross-validation of errors between 
regression models corresponding to different lambda values. (g) Nomogram of the risk model. (h) Calibration 
curve of the risk prediction model in exercising cohort. (i) Calibration curve of predicion model in the 
validation cohort. (j) VCAM1 expression was divided into two groups, and (k) risk scores were then compared.
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The effects of the N6‑methyladenosine (m6A)‑mediated methylation pattern on immune infil-
tration and VCAM1 expression.  Recent studies have highlighted the biological significance of the m6A 
RNA modification in various diseases19. However, whether the m6A modifications also play potential roles in 
the immune regulation of a failing myocardium remains unknown. M6A methylation is a reversible post-tran-
scription modification mediated by m6A regulators, and the pattern of m6A methylation is associated with the 
expression pattern of the m6A regulators. A total of 23 m6A regulators, including 8 writers (CBLL1, KIAA1429, 
METTL14, METTL3, RBM15, RBM15B, WTAP, and ZC3H13), 2 erasers (ALKBH5 and FTO), and 13 read-
ers (ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, YTHDC1, YTHDC2, 
YTHDF1, YTHDF2, and YTHDF3) were identified. We performed a consensus clustering analysis on the 313 
samples in GSE57338 to identify distinct m6A modification patterns based on these 23 regulators. Notably, a 

Figure 2.   (continued)

Table 1.   The effectiveness indicated by the area under curve of ROC operator curve of bio-markers involved 
in the risk prediction model.

Name of marker Area under curve of ROC in training cohort Area under curve of ROC in validation cohort

SMOC2 0.943 0.917

FREM1 0.958 0.937

HBA1 0.687 0.796

SLCO4A1 0.922 0.930

PHLDA1 0.882 0.867

MNS1 0.938 0.883

IL1RL1 0.904 0.928

IFI44L 0.895 0.884

FCN3 0.952 0.953

CYP4B1 0.830 0.829

COL14A1 0.876 0.883

C6 0.788 0.785

VCAM1 0.642 0.663

Effectiveness of risk prediction model 0.988 0.984
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consensus clustering analysis of the 23 m6A regulators yielded 4 clusters, as shown in Fig. 4a. The reason why the 
samples were divided into 4 subgroups is that the area under the CDF curve changes most significantly, as shown 
in Fig. 4b. We explored the relative expression levels of VCAM1 between the different clusters. Figure 4c shows 
that VCAM1 is differentially expressed across m6A clusters. In addition, the immune score, stroma score, and 
microenvironment score also showed significant differences across different m6A patterns (Fig. 4d–f). We found 
that cluster 2 was associated with the highest level of VCAM1 expression and the highest stroma and microen-
vironment scores. This parallel trend indicated a potential correlation between VCAM1 expression levels and 
the regulation of immune infiltration. However, we also found that the immune score, which is an overall evalu-
ation of immune cell infiltration, did not trend in parallel with VCAM1 expression in the myocardium, which 
might indicate that the potential regulatory effects of VCAM1 on the immune microenvironment does not rely 
completely on immune cell regulation. The pattern of m6A regulators also appears to affect these processes. To 
further investigate the connections between m6A modification, VCAM1 expression, and immune infiltration, 
we utilized the ssGSEA method to calculate pathway enrichment scores in each sample and then identified 
significant differentially enriched pathways (with threshold: log2FC > 1 or < 1 and p-value < 0.05) between HF 
samples and normal samples and between high and low VCAM1 expression groups. As shown in Fig. 4g, we 
identified 134 differentially enriched pathways (including 36 upregulated pathways and 98 downregulated path-
ways) between HF samples and normal controls. As shown in Fig. 4h and Table S2, we identified 26 differentially 
enriched pathways (including 4 upregulated pathways and 22 downregulated pathways) between the high and 
low VCAM1 expression samples. Of these, 26 pathways overlapped with the pathways described in Table 2. We 
found that the Wnt signaling pathway was statistically significantly upregulated in HF tissues and high VCAM1 
expresssion objects. The Wnt pathway which was reported linked to multiple steps of HF progression. Thus, we 
speculated that the m6A regulator expression based RNA modification pattern affected the VCAM1 expression 
and subsequently affected the immune cell infiltration via the Wnt signaling pathway.

Discussion
HF is a chronic heart syndrome with an average survival time of 5 years after diagnosis, and more than 25 mil-
lion people are currently at risk of death due to HF worldwide. HF begins with pathological heart remodeling 
that results in the left ventricle and other cardiac chambers developing progressive structural and functional 
abnormalities in response to pathological stress20. IHD and DCM are two important etiologies associated with 
HF development21. The primary manifestation of HF due to DCM is ventricular enlargement, whereas IHD 
leads to decreased myocardial cell viability and increased ROS production in response to continuous myocardial 
ischemia. ROS can directly act on cell membranes and induce myocardial cell apoptosis, resulting in decreased 
cardiac output. A resulting and gradual increase in cardiac load eventually leads to ventricular remodeling, the 
final stage of which is ventricular dilation, leading to HF. Although differences in the pathways and factors asso-
ciated with IHD and DCM and the mechanisms through which they cause HF have been explored22, few studies 
have explored the common pathways and molecules between these two HF etiologies.

This investigation employed bioinformatics methods applied to the GSE42955 and GSE57338 datasets to iden-
tify DEGs shared between patients with HF attributed to IHD and DCM. We established an interaction network, 
which showed that VCAM1 and ICAM1 were the genes associated with the highest degrees of connectivity. Previ-
ous studies have shown that patients with HF have significantly higher levels of ICAM1 and VCAM1 compared 
with controls, and elevated VCAM1 expression has previously been associated with HF severity8. Therefore, we 
aimed to explore whether VCAM1 and ICAM1 are differentially expressed between HF and normal tissue. An 
analysis of the myocardial levels of VCAM1 and ICAM1 between the HF and control groups in the GSE57338 
dataset showed that only VCAM1 was a significant DEG in this dataset. A correlation analysis between identi-
fied DEGs and VCAM1 expression in the HF group was conducted to identify genes associated with VCAM1 
expression. Finally, we established a risk prediction model using the genes identified as correlating with VCAM1 
expression. The subsequent analysis showed that the risk of HF increased with higher VCAM1 levels.

VCAM1 is an adhesion molecule found on the endothelial surface that enhances binding with white blood 
cells, increasing leukocyte adhesion and epithelial cell migration23. Experimental studies have shown that 
immune response mechanisms correlate with pathological heart remodeling, causing left ventricular dysfunc-
tion and eventually leading to HF. Therefore, we explored the relationship between VCAM1, the myocardial 
infiltration of immune cells, and subsequent effects on HF risk24. The xCell algorithm was used to predict the 
degree of infiltration for various immune cells in cardiac tissue, and correlation analysis was conducted to assess 
the relationship between VCAM1 expression and the degree of infiltration for various immune cells. The results 
showed that the VCAM1 expression level was positively correlated with the numbers of CD8+ T cells, CD8+ Tcm 
cells, CD4+ naive T cells, cDCs, CMPs, and other immune cells, and these cells also displayed a higher degree 
of infiltration in HF tissue than in normal tissue. Previous studies have shown that monocytes that infiltrate the 
myocardium can differentiate into macrophages and promote tissue damage repair25. As highly specific antigen-
presenting cells involved in adaptive and innate immunity, DCs also play important roles in the occurrence of 
HF. Animal experiments revealed that exogenous DCs induced autoimmune inflammation, mediated by CD4+ 
T cells, promoting ventricular dilation and HF26. Increased T lymphocyte infiltration, which is involved in adap-
tive immunity, was also associated with increased HF risk27. One of the most important features of chronic HF 
is the presence of numerous mature T cell infiltrates in the myocardial tissue28,29. Animal studies have shown 
that T cell–deficient mice are less likely to develop HF after aortic ligation30, and the alternation of T cell sub-
sets promotes HF development, as indicated by elevated brain natriuretic peptide levels31. In vitro experiments 
revealed that Th1 cells—an important subset of T cells—can release interferon-α to stimulate the transforma-
tion of myocardial fibroblasts into γ-smooth muscle actin fibroblasts, which can promote myocardial fibrosis, 
an important ventricular remodeling process32. Therefore, T cells and their subsets play important roles in HF 
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occurrence and pathogenesis33. Myeloid immune cells are the most abundant immune cells in the myocardium. 
Immune cells in healthy subjects do not produce harmful chronic inflammation under physiological condi-
tions, but under pathological conditions, such as acute or chronic ischemia, the degree of myeloid immune 
cell infiltration in the myocardium increases, resulting in the release a variety of inflammatory mediators that 
stimulate chronic fibrosis and remodeling, exacerbating HF34. The results of this study revealed an increase in 
the degree of infiltration by myeloid progenitors and cells in HF tissues that positively correlated with VCAM1 
expression, which can stimulate the differentiation of myeloid progenitors into macrophages and monocytes. 
An uncontrolled inflammatory response during the pathological state triggers a large number of monocytes 
to differentiate into macrophages, causing tissue damage, and extensive monocyte infiltration in cardiac tissue 
has been associated with an increased risk of HF35. Most immune cells are recruited from the blood, and as an 
adhesion factor expressed on the vascular endothelium, VCAM1 can recruit myeloid progenitor cells to infiltrate 
the myocardium, where they differentiate into various subsets of myeloid immune cells, promoting HF36. In our 
study, VCAM1 expression was positively correlated with immune cells infiltration, leading to our hypothesis 
that the increased risk of HF associated with elevated VCAM1 expression is due to the VCAM1 regulation of 
immune cell infiltration.

We also conducted a GSEA to examine immune infiltration–related KEGG pathways, comparing between 
HF and normal tissues and between high and low VCAM1 expression groups. The results showed that immune-
related pathways were enriched in both HF tissues and in tissues with high VCAM1 expression, including 
signaling pathways associated with the graft-versus-host response and Th17 differentiation. The proportion of 
Th17 cells in the blood circulation and the level of cytokine secretion increase in patients with HF37. In addition, 
the differentiation of Th17 cells often requires transforming growth factor-β and interleukin (IL)-6, which are 
involved in myocardial fibrosis development. IL-23, which is secreted by Th17 cells, promotes the secretion of 
granulocyte–macrophage colony-stimulating factor by Th17 cells, the infiltration of other immune cells, and 
the development of a chronic inflammatory response38. An increase in Th17 cells is often accompanied by a 
decrease in Treg cells39, which is consistent with the results observed in this study. Therefore, we propose that 
the elevated HF risk associated with VCAM1 expression is mediated by Th17 cell infiltration. We also observed 
that autoimmune-related graft-versus-host and xenograft rejection pathways were significantly enriched in the 
myocardial tissues of patients with HF and subjects with increased VCAM1 expression, supporting the auto-
immune response as important mechanisms for HF occurrence and development40. B cell pathways were also 
enriched in HF tissues and in myocardial tissue with increased VCAM1 expression, and B cell activation has 
been associated with the production of autoimmune antibodies41. Cytotoxic pathways found in NK cells that 
play roles in graft immune rejection and cause cell damage through direct contact with graft cells42 were also 
enriched in our results. Based on our observation of increased NK cell infiltration in the myocardial tissues of 
patients with HF, VCAM1 expression may regulate NK cell–mediated cytotoxicity, promoting myocardial injury 
by participating in related signaling pathways. In addition, GSEA revealed that functions associated with T and 
B cell activation were enriched in HF patients and in subjects with high VCAM1 expression, supporting a role 
for VCAM1 in the regulation of immune cell infiltration in HF. We validated our GSEA findings in an RNA-seq 
gene set. Although the results in the novel gene set demonstrated the enrichment of pathways related to immune 
reactions (including allograft rejection, B cell receptor pathway, graft-versus-host reaction, NK cell–mediated 
cytotoxicity, and Th17 cell differentiation), these differences did not reach the level of significance between HF 
and normal control samples. In individuals with high VCAM1 expression levels, the significant enrichment of 

Figure 3.   (a) The degree of lymphocyte immune infiltration in the HF and control groups (red represents 
samples from failing hearts and blue represents control samples). (b) The degree of myeloid cell immune 
infiltration in the HF and control groups (red represents samples from failing hearts and blue represents 
control samples). (c) The degree of stem cell immune infiltration in the HF and control groups (red represents 
samples from failing hearts and blue represents control samples). (d) Correlation between VCAM1 expression 
and the infiltration degrees of various cells. (e) GSEA analysis of KEGG pathway enrichment degree between 
the HF and control groups in GSE57338 gene sets revealed significant difference in the allo-graft rejection, 
B-cell receptor signaling pathway, Graft versus host diseases natural killer cell mediated cell toxicity and Th17 
cell differentiation57. (f) GSEA analysis of KEGG pathway enrichment degree between the VCAM1 high- and 
low-expression groups in GSE57338 gene set revealed significant difference in the allo-graft rejection, B-cell 
receptor signaling pathway, Graft versus host diseases natural killer cell mediated cell toxicity and Th17 cell 
differentiation52. (g) GSEA analysis of GO BP enrichment degree between the HF and control groups. (h) GSEA 
analysis of GO BP enrichment degree between the VCAM1 high- and low-expression groups.(i) The level of 
VCAM1 expression in heart failure samples and normal control samples in RNA-seq data-set GSE133054. The 
result revealed that the level of VCAM1 is significantly higher than control samples. (j) The GSEA analysis 
of KEGG pathway enrichment between the heart failure patients and normal control samples revealed no 
significant difference in the enrichment of immune related pathways in RNA-seq data-set GSE13305452. (k) 
The GSEA analysis of KEGG pathway enrichment between the high VCAM1 expression samples and low 
VCAM1 expression samples only revealed significant difference in the enrichment of Graft versus host pathway 
and allograft rejection pathway in RNA-seq data-set GSE13305452. (l)The GSEA analysis of biological process 
enrichment between the heart failure patients and normal control samples revealed significant difference in the 
enrichment of B-cell mediated immunity and lymphocyte mediated immunity in RNA-seq data-set GSE133054. 
(m) The GSEA analysis of biological process enrichment between the high VCAM1 expression samples and low 
VCAM1 expression samples also revealed significant difference in the enrichment of Graft versus host pathway 
and allograft rejection pathway in RNA-seq data-set GSE133054.
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Figure 3.   (continued)
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Figure 3.   (continued)
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pathways related to allograft rejection and graft-versus-host reaction was observed. In the GSEA BP analysis, we 
found that B cell–mediated immunity and lymphocyte-mediated immunity were significantly different between 
HF and col samples. A similar trend was observed comparing samples with high and low levels of VCAM1. This 
difference between the microarray and RNA-seq results may be due to the relatively small number of samples 
examined by RNA-seq compared with the number of samples analyzed by microarray, in addition to differences 
in sensitivity between these methods. However, these findings still indicate that the differential expression of 
VCAM1 influences pathways and biological responses associated with immune reactions.

We also established a risk model for HF using the differently expressed genes identified between HF and nor-
mal control tissue that were correlated with VCAM1 expression. The final risk prediction analysis showed good 
performance in both the training and validation cohorts. Previous studies reported biomarkers, such as ficolin 
3 (FCN3), are associated with the progression of HF43. IL-1–like receptor 1 (ILRL1), also known as ST2 protein, 
represents a promising target for HF therapy and is actively involved in T cell–mediated immune responses44. 
In animal studies, the lack of collagen type XIV alpha 1 chain (COL14A1) promotes pressure overload, resulting 
in myocardial hypertrophy, a critical step in the progression of HF45. Previous studies identified SPARC-related 
modular calcium-binding protein 2 (SMOC2) as a dysregulated component of the inflammatory pathway fol-
lowing the analysis of tissue associated with right ventricular failure (RVF)46. Pleckstrin homology–like domain 
family A member 1 (PHLDA1) is a new target for oxidative stress and ischemia-perfusion–induced myocardial 
injury47. These traditional biomarkers have demonstrated good performance in predicting the risk of HF in our 
training and validation cohorts. Meiosis-specific nuclear structural 1 (MNS1), solute carrier organic anion trans-
porter family member 4A1 (SLCO4A1), and FRAS1-related extracellular matrix 1 (FREM1) were included in a 
risk prediction model established by the support vector machine method. However, that model was not validated 
in a new cohort48. We also investigated the performance of the individual biomarkers included in the prediction 
model. After searching the literature, we found that hemoglobin subunit alpha 1 (HBA1), interferon-induced 
protein 44–like (IFI44L), complement component 6 (C6), and cytochrome P450 family 4 subfamily B member 1 
(CYP4B1) have not previously been reported in association with HF. Therefore, the newly defined model could 

Figure 3.   (continued)
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be applied clinically to predict HF risk. Although, we found that VCAM1 expression had the lowest HF risk pre-
dictive ability, the developed risk prediction model can serve as a complementary method for integrating novel 
and traditional biomarkers, magnifying the utility of these biomarkers in the prediction of HF risk. Few studies 
have examine HF therapies that target VCAM1, and our results may provide evidence for future treatments.

Emerging evidence has demonstrated that the m6A post-transcriptional RNA modification plays an essential 
role in innate immunity and inflammatory reactions, mediated by diverse m6A regulators, which modify m6A 
patterns49. Although several elegant studies have revealed the epigenetic modulation mediated by m6A regulators 
in the immune context, the immune characteristics in the myocardium associated with varying m6A modifica-
tion patterns have not yet been investigated. Therefore, identifying distinct immune characteristics and the value 
of VCAM1 by examining associations with the m6A pattern can help us further understand the regulation of 
VCAM1 expression and its association with immune mechanisms in the development of HF. Our results showed 
that the VCAM1 expression value, the immune score, the microenvironment score, and the stroma score were 
significantly different across different patterns of m6A modifications. Cluster 2 was associated with the highest 
VCAM1 expression level compared with the other clusters. The immune microenvironment and stroma scores 
were also higher in cluster 2 than in other clusters. Thus, we speculated that VCAM1 expression is regulated 
by m6A modifications, and VCAM1 is involved in the modulation of the immune microenvironment, as the 
microenvironment score showed parallel trends with VCAM1 expression across the different patterns of m6A 
modifications. We also found that alternations in the stroma score resembled changes in VCAM1 level across 
the different m6A patterns. These findings suggest that VCAM1 regulates the immune microenvironment pri-
marily by regulating immune stromal cell infiltration. We also investigated the pathways connecting VCAM1 
with immune regulation and found that the Wnt signaling pathway is upregulated in both HF samples and those 
with high VCAM1 expression. As previously reported, the Wnt signaling pathway participates in multiple steps 
of HF progression, including cardiomyocyte apoptosis, cardiac fibrosis, angiogenesis, and inflammation50. We 
found that the changes in VCAM1 expression levels alter the enrichment of the Wnt signaling pathway. Thus, we 
speculate that VCAM1 regulates the activation of the Wnt signaling pathway, leading to the modulation of the 
inflammatory response and immune microenvironment and promoting the clearance of cellular debris created 
during myocardial infarction–induced cellular apoptosis, a common cause of HF51.

Limitations.  This study established a predictive model according to the biomarkers showing statistically 
significance with VCAM1 using Spearman correlation method. However, our STRING database search revealed 
that VCAM1 does not directly interact with any of the selected biomarkers used for the risk prediction model. 
Thus, our research only reveals a correlation in expression values, with no indication of the functional mecha-
nism underlying these correlations. The model was used to calculate risk scores for each sample and exam-
ine differences between high and low VCAM1 expression. Although studies have investigated the association 
between VCAM1 and HF, most have focused on circulating VCAM1 levels. For example, in the MESA cohort, 
over a median follow‐up of 14.4  years, researchers found that higher serum VCAM1 levels were associated 
with progressively increased risks of HF and HF with preserved ejection fraction (HFpEF)52. A study involving 
120 chronic HF patients and 69 healthy controls found that circulating VCAM1 served as an independent mor-
tality predictor53. However, circulating VCAM1 can be affected by comorbidities, such as immunological dis-
eases, cancer, and autoimmune myocarditis. Thus, using circulating VCAM1 as a predictor of HF incidence may 
be biased, and circulating VCAM1 measurements require standardization and validation in clinical settings54.

Previous studies of immune cell contributions to HF only investigated the differences in CD34+ stem cell 
populations among DCM patients, IHD patients, and healthy controls. In our study, the relationship between 
VCAM1, an important endothelial adhesion molecule, and immune cell infiltration in the myocardium was 
explored55.

We did not examine the role of high VCAM1 expression levels in healthy samples. A prospective cohort 
study is more suitable for exploring the long-term effects of increased VCAM1 expression in a healthy popula-
tion. Based on the comparison of risk scores between high and low VCAM1 expression groups, we conclude 
that healthy control populations with higher VCAM1 expression are at increased risk of HF if they experience 
an event that contributes to HF; however, the current case–control retrospective study is not suitable for draw-
ing such conclusions. The enrichment analysis of RNA-seq data revealed an unstable pattern due to the limited 

Figure 4.   (a) Heat-map represents consensus matrix with cluster count of 4. The clusters in the heatmap 
represents represents the grouping of samples with similar expression patterns of 23 m6A modification 
regulators. (b) The change of area under consensus distribution fraction (CDF) plot. As is shown , when 
the count of clusters equals to 4 the change of delta area witnessed a turning point which indicate that the 
heterogeneity within the clusters remained stable. (c) The pair wise comparison of the level of VCAM1 across 
clusters. (d) The pair wise comparison of the level of immune score across m6A clusters. (e) The pair wise 
comparison of the level of stroma score across m6A clusters. (f) The pair wise comparison of the level of micro-
environment score across clusters. (g) The subsequent ssGSEA analysis: the volcano plot of comparison of 
enrichment score between heart failure samples and control samples. There are 36 up regulated pathways and 98 
down regulated pathways52. (h) The subsequent ssGSEA analysis: the volcano plot of comparison of enrichment 
score between VCAM1 high expression samples and VCAM1 low expression samples. There are 4 up regulated 
pathways and 22 down regulated pathways52.

▸
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number of samples. However, the current p-values were sufficiently significant to indicate an effect of dysregu-
lated VCAM1 expression on immune-related pathways. However, this study only involved gene sets examining 
idiopathic DCM, and the potential for VCAM1 to serve as a predictive marker for familial DCM or to differentiate 
familial from idiopathic DCM was not investigated. Future studies can further investigate the ability of VCAM1 
to differentiate the underlying etiology of DCM across multiple levels, as different types of DCM are associated 
with different prognosis56.
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Conclusions
VCAM1 can be considered a useful biomarker for identifying individuals at high risk of HF. The protein likely 
acts through the regulation or participation in the recruitment of immune cells to the site of heart injury or 
repair. We established a clinical risk prediction model involving DEGs correlated with VCAM1 expression to 
evaluate the risk for HF and complement VCAM1 levels in the prediction of HF risk. In addition, we explored 4 
patterns of m6A modifications based on the expression of 23 m6A regulators and investigated the effects of dif-
ferent m6A modification patterns on the expression of VCAM1 and immune cell infiltration in heart tissue. The 
results revealed that both VCAM1 expression and the immune cell infiltration pattern were associated with the 
m6A modification pattern. We also found that the immune stroma score and microenvironment score moved in 
parallel trends across the different m6A modification patterns, which may be associated with the upregulation of 
the Wnt pathway in response to changes in VCAM1 expression. The subsequent ssGSEA analysis revealed that 
the Wnt signaling pathway might connect VCAM1 to immune modulation.

Data availability
We provide the raw data and raw codes in Supplementary files.
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