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Microbial community dynamics are driven by both abiotic 
(environmental) and biotic (biological) factors. The lat-
ter include mobile genetic elements that move within 

and/or between genomes1,2 and are believed to play an important 
role in microbial community dynamics3,4. More specifically, inva-
sive mobile genetic elements (iMGEs), such as bacteriophages and 
plasmids, may transfer detrimental or beneficial genetic material 
to or between hosts1,2. Bacteriophages (henceforth referred to as 
phages) are viruses that specifically infect and replicate within bac-
teria. Phages are considered to be the most abundant and diverse 
biological entities with single- or double-stranded DNA or RNA 
genetic material5, and potentially play a role in shaping microbial 
community structure6,7. In contrast, plasmids are generally circular, 
double-stranded DNA molecules independent of the bacterial chro-
mosome that encode their own origin of replication and are usually 
found in higher copy numbers8. Plasmids represent key compo-
nents in horizontal gene transfer and are major contributors to the 
spread of antimicrobial resistance9.

Prokaryotic hosts have several defence mechanisms10 against 
iMGE invasion. One notable example is the CRISPR–Cas sys-
tem, which is an adaptive immune process with mechanisms for 

acquired immunological memory1,2. It consists of genomic regions 
known as clustered regularly inter-spaced short palindromic repeats 
(CRISPRs) and a class of proteins referred to as CRISPR-associated 
(Cas) proteins. CRISPR–Cas systems recognize iMGEs and cleave 
short subsequences from these iMGEs, called protospacers, which 
are integrated as spacers within the CRISPR loci of prokaryotic 
genomes11–13. The spacer sequences serve as a genetic memory bank 
of infection history used to recognize and interfere with future inva-
sions. By exploiting the sequence-based links between spacers and 
protospacers, specific host populations can be linked to specific 
iMGEs and to their corresponding invasion events1,2.

The present work focuses on a model microbial community in an 
activated sludge biological wastewater treatment plant (BWWTP), 
which arguably represents the most widely used biotechnological 
process on our planet and is an essential component of future inte-
grated energy and matter management strategies14. Foaming sludge, 
which occurs as floating islets on the surface of anoxic treatment 
tanks and is partially composed of populations of lipid-accumulating 
microorganisms, is particularly suitable for energy recovery via bio-
diesel production15. These communities also represent good models 
of microbial ecology because they exhibit medial species richness 
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while at the same time being highly dynamic. Foaming sludge rep-
resents a convenient and virtually unlimited source of spatially and 
temporally resolved samples with complementary detailed physi-
cochemical information16. Here, we present a time-resolved, inte-
grated meta-omics analysis aimed at elucidating CRISPR-mediated 
interactions and dynamics between iMGEs and their hosts. The 
resolved community and population interactions and dynamics 
highlight that CRISPR-based immunity within the studied commu-
nity predominantly targets plasmid sequences.

Results
Time-resolved meta-omics of foaming sludge islets. A total of 53 
samples of foaming sludge islets from the surface of an anoxic tank 
were collected from a BWWTP over a period of 578 days. The mean 
sampling frequency of 8 days (s.d. = 16 days) is equivalent to the 
doubling time of the dominant population ‘Candidatus Microthrix 
parvicella’ (M. parvicella)17,18, thereby facilitating the study of popu-
lation dynamics on a generational timescale. Concomitant DNA, 
RNA and protein fractions were obtained from each sample19, 
which is critical for coherent downstream systematic measurements 
and multi-omic data integration20. These biomolecular fractions 
were subjected to deep, high-throughput measurements resulting 
in time-resolved metagenomics (MG), metatranscriptomics (MT) 
and metaproteomics (MP) data. A total of 1.5 × 109 MG reads and 
1.7 × 109 MT reads underwent sample-specific, large-scale bioinfor-
matics processing, followed by MG and MT de novo co-assembly21, 
yielding a total of 2.1 × 107 contigs (Supplementary Table 1). 
Additionally, we estimated ~50% average coverage of community 
members resolved for the individual time points (Supplementary 
Note 1 and Supplementary Fig. 1). MP datasets yielded a total 
of 7.6 × 106 mass spectra, whereby a total of 9.6 × 107 redundant 
peptides were identified per sample using the 3.1 × 107 protein 
sequences predicted from the co-assembled contigs as the search 
database (Supplementary Table 2).

Contigs from the co-assembled MG and MT data from each sam-
ple were binned, producing a total of 26,524 metagenome-assembled 
genomes (MAGs) across all samples (Supplementary Table 1), of 
which 1,364 MAGs were selected for dereplication together with 
a collection of 85 isolate genomes (Supplementary Note 2). The 
dereplication process yielded pools of MAGs for which we defined 
representative MAGs (rMAGs)22. These rMAGs underwent taxo-
nomic classification, quality filtering and manual curation to yield 
a total of 92 rMAGs, which were retained for downstream analyses 
(Supplementary Table 3). In this work, rMAGs are assumed to rep-
resent pools of MAGs resulting from dereplication and are equiva-
lent to populations. Therefore, our population-level analyses are, by 
default, on the rMAG level unless otherwise specified.

CRISPR–Cas information over the entire meta-omics dataset. 
We resolved the CRISPR–Cas systems within rMAGs by extract-
ing their respective cas genes and classifying the CRISPR types23. 
This resulted in a final set of 31 (37%) rMAGs that encoded classifi-
able and complete CRISPR–Cas systems (that is, cas genes allowing 
CRISPR–Cas system classification) and CRISPR loci containing the 
required information for linking hosts to iMGEs24. The most com-
mon CRISPR–Cas system within the community was type I, which 
was found in 21 rMAGs and across several taxonomic families, fol-
lowed by type III, which was assigned to 9 rMAGs, while type II and 
V systems were identified in 3 rMAGs and 1 rMAG, respectively. 
Combinations of different CRISPR types within a single rMAG 
were also detected. Accordingly, we found that types I and III were 
present together in five rMAGs, thereby representing the most com-
monly detected combination25 (Fig. 1 and Supplementary Table 4).

We used an ensemble of computational methods to extract 
CRISPR information on the read- and contig- level, which resulted 
in an extensive set of detected CRISPR repeats and spacers (both 

collectively referred to as CRISPR elements) per sample. Overall, 
we retrieved 89,856 repeats and 525,579 spacers over the entire time 
series. However, they are redundant because the same repeats or 
spacers may appear at multiple time points (Extended Data Fig. 1).  
Therefore, we removed redundancy by clustering CRISPR ele-
ments, which resulted in 8,469 and 162,985 non-redundant repeats 
and spacers, respectively. Spacers were more highly represented on 
the MG level, whereas repeats were more highly represented on 
the MT level (Supplementary Note 3 and Supplementary Fig. 2). 
A total of 778 (~9%) non-redundant repeats and 20,002 (~12%) 
non-redundant spacers could be directly assigned to at least one 
rMAG, in turn representing 196,159 (~37%) and 29,685 (~33%) 
redundant spacers and repeats, respectively. To retain the maximum 
amount of information for downstream analyses, the entire collec-
tion of spacers and repeats from the entire pool of MAGs were linked 
to their corresponding rMAGs (Supplementary Table 4). Although 
this may result in high numbers of unfiltered spacers associated 
with certain rMAGs, for example, rMAG-117, which represents 41 
MAGs and is associated with 6,574 spacers, this approach allows 
comprehensive tracking of CRISPR and targeted iMGE dynamics.

Protospacers in the entire meta-omics dataset. Protospacers 
may represent either the origin of the spacers or targets for iMGE 
inhibition/splicing. Spacer information from the CRISPR loci can 
be used to detect iMGEs through complementary matching to 
their targeted protospacers26,27. Single matches of spacers to tar-
geted iMGEs are considered sufficient for conferring immunity 
against such iMGEs28,29. Thus, spacers were searched against all 
contigs. Those containing at least one protospacer match, that is, 
protospacer-containing contigs (hereafter referred to as PSCCs), 
and lacking repeats to avoid self-matching were considered as 
putative iMGEs. Accordingly, we detected 750,375 protospacers 
within 224,651 PSCCs (Extended Data Fig. 1), which highlights the 
large number of PSCCs that encode multiple protospacers (56%). 
It is noteworthy that the filtering of PSCCs with repeats (109,504 
redundant PSCCs) resulted in the exclusion of potential iMGEs 
encoding CRISPR loci.

After removing redundancy with the iMGEs (see next section 
and Supplementary Note 4), a total of 209,199 protospacers were 
retained within 49,306 non-redundant PSCCs (Supplementary  
Table 5). Here, there were instances of single spacers targeting 
multiple protospacers from either different or the same PSCCs. 
On average, one spacer targeted 21.85 protospacers (median = 7, 
s.d. = 51.27), while PSCCs tended to contain more than one proto-
spacer (that is, mean = 3.29, median = 2, s.d. = 4.60).

Plasmids and phages in the entire meta-omics dataset. On the 
basis of the contigs from all time points, we predicted phage and 
plasmid sequences. The total number of annotated iMGEs rep-
resented 6.97% of all contigs, for which 2.22% contained at least 
one protospacer (that is, PSCCs). Interestingly, we found that 
sequences annotated as plasmids outnumbered phages by ~16-fold 
(Supplementary Note 4 and Supplementary Table 6). At this stage, 
there was a lack of predicted prophage sequences, which is likely 
due to limitations of the available phage prediction methods. All the 
predicted iMGEs were clustered to yield non-redundant representa-
tive iMGEs that were traceable over time, which maintained similar 
proportions to the previously described redundant set; that is, ~16 
times more plasmid (707,093) than phages (42,039). Among these, 
we found 12,232 (1.7%) plasmids and 227 (0.5%) phages with simi-
larities to sequences within the National Center for Biotechnology 
Information (NCBI) database, which demonstrates the lack of 
representation of these elements within public databases. A simi-
lar trend in proportions was reflected in the iMGEs targeted by  
spacers. Plasmids (12,412) were targeted five times more frequently 
than phages (2,351). Since we were interested in iMGEs that are 
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interacting with hosts via CRISPR, we focused on the non-redundant 
iMGEs that were also PSCCs (henceforth, we collectively refer to 
these as iMGEs) for downstream analyses. Additionally, the MG 
and MT co-assembled contigs allowed the detection of iMGEs 
that were exclusively present on the MT level, for example, RNA 
phages30. Accordingly, a total of 2,890 MT-only contigs assigned as 
iMGEs were retrieved, from which 2,102 and 387 were classified as 
plasmid and phage, respectively.

BWWTPs are thought to represent hotspots for the spread of 
antimicrobial-resistance genes (ARGs)3,31. Therefore, we inspected 
plasmid and phage functions targeted by CRISPR systems32,33 and 
screened those iMGEs for potential ARGs34 (Supplementary Note 5, 
Supplementary Table 7 and Extended Data Fig. 2). We found 1,570 
(0.22%) plasmids and 106 (0.25%) phages encoding 38 different 
ARGs, including tetracycline-resistance genes, which are known to 
be persistent in BWWTPs31,35. Additionally, we found ten plasmid 
PSCCs. Among these, three encoded ARGs that were being tar-
geted by spacers, specifically aminoglycoside nucleotidyltransfer-
ase (ANT3), streptomycin phosphotransferase (APH3′′) and class 
D beta-lactamases (ClassD) (Supplementary Tables 8 and 9). Apart 

from these specific cases, iMGEs encoding ARGs were not PSCCs; 
therefore, they are likely not targeted by CRISPRs.

Community dynamics. The relative abundance of rMAGs and 
representative iMGEs were used to infer community dynamics 
over time (Fig. 1, Extended Data Fig. 3 and Supplementary Fig. 3). 
We grouped rMAGs at the family level due to the large fraction of 
unclassified taxa. Families such as Microthrixaceae, Moraxellaceae, 
Leptospiraceae and Acidimicrobiaceae, which are present within 
sludge communities15,36, were prominent members. To further 
investigate the effects of iMGEs on the community dynamics, we 
linked iMGEs to their putative host families based on their assign-
ments via binning. This resulted in a total of 79 family-level groups 
of bacteria, plasmids and phages.

The Microthrixaceae family showed a relative abundance  
average of 15.5% (median = 15.9%, s.d. = 5.2) with minor fluc-
tuations throughout the time series, except between 2011-11-16  
and 2012-01-03, when there was a significant decrease. 
Moraxellaceae (mean = 6.4%, median = 3.6%, s.d. = 7.5) and 
Leptospiraceae (mean = 6.9%, median = 5.9%, s.d. = 6.4) showed 
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sampling dates and the double slashes (//) on the time axis represent the absence of samples in the sampled system (applicable to all the other figures). 
b, Venn diagram of CRISPR–Cas system types based on the numbers of rMAGs that encode them. Overlaps indicate single rMAGs carrying more than one 
CRISPR–Cas system. c, The distribution of taxonomic affiliations at the family rank per CRISPR–Cas system type. For a and c, the legend colours marked 
with asterisks represent families containing CRISPR–Cas systems.
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relatively low abundance over time, but increased with the decline 
in Microthrixaceae (Fig. 1), thereby representing the shift in the 
community structure.

To further investigate the community dynamics, we defined 
three overlapping shorter-term intervals according to before, dur-
ing and after the aforementioned community shift (Fig. 2 and 
Supplementary Note 6). Subsequently, correlation between the 
family-level groups, hierarchical clustering and linear modelling 
using the Microthrixaceae family as the response variable were per-
formed for the entire time series and for shorter-term intervals.

The correlation analysis showed 62 pairs of family-level groups 
that consistently exhibited significant correlations (Supplementary 
Fig. 4), whereby ten families correlated (r ≤ −0.7 or r ≥ 0.7, P ≤ 0.001) 
with their own plasmids and phages in the entire time series as 
well as the shorter-term intervals, for example, Microthrixaceae, 
Moraxellaceae and Leptospiraceae (Supplementary Table 10). 
Hierarchical clustering of correlation values from the entire time 
series yielded a total of six clusters, whereby most bacteria, plas-
mids and phages assigned to the same families clustered together, 
which demonstrates that there is predictable variation of these 
family-level groups. Further inspection of the dominant families 
showed Microthrixaceae clustering separately from Leptospiraceae 
and Moraxellaceae. The latter two clustered together and exhibited 
significant negative correlation with Microthrixaceae (r = −0.63, 
P = 8.3 × 10−7, and r = −0.52, P = 9.9 × 10−5, respectively), which 
further supports their observed acyclical behaviour relative to 
Microthrixaceae (Extended Data Fig. 4 and Supplementary Fig. 5).

In addition, a selection of the best linear models showed an 
enrichment of Microthrixaceae plasmids, Acidimicrobiaceae phages 
and Saprospiraceae plasmids and, in agreement with the enrich-
ment analysis, the best model (adjusted R2 = 0.9983) showed iMGEs 
from Microthrixaceae, Saprospiraceae and Moraxellaceae families 
exhibiting significant contributions (Extended Data Fig. 5). Thus, 
the longitudinal abundance data for Microthrixaceae exhibited 
good agreement with the models (Fig. 2). Overall, the linear model-
ling analysis showed the appearance of Microthrixaceae plasmids as 
the only common significant predictor in all the models (entire time 
series and shorter-term intervals). This group was then removed 
from those models to assess its relative importance, and this resulted 
in a significant reduction of predictive power (Extended Data  
Fig. 6, Supplementary Tables 11 and 12, Supplementary Note 7 and 
Supplementary Fig. 6). Consequently, its plasmids had a stronger 
effect on the prediction of Microthrixaceae abundance compared to 
its phages, which indicates a higher relative importance of plasmids 
in governing Microthrixaceae dynamics.

CRISPR–Cas mediated iMGE–host interactions. To describe 
CRISPR-mediated interactions between iMGEs and their hosts, 
we retained 4,985 spacers that were encoded by at least one rMAG 
(host), co-occurred with its assigned rMAG in at least one time 
point and targeted at least one iMGE at any given time point. We 
subsequently searched for iMGEs and corresponding spacers 
newly appearing during the time series (that is, spacer integration 
events), and observed that 2,377 spacers were detected either after 

or at the same time point as their corresponding targeted iMGEs. 
The mean spacer integration time (that is, the lag time between the 
detection of an iMGE and its corresponding spacer) was 9.5 weeks 
(median = 8, s.d. = 8.5). Spacers that disappeared after the detec-
tion of their linked iMGEs were considered to be lost. We observed 
1,616 spacers that were lost, with 7 weeks as the average time for 
such deletions (median = 5.5, s.d. = 7.5). Interestingly, the average 
time for spacer integration and deletion was lower for phages com-
pared to plasmids (Supplementary Table 13). Furthermore, there 
was a shift from spacer gain to loss on 2011-11-29, suggesting that 
the majority of integration events occurred during the summer to 
autumn transition, while the majority of deletion events occurred in 
late autumn, which corresponds to the shift in community structure 
occurring in autumn to winter (Supplementary Fig. 7).

We then separated the CRISPR-mediated interactions into a 
plasmid–host network comprising 18 hosts and 1,881 plasmids, 
with 2,274 interactions (Fig. 3), and a phage–host network compris-
ing 16 hosts and 472 phages, with 490 interactions (Extended Data 
Fig. 7). We also defined an occurring interaction within a given 
time point if a host and its interacting iMGE were detected in either 
MG or MT data, which resulted in time-resolved network topology 
variations (Supplementary Table 14 and Supplementary Note 8). We 
included orphan iMGEs and hosts for which their associated coun-
terparts were not detected within the same time point to visualize 
the dynamics (Supplementary Videos 1 and 2).

The time-resolved plasmid–host interaction networks had an 
average modularity of Q = 0.71 (median = 0.73, s.d. = 0.07), with 
two main modules of interactions: a group containing a core set 
of rMAGs classified as Leptospira biflexa and a group containing 
rMAGs from different species, that is, Marinobacter hydrocar-
bonoclasticus, Acinetobacter sp. ADP21, Chitinophaga pinensis 
and Haliscomenobacter hydrossis. M. parvicella was represented 
by rMAG-165. In contrast, the phage–host interaction networks 
had an average modularity of Q = 0.69 (median = 0.69, s.d. = 0.07) 
and smaller interacting groups. However, the overall dynamics 
of both networks were similar, with the number of interactions 
increasing during November 2011, which co-occurred with the 
drop in M. parvicella (Microthrixaceae) and the increase in other 
populations, such as L. biflexa or H. hydrossis. Based on these 
networks, we performed a one mode projection to resolve direct 
interactions between rMAGs with common iMGEs. For this, we 
observed a higher range of interactions between rMAGs from 
the plasmid–host network, which suggests that there is a wide 
spread of plasmids across different families in contrast to the 
more restricted infection range of phages (Supplementary Fig. 8 
and Supplementary Table 15).

Population-level iMGE–host dynamics. To further understand 
the iMGE–host dynamics in relation to the maintenance of micro-
bial populations of interest, we focused on the dominant popula-
tion within the community, M. parvicella15,37–39, which constitutes 
~30% of the community at specific dates (Fig. 1). More specifi-
cally, it showed distinct characteristics in the community and net-
work dynamics, such that time points with decreased M. parvicella 

Fig. 2 | Microbial community dynamics. a, The rMAGs were grouped together at the family level. Plasmids and phages were distinctly grouped on the 
basis of their family-level association (that is, binned together with a rMAG of a given family). The bacterial, plasmid and phage family-level groups were 
clustered on the basis of the correlation of their group-level abundance dynamics. The groups are displayed on the right of the heatmap. The coloured 
block on the right and bottom of the heatmap represents the six clusters emerging from the hierarchical clustering, represented by the trees at the top and 
left of the heatmap. The shown Pearson correlations have a significant level of P < 0.001 (that is, threshold). Statistical tests were two-sided and adjusted 
for multiple comparison. b, Upper: models based on the longer-term dynamics. Lower: models based on three shorter-term dynamics. The models are 
based on the group-level relative abundance values. Longer-term dynamics are represented by all data points from the entire time series. The shorter-term 
intervals were defined around the shift in community structure, at which the abundance of Microthrixaceae family drastically decreases. Exact sampling 
dates of the shorter-term intervals are highlighted in the x axis. Three models were applied to the longer- and shorter-term time intervals. The relative 
abundance of the Microthrixaceae family is included for reference.

NATuRE MICRoBIoLoGY | VOL 6 | JANUARy 2021 | 123–135 | www.nature.com/naturemicrobiology126

http://www.nature.com/naturemicrobiology


ArticlesNatURE MICRobIoLoGy

abundance exhibited a higher number of overall CRISPR-mediated 
interactions (Fig. 4 and Supplementary Videos 1 and 2), which was 
further supported by the negative correlations with the total num-
ber of plasmid–host interactions over time (r = −0.33, P = 0.017) 
and phage–host interactions over time (r = −0.40, P = 0.004). 

However, after focusing on the population-level CRISPR-based 
iMGE–host interactions of M. parvicella, we observed a posi-
tive correlation between the population abundance over time and  
its number of iMGE–host interactions, that is, plasmid–host 
(r = 0.63, P ≈ 0) and phage–host (r = 0.25, P = 0.02). Finally, the 
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iMGE–M. parvicella network exhibited a highly modular structure, 
whereby a set of iMGEs interacted with its set of spacers (Fig. 4).

We identified a single contig of 10,224 base pairs in length that 
encoded a complete CRISPR operon40. This contig shared 97.62% 
sequence identity with ‘Candidatus Microthrix parvicella Bio17-1’37 
(Supplementary Note 9). Briefly, the contig contained 6 cas genes 
and 11 CRISPR repeats. Using the MT and MP data, we found that 
the cas genes within the rMAG were expressed over time, with Cas2 
showing the highest level of gene expression while Cas7 was found 

more frequently at the protein level (Fig. 4). We were able to link 
a total of 670 spacers across the entire time series to this specific 
CRISPR locus. These spacers were present within an average of 
25.5 time points (median = 28.5, s.d. = 14). Out of all the associated 
spacers, 433 lacked matches within the time series and 246 could 
be linked to a protospacer in at least one time point. Among these, 
64 targeted plasmids, 24 targeted phages and 12 targeted both plas-
mids and phages (Fig. 4). Ten out of the 12 spacers targeting both 
had matches in protein-coding genes, including sigma 70 factor of 
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RNA polymerase, GDSL-like lipase 2 and helix-turn-helix domain 
23, which are genes known to be widely encoded by both plas-
mids and phages. Additionally, we inspected the activity of spacers 

within the CRISPR loci and observed 45 spacers with gain or loss 
events (Fig. 5). Similar to the community level, there was also a shift  
in gain to loss events occurring after the community shift on  

b c

Protein

a

Gene
CRISPR

1,646

1,529

974

2,455

2,375

290

Si
ze

 (b
p)

O
ccurrence

Normalized counts

PlasmidInteraction with

100500

d

0
25
50
75

Date of sample collection and season

In
te

ra
ct

io
ns

 (%
)

e

Phage

Mobile genetic elements
Plasmid

Targeting plasmid
Targeting phage
Targeting both plasmid and phage

CRISPR spacers

SpringWinterAutumnSummerSpring

// // //

Phage

20
11

–0
3–

21
20

11
–0

3–
29

20
11

–0
4–

05
20

11
–0

4–
14

20
11

–0
4–

21
20

11
–0

4–
29

20
11

–0
5–

06
20

11
–0

5–
13

20
11

–0
5–

20
20

11
–0

5–
27

20
11

–0
6–

03
20

11
–0

6–
09

20
11

–0
6–

17
20

11
–0

6–
24

20
11

–0
6–

01
20

11
–0

7–
08

20
11

–0
8–

05

20
11

–0
9–

12

20
11

–1
0–

12
20

11
–1

0–
05

20
11

–0
9–

28
20

11
–0

9–
19

20
11

–0
9–

05
20

11
–0

8–
29

20
11

–0
8–

19
20

11
–0

8–
11

20
11

–1
1–

02

20
11

–1
1–

29
20

11
–1

1–
23

20
11

–1
1–

16
20

11
–1

1–
07

20
11

–1
2–

21

20
12

–0
1–

11

20
12

–0
2–

01
20

12
–0

2–
08

20
12

–0
2–

14
20

12
–0

2–
23

20
12

–0
3–

14

20
12

–0
4–

04
20

12
–0

4–
10

20
12

–0
4–

17
20

12
–0

4–
25

20
12

–0
5–

03

20
12

–0
3–

28
20

12
–0

3–
22

20
12

–0
3–

08
20

12
–0

2–
29

20
12

–0
1–

25
20

12
–0

1–
19

20
12

–0
1–

03
20

11
–1

2–
28

cas3HD

cas8u1

cas7

cas1

csb2gr5

cas2

2

20

2

Fig. 4 | The CRISPR–Cas system of M. parvicella. a, The CRISPR–cas locus predicted within a reconstructed population-level genome (rMAG-165) identified 
as M. parvicella. b, MT-based expression levels of the corresponding cas genes. Boxplots represent expression levels aggregated from 51 time points based 
on normalized read counts. Data are presented as median values, Q1–1.5 × interquartile range (IQR) and Q3 + 1.5 × IQR. c, MP-level representation of Cas 
proteins. The numbers represent the number of time points at which at least one peptide of the corresponding Cas protein was detected. d, Representation 
of the active CRISPR spacers (gain or loss of spacer within the time series) assigned to M. parvicella. The order of the spacers is based on their first 
occurrence within the time series. e, Spacer-iMGE-based interactions represented per time point as percentages of the global interactions of M. parvicella.

NATuRE MICRoBIoLoGY | VOL 6 | JANUARy 2021 | 123–135 | www.nature.com/naturemicrobiology 129

http://www.nature.com/naturemicrobiology


Articles NatURE MICRobIoLoGy

2011-12-28 (Extended Data Fig. 8). Overall, the cas gene and  
Cas protein expression levels, coupled to spacer dynamics tar-
geting more plasmids (example shown in Extended Data Fig. 9)  
than phages, demonstrate a highly active CRISPR–Cas system 
within M. parvicella.

In contrast to M. parvicella, other populations exhibited 
more dynamic CRISPR loci, such as the rMAG-40 classified as  
L. biflexa, and less dynamic loci, such as the rMAG-31 classified 
as Intrasporangium calvum (Supplementary Note 10). L. biflexa has 
eight putative CRISPR loci and a locus of cas genes classified as type 
V (Supplementary Table 16 and Extended Data Fig. 10), and these 
contained a total of 680 spacers, of which 146 exhibited gain or loss 
within the time series. The population with the highest amount 
of spacers was rMAG-73, which was classified as C. pinensis, with 
CRISPR type III and a total of 1,119 spacers, of which 306 were 
active (that is, with either gain or loss events). Overall, the size of the 
CRISPR locus did not directly relate to spacer gain or loss. Finally, 

we observed that different population-level CRISPR–Cas dynamics 
exist at the level of gene and protein expression as well as spacer 
integration activity. Based on our results, M. parvicella populations 
contain a functional CRISPR system, but use it sparingly compared 
with other populations.

Discussion
We presented an extensive time-resolved, integrated meta-omics 
analysis of CRISPR-mediated iMGE–host interactions. Given the 
vast extent of unresolved bacterial taxa as well as plasmid and phage 
sequences in this community, the reliance on existing sequence 
databases would have greatly limited the analysis of key commu-
nity members. Our reference-independent approach, including 
de novo genomic assembly, binning and plasmid/phage prediction, 
were required to analyse this dataset. We were able to link micro-
bial population genomes (rMAGS) to iMGEs using spacer–pro-
tospacer links24, unlike previous approaches that have relied on 
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abundance levels41. Overall, our approach of resolving interaction 
dynamics between iMGEs and their hosts revealed an enrichment 
in CRISPR-based plasmid targeting relative to phages.

To extract coherent information across the time series, we mini-
mized redundancy concerning population-level genomes, CRISPR 
information and iMGEs. The aforementioned procedures may 
potentially result in a dilution of information, especially regard-
ing underlying species- and strain-level diversity. However, this 
trade-off was necessary considering the inherent properties of the 
time-series dataset, namely, in relation to the appearance, disappear-
ance and/or reappearance of features over time. More importantly, 
our stringent methodology allowed us to balance the advantages of 
a de novo assembly-based approach, that is, detecting novel micro-
bial and iMGE populations, while enabling us to track the popula-
tions over time.

We systematically optimized the plasmid and phage prediction 
process by applying an ensemble approach to reduce bias stemming 
from a single tool, establishing associations of iMGEs and specific 
rMAGs through binning, identifying strong correlations between 
iMGEs and their associated rMAGs and using spacer–protospacer 
links to establish empirical evidence of interactions between rMAGs 
and iMGEs. Despite this, several limitations must be addressed, 
including the inherent inaccuracies of the plasmid and phage pre-
diction tools, the inability to predict prophages within community 
and the lack of reliable taxonomic classifications of iMGEs.

Our ensemble approach for iMGE identification demonstrated 
that plasmids are highly abundant within the community. The step-
wise linear modelling approach demonstrated that plasmids have a 
more pronounced impact on the dominant Microthrixaceae com-
pared to phages. Furthermore, based on the extracted protospacer 
information, plasmids are targeted more often than their phage 
counterparts by CRISPR systems. In contrast to previous studies 
focused on CRISPR-mediated immunity against phages, our results 
support the notion that plasmids also play key roles in the adap-
tation and promotion of diversity42. In this context, BWWTPs are 
thought to be hotspots for the spread of ARGs through iMGEs3,43. 
Our data revealed a comparatively small fraction of plasmids encod-
ing ARGs that are targeted by CRISPR systems, which suggests that 
bacteria retain potentially beneficial plasmids44, for example, those 
encoding ARGs45, but further detailed investigation including data 
from longer-term time series is required.

The period with decreased Microthrixaceae abundance 
(from 2011-11-02 to 2012-01-25) coincided with the increased 
in abundance of other families (for example, Leptospiraceae 
or Moraxellaceae), their corresponding plasmids and over-
all CRISPR-mediated interactions. Based on this information, 
the increase in plasmids suggests a short-term fitness advan-
tage for Leptospiraceae and Moraxellaceae populations, on the 
one hand. On the other hand, CRISPR-mediated links indicated 
CRISPR-based suppression of those plasmids in a possible drive 
towards the normalization of community structure and function, 
including the dominance of M. parvicella. However, any direct 
cause–effect relationships remain to be further explored under 
controlled laboratory conditions.

In relation to phages, we found that they tended to cor-
relate with specific families, for example, Moraxellaceae and 
Leptospiraceae, which exhibited acyclical dynamics in relation to 
the Microthrixaceae family, but showed a smaller effect in the linear 
models. Additionally, rMAG populations within the Moraxellaceae 
and Leptospiraceae families exhibited higher CRISPR activity in 
terms of phage-linked spacer gain or loss. In that regard, phages 
are known to affect specific populations, which, according to our 
data, does not include the dominant M. parvicella, as previously 
observed46. Therefore, future studies need to be directed towards 
deciphering the roles of individual plasmids and phages on specific 
populations, as well as the community as a whole.

Based on our observations, a strong case can be made to 
include iMGEs and CRISPR-based interactions as additional 
features into models that incorporate abiotic parameters (for 
example, temperature, pH and oxygen concentration) and biotic 
drivers (for example, population dynamics and inter-microbial pop-
ulation interactions)41,47,48, especially when such information can be 
extracted from MG data. The inclusion of such additional features 
may provide a more comprehensive model of community dynamics 
and process performance.

Finally, the composition of CRISPR loci is highly 
environment-specific49, which should translate into 
environment-specific CRISPR-mediated interactions. Therefore, 
the present study should be repeated on samples from other envi-
ronments to provide a broader understanding of CRISPR-based 
interactions in relation to iMGEs50.

Methods
Sampling. Individual floating sludge islets within the anoxic tank of the 
Schifflange BWWT plant (Esch-sur-Alzette, Luxembourg; 49° 30′ 48.29″ N; 
6° 1′ 4.53″ E) were sampled according to previously described protocols15. Samples 
are indicated as dates (YYYY-MM-DD). Time-resolved sampling included two 
initial sampling dates (2010-10-04 and 2011-01-25) as previously reported15,48. 
More frequent sampling was performed from 2011-03-21 to 2012-05-03, of which 
data from three samples (2011-10-05, 2011-10-05 and 2012-01-11) have been 
previously published15.

Concomitant biomolecular extraction and high-throughput meta-omics. 
Concomitant biomolecular extraction of DNA, RNA and proteins as well as 
high-throughput measurements to obtain MG, MT and MP data were carried out 
according to previously established protocols15,48,51.

Isolate culture, genome sequencing and assembly. A total of 85 isolate cultures 
of lipid-accumulating bacterial strains were derived from the sludge islets 
sampled from the same anoxic tank described above. The isolation protocol, 
including screening for lipid-accumulation properties (via Nile Red staining), 
DNA extraction and sequencing, was performed as previously described48,51. 
The genomic data were assembled and analysed using an automated version of 
a previously described workflow51 that spanned sequencing read preprocessing, 
de novo assembly and gene annotation (see the section “Code availability”). The 
genome of ‘Candidatus M. parvicella Bio17-1’ was obtained from the publicly 
available NCBI BioProject database PRJNA174686 (ref. 37).

Co-assembly of MG and MT data. Sample-wise integrated MG and MT data 
analyses were performed using IMP21 (v.1.3) with the following customized 
parameters: (1) Illumina Truseq2 adapters were trimmed; (2) the step involving the 
filtering of reads of human origin step was omitted for preprocessing; and (3) the 
MEGAHIT de novo assembler52 was used for the co-assembly of MG and MT data. 
Nonpareil2 (ref. 53) was applied to the preprocessed MG and MT data to assess the 
relative depth of coverage.

MP analyses. Raw mass spectrometry files were converted to MGF format using 
MSconvert with default parameters. The resulting files were used to run the 
Graph2Pro pipeline54 together with the corresponding assembly graphs from 
MEGAHIT, which allowed the integration of MG, MT and MP data. Assemblies 
often result in fragmented consensus contigs, thus leading to a loss of information 
on strain variation and to open-reading frames spanning multiple contigs. The 
Graph2Pro pipeline combines the Graph2Pep algorithm and FragGeneScan55 to 
predict peptides from short and long edges of the graph even if the peptides span 
multiple edges. Graph2Pro further predicts protein sequences from the graphs of 
the IMP-based co-assemblies using identified peptides as constraints. To produce 
the final protein identifications, MP data were searched against the sample-specific 
databases derived from Graph2Pro.

The combined set of tryptic peptides was used as the target database for 
peptide identification using the MS-GF+ search engine56 and customized 
parameters. The instrument type was set to a high-resolution LTQ with a precursor 
mass tolerance of 15 ppm and an isotope error range of −1 and 2. The minimum 
and the maximum precursor charges were set to 1 and 7, respectively. The false 
discovery rate (FDR) was estimated by using a target-decoy search approach, 
whereby reverse sequences of the protein entries were generated while preserving 
the carboxy-terminal residues (KR) and concatenated to the database. All 
identifications were filtered to achieve an FDR of 1%.

Identified peptides from the Graph2Pro pipeline were assigned using 
peptidematch57 against Prokka-based58 predictions from IMP for protein-coding 
sequences of the rMAGs, and prodigal-based predictions59, including fragmented 
genes (see section “Gene annotation of phage- and plasmid-derived contigs” 
below) for protein-coding sequences of the iMGEs.
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Binning, selection of representative genome bins, taxonomy and estimation of 
abundance. Co-assembled contigs from each time point were binned as previously 
described60. Binning was based on nucleotide signatures, presence of single-copy 
essential genes and MG depth of coverage. Bins from each time point with at 
least 28% completeness and contamination of less than 20% along with the 85 
isolate genomes were subjected to a dereplication process using dRep22 (v.0.5.4) to 
select rMAGs. Accordingly, the following dRep parameters were set: (1) genome 
completeness of 0.6 (based on CheckM61 (v1.0.7)); (2) strain heterogeneity of 101; 
(3) average nucleotide identity (ANI) threshold of 0.6 to form primary clusters; and 
(4) ANI threshold of 0.965 to form secondary clusters. Taxonomic classification 
was performed using a customized version62 of AMPHORA2 (ref. 63). Additionally, 
taxonomic classification was performed using sourmash64 2.0.0a1-lca-version with 
a kmer-length of 21 and a threshold of 4 using an existing database that included 
around 87,000 microbial genomes (downloaded on 09 November 2017 from 
https://osf.io/s3jx8/download).

AMPHORA2-based predictions for individual marker genes were combined 
via the summation of the associated assignment probabilities. If the summed 
probability scores for the highest-scoring taxonomic level constituted less 
than one-third of the total probability scores, the assignment was discarded 
as a ‘low confidence assignment’. Taxonomic assignments of AMPHORA2 
and sourmash-lca were combined and then filtered to select a final taxonomic 
assignment for the rMAGs, giving priority to predictions from sourmash-lca due to 
higher expected specificity and an updated database. We then selected rMAGs with 
a ‘completeness − contamination’ value of ≥50% for further downstream analyses.

To represent population-level abundance and transcription levels, the 
preprocessed MG and MT paired- and single-end reads from all the time-series 
samples were mapped onto the collection of rMAGs using bwa mem65, and 
contig-level average depth-of-coverage values were extracted for the MG and MT 
data. Gene-level MT read counts for all the predicted genes present within each 
rMAG were normalized using R statistical software to obtain the corresponding 
gene expression values.

Identification of CRISPR elements. CRISPR information (that is, spacers, 
repeats and flanking sequences) were predicted using CRASS66 (v.0.3.8) based on 
the IMP-based preprocessed MG and MT paired- and single-end reads as input. 
MetaCRT67 was used to predict spacers and repeats from IMP-based MT and 
co-assembled contigs. A custom script was used to extract flanking regions from 
the metaCRT results.

The redundancy of spacers, repeats and flanking sequences was reduced by 
clustering the sequences with CD-HIT-EST68 (v.4.6.7). Spacers were clustered using 
90% sequence identity69,70, covering the entire length of the compared sequences69. 
CRISPR-flanking regions were clustered using 99% sequence identity, with at least 
97.5% coverage of both the compared sequences. Conversely, the CD-HIT-EST 
clustering parameters for repeats were manually determined by clustering the 
known repeats belonging to a single CRISPR locus of ‘Candidatus M. parvicella 
Bio17-1’37. Specifically, the sequence identity parameter was first set to 99% and the 
sequence coverage was set to 100%. These parameters were reduced by 5% in the 
subsequent iterations until all repeats were regrouped into a single cluster. Next, 
all the known repeats of M. parvicella were clustered at 80% sequence identity, 
covering the length of at least 75% of the shorter sequence. These parameters were 
used for the clustering of all repeats. FASTA headers of all the sequences were 
left unchanged (that is, -d parameter in CD-HIT-EST) because they contained 
information required for downstream analyses (for example, sample name, contig 
name and CRASS-computed coverage). The clustering procedure for the different 
CRISPR elements yielded non-redundant sequences of repeats, spacers and 
flanking regions.

Spacer abundance values were estimated by extracting their coverage values 
from CRASS. Equivalent information was obtained from metaCRT by using 
bwa-mem to map MG and MT reads from each of the time-resolved samples to the 
entire set of contigs predicted by metaCRT (that is, contigs containing at least one 
CRISPR locus). The depth-of-coverage information was derived using bedtools71. 
Based on this, abundance values were extracted for each of the predicted spacers 
per time point. The depth-of-coverage information of the metaCRT contigs was 
then consolidated using CRASS coverage results by referring to the non-redundant 
spacer clusters (derived from CD-HIT-EST). The consolidated results are hereafter 
referred as ‘spacer abundance values’. Specifically, the spacer abundance values 
from the specific time points were assigned to the non-redundant spacers, thereby 
allowing a temporal representation of spacer abundance values. Subsequently, the 
spacer abundance values were transformed to counts per million (c.p.m.)72,73 per 
sample, and non-redundant spacers that had at least one read count in at least one 
sample were selected and the c.p.m. values were calculated. Finally, to determine 
the presence/absence of a given spacer, a minimum cut-off value of c.p.m. = 1 was 
applied. Applying standard cut-offs (that is, above 3–5) caused loss of information 
from the short spacer sequences within the repetitive CRISPR regions, which 
usually do not recruit many reads during the mapping process.

Linking rMAGs to CRISPR elements. The non-redundant flanking regions  
and repeats were used to associate MAGs with specific CRISPR loci using 
BLASTN74. Non-redundant CRISPR-flanking sequences and CRISPR repeats  

were searched against the contigs of the MAGs. Flanking sequences and MAG 
contig(s) exhibiting similarities of at least 95% identity and coverage of either  
(1) 80% for flanking sequences >100 bp or (2) 95% for flanking sequences <100 bp 
were retained for the downstream filtering steps. Next, the aforementioned 
flanking sequences for which the associated repeats had at least 75% identity and 
80% coverage against the MAG contig(s) were further retained for downstream 
processing. After defining the selected flanking repeat sequences linked to a MAG, 
spacers linked to the repeat flanking sequences were then associated to the MAG. 
In this way, the composition of spacers per MAG was determined. Finally, all the 
CRISPR information belonging to a MAG was linked to its rMAG to preserve the 
maximum amount of CRISPR information.

CRISPR types and subtypes and cas genes were predicted from all the 
assembled contigs using CRISPRone23. The cas genes and CRISPR types were then 
assigned to their respective MAGs.

We then selected rMAGs predicted as M. parvicella (see the section 
“Binning, selection of representative genome bins, taxonomy and estimation of 
abundance”) to inspect the cas genes and CRISPR-type predictions. Next, we used 
CRISPRCasFinder75 to further confirm the selected cas genes and CRISPR-type 
predictions of M. parvicella. We performed manual curation on all the rMAGs 
predicted as M. parvicella. We identified a contig (D47_L1.43.1_contig_476300) of 
10,224 bp that encoded a complete CRISPR operon that was highly similar to the 
CRISPR operon of the isolate genome of ‘Candidatus M. parvicella Bio17-1’. This 
contig was incorporated with rMAG-165.

Identification of protospacers and protospacer-containing contigs. A 
BLASTN74 search was performed using all non-redundant spacers as queries 
against the contigs from all time points using the parameters defined in 
CRISPRtarget76. Spacer matches with at least 95% coverage and 95% identity 
were selected for further analysis32. Any IMP-based MT results or co-assembled 
contigs containing repeat sequences and/or identified by metaCRT to encode 
CRISPR sequences were excluded from downstream analyses. Accordingly, the 
remaining spacer matches (or complements) were defined as protospacers, and 
the respective contigs that contained at least one protospacer were defined as 
PSCCs and were retained as iMGEs.

Classification of iMGEs. Bacteriophage sequences were predicted by analysing all 
co-assembled contigs using VirSorter77 (v.1.0.3) and VirFinder78 (v.1.0.0). Similarly, 
plasmid sequences were predicted using cBar79 (v.1.2) and PlasFlow80 (v.1.0.7). 
The predictions were consolidated by annotating candidate iMGE sequences 
as follows: ‘plasmid’ if the sequences were positively predicted by cBar and/or 
PlasFlow; ‘phage’ if the sequences were positively predicted by VirSorter and/
or VirFinder; ‘ambiguous’ if the sequences were predicted as both plasmid and 
phage by any combination of the aforementioned tools; and, finally, ‘unclassified’ 
if they contained at least one protospacer and were not annotated as phage or 
as plasmid. Following this step, all iMGEs (that is, phages, plasmids, ambiguous 
and unclassified) were clustered using CD-HIT-EST with clustering parameters 
of 80% identity and at least 50% coverage, generating the non-redundant set of 
iMGEs. The classification/annotation of representative clusters was retained for the 
downstream analyses. Finally, BLASTN74 was performed on the clustered contigs 
against NCBI plasmid and virus databases to retrieve their taxonomy.

Genomic and transcriptomic abundances of the iMGEs were obtained by 
mapping the IMP-preprocessed MG and MT paired- and single-end reads from all 
time points to the iMGE representative contigs using bwa-mem65. The contig-level 
average depth of coverage derived from the MG and MT data represented the 
iMGE abundance and iMGE gene expression, respectively.

Gene annotation of phage- and plasmid-derived contigs. Open reading  
frames within iMGEs were predicted using Prodigal59 (v.2.6) with the “meta”  
and “incomplete gene” settings. Predicted genes were annotated using  
hmmsearch81 against an in-house licensed version of the KEGG database82.  
KEGG function identifiers were then converted to the higher-level COG  
functional categories83. Finally, ARGs were annotated using hmmsearch  
against ResFam’s full HMM database84.

Linear model of community dynamics. Correlations of family-level groups, 
whereby plasmids and phages were assigned to bacterial families based on their 
previous contig assignments to MAGs, were calculated using the “rcorr” function 
within the Hmisc R package. Euclidean distances of the correlation vectors were 
calculated using the “dist” function (stats R package). Next, hierarchical clustering 
was applied on the calculated Euclidean distances, using the “hclust” function (stats 
R package). The tree was then cut with a height parameter of four (that is, H = 4), 
using the “cutree” function from R stats package85.

The “lm” function from the R stats package was used to generate the models. To 
avoid overfitting, we restricted the linear models to a maximum of 15 family-level 
groups. Random sampling was performed for 100,000 model realizations, and 
model quality was assessed using the adjusted R2 value. In our first approach, we 
did not restrict the model composition and allowed all combinations with the same 
probability. Then, from the random sampling data, we ranked models based on the 
adjusted R2 value and looked for enrichments in specific families in the best models 
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(N = 25, 50, 100). In the first iteration, we selected enriched families and iMGEs 
(that is, plasmids and phages) to obtain a global model, and then we selected the 
significant groups from the global model to obtain a reduced model. Once we had 
the models for the entire time series and the shorter-time intervals, we identified 
the common significant groups in all the models. Next, we removed the group 
Microthrixaceae plasmids from the reduced models for each time interval to assess 
the influence of these plasmids within the performance of the model.

Network analyses and visualization. CRISPR-based plasmid–host and phage–
host networks were defined by the co-occurrence of rMAGs, spacers and a 
targeted iMGE in at least one time point. Thus, if a given non-redundant spacer 
was assigned to a specific rMAG and this specific rMAG did not co-occur in 
at least one time point, this spacer was deemed inactive within this rMAG 
throughout the time series. Consequently, a spacer was assigned to a rMAG if, 
and only if, the spacer co-occurred with its assigned rMAG in at least one time 
point. Thus, the iMGEs targeted by the spacers assigned to rMAGs were used 
to build the CRISPR-based plasmid–host and phage–host networks. Finally, the 
time-point-specific networks were built on the basis of the presence/absence of the 
rMAGs and their linked plasmids or phages.

Network properties such node degree, betweenness and closeness were 
estimated by the function “speciesLevel” within the bipartite R package86. 
Modularity, defined by the value of Q87, and nestedness, defined as the value of the 
nestedness matrix based on overlap and decreasing fill (NODF)88, were calculated 
using the functions “computeModules” and “nested”, respectively.

Visualization and manual inspection of the networks were performed using 
Cytoscape89 (v.3.6.1). R (v.3.4.1), together within the “tidyverse” framework, was 
used for processing data tables, statistical analyses and data visualization90.

Estimation of spacer gain–loss and CRISPR locus dynamics. Based on the 
previously calculated c.p.m. per rMAG, their assigned spacers and iMGEs, the 
dates of the first and the last occurrence within the time series were defined. We 
subsequently defined events of gain and loss of spacers and possible secondary 
encounters of the iMGE with the rMAGs to resolve the variation within a given 
CRISPR array per population. These events were classified as follows: (1) gain of 
a given spacer if its first detection within the time series occurred after the first 
occurrence of its targeted iMGE; (2) probable gain of a given spacer if both the 
spacer and its targeted iMGE occurred for first time at the same time point;  
(3) probable secondary encounter if the spacer occurred for first time before its 
linked iMGE; (4) loss of a given spacer if last detection of the spacer occurred after 
the last detection of its linked iMGE; (5) probable loss of a given spacer if the  
last detection of both the spacer and the iMGE occurred at the same time point;  
(6) spacer loss before iMGE loss if the last occurrence of the spacer occurred  
before the last occurrence of the iMGE.

Workflow automation. Bioinformatics workflow automation was achieved using 
Snakemake91 (v.3.10.2 to v.5.1.4).

Computing platforms. All computing was run on the University of Luxembourg 
High-Performance Computing (ULHPC) platform92.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genomic FASTQ files, rMAGs and isolate genomes from this work are publicly 
available within NCBI BioProject PRJNA230567. Similarly, MP data from this 
work are publicly available in the PRIDE database under the accession number 
PXD013655. Additional data are available via Zenodo (https://doi.org/10.5281/
zenodo.3774024 and https://doi.org/10.5281/zenodo.3766442).
Additional publicly available projects cited by this work include NCBI BioProject 
PRJNA174686. Source data are provided with this paper.

Code availability
The code is available on three separate repositories: (1) the IMP, binning and 
population genomes can be found in https://github.com/shaman-narayanasamy/
LAO-time-series (https://doi.org/10.5281/zenodo.3988660); (2) the CRISPR and 
MGE analyses can be found in https://github.com/susmarb/LAO_multiomics_
CRISPR_iMGEs (https://doi.org/10.5281/zenodo.3988592); and (3) the isolate 
assembly analyses can be found in https://github.com/shaman-narayanasamy/
Isolate_analysis (https://doi.org/10.5281/zenodo.3988667).
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Extended Data Fig. 1 | Non-unique CRISPR elements, protospacers, and protospacer-containing contigs (PSCC) over time. Number of predicted  
a, repeats, b, spacers, c, protospacers, and d, PSCCs per time point. The labels in the x-axis indicate the exact sampling dates, and the double slashes  
(//) represent absence of samples due to absence of foaming islets.
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Extended Data Fig. 2 | Functional gene categories encoded and targeted within plasmids and phages. a, Functional categories encoded by plasmids and 
b, by phages. a, b Each bar indicates the number of genes found per functional category. The left bar plots show the number of genes of specific functional 
categories within invasive mobile genetic elements (iMGEs) with and without protospacers (that is PSCCs). For those iMGEs that are PSCCs, the right bar 
plot highlights the number of genes of specific functional categories for which protospacers occurred within the intragenic regions.
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Extended Data Fig. 3 | Community activity. Relative expression based on mapping MT data to representative metagenomic assembled genomes  
(rMAGs) over time. The labels on the x-axis indicate the sampling dates and the double slashes (//) on the time axis represent absence of samples  
in the sampled system.
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Extended Data Fig. 4 | Dynamics of clusters comprised of bacterial-, plasmid- and phage- groups. The rMAGs were grouped together at the family-level. 
Plasmids and phages were grouped based on their family-level association, that is, binned together with an rMAG of a given family. The bacterial, plasmid 
and phage groups were clustered based on the correlation of their cumulative group-level abundance dynamics. a, Dynamics of all clusters based on 
cumulative abundance of each cluster members. b, Dynamics of the cluster 2 members, including Microthrixaceae and its associated plasmids and phages 
as cluster members. c. Dynamics of the cluster 3 members, including Microthrixaceae and its associated plasmids and phages as reference (these groups 
are marked with an asterix). Relative abundance values on the y-axis were derived from MG data. The x-axis represents time, colour coded by seasons as 
labelled in panel c. Please refer to Fig. 1 for the exact sampling dates within the seasons.
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Extended Data Fig. 5 | Model fitness and family enrichment within the best models predicting Microthrixaceae family abundance. a, Distribution of the 
adjusted R2 values of 100,000 model realizations. b, Enrichment of the family-level bacterial, plasmid and phage groups in the best 25, 50 and 100 models 
of the entire time-series. c, The upset plot represents the number of family-level bacterial, plasmid and phage groups (that is features) within the best 
model of different time intervals, that is the entire time-series and three time-windows (horizontal bars). The number of intersections between features 
in the best models in different long- and short-time intervals (vertical bars). The coloured boxes represent the intersections representing short- and long- 
term time dynamics, respectively.
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Extended Data Fig. 6 | Linear models predicting Microthrixaceae family abundance within the entire time-series. Model data fitted to the raw data of 
the entire time-series (n=51 in situ samples), specifically a, the best or global model, b, the reduced model, which lacks the non-significant families of the 
global model, and c, the reduced model without Microthrixaceae-plasmids. Gray bands represent the +/- standard error measurement of the regression 
line. Statistical tests were two-sided and adjusted for multiple comparisons.
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Extended Data Fig. 7 | Networks of phage-host interactions. a, Bipartite network representing global CRISPR-based interactions from the entire 
time-series between bacterial hosts (multicolored circular nodes) and their associated phages (purple diamond nodes). The edges represent at least one 
spacer from the host targeting the corresponding phage throughout the entire time-series. b, Number of phage-host CRISPR-based interactions. Each bar 
represents the total number of interactions in a specific timepoint (n=1), for each of the 51 timepoints in the time-series. The labels on the x-axis indicate 
the sampling dates and the double slashes (//) on the time axis represent absence of samples in the sampled system. The summary statistics within the 
panel represents the number of CRISPR-based interactions in the entire time-series (n=51 in situ samples).
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Extended Data Fig. 8 | Spacer acquisition dynamics in Candidatus Microthrix parvicella population. Barplot representing the percentage of spacers per 
time-point reflecting a gain or loss events. Gain events are defined as: i) “Gain of the spacer, spacer integration” when the iMGE was detected before or at 
the same timepoint as its linked spacer, and ii) “Gain of the spacer, secondary contact” when the spacer was detected before the linked iMGE within the 
time-series. Loss events are defined as: i) “Loss of the spacer, spacer deletion” when both the spacer and the iMGE are not detected anymore within the 
remainder of the time-series, and ii) “Loss of the spacer” when the spacer is not detected within the time-series anymore but the iMGE is still detected 
after spacer loss. The labels on the x-axis indicate the sampling dates and the double slashes (//) on the time axis represent absence of samples from the 
sampled system.
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Extended Data Fig. 9 | Abundance of M. parvicella and selected plasmid sequences targeted by the spacers of the same species. a, Metagenomics 
(MG)-based and metatranscriptomics-based (MT) abundance of M .parvicella over time. b, Abundance of plasmid contig “D28_L2.21_contig_56858”, 
with a size of 2,503 bps which is targeted by three spacers within M. parvicella’s CRISPR locus. c, Abundance of plasmid contig “D48_E1.25_
contig_355826”, with a size of16,151 bps which is targeted by one spacer within M. parvicella’s CRISPR locus. Statistical tests were two-sided and adjusted 
for multiple comparisons.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Spacers acquisition dynamics of the rMAG-40 population classified as Leptospira biflexi. a, CRISPR-Cas operon.  
b, Metatranscriptomics-based expression levels of the cas genes. Boxplot represents expression levels aggregated from 51 timepoints based on normalized 
read counts. Data are presented as median values, Q1–1.5 x IQR and Q3 + 1.5 x IQR. c, Metaproteomic-level representation of Cas proteins. The numbers 
represent the number of time points where at least one peptide of the Cas protein was detected. d, Barplot representing the number of interactions 
between rMAG-40 and iMGEs. The purple section of the bars represent the number of interactions with phages, while in turquoise represent interactions 
with plasmids. e, Barplot representing the percentage of spacers per time-point with a gain or loss event. Gain events are defined as: i) “Gain of the spacer, 
spacer integration”, when the iMGE was detected before, or at the same timepoint, as its linked spacer, and ii) “Gain of the spacer, secondary contact”, 
when the spacer was detected before the linked iMGE, within the time-series. Loss events are defined as: i) “Loss of the spacer, spacer deletion”, when 
both the spacer and the iMGE are not detected anymore within the rest of the time-series, and ii) “Loss of the spacer”, when the spacer is not detected 
within the time-series anymore, but the iMGE is still detected after spacer loss. f, Dynamics of spacers assigned to the rMAG. The y-axis shows the IDs 
of spacers assigned to the rMAG. The labels on the x-axis indicate the sampling dates and the double slashes (//) on the time axis represent absence of 
samples in the sampled system. The labels on the x-axis indicate the sampling dates and the double slashes (//) on the time axis represent absence of 
samples in the sampled system.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description A generation-resolved, integrated meta-omic analysis of invasive mobile genetic elements and microbial host dynamics within a 
microbial community from a biological wastewater treatment plant spanning one and a half years.

Research sample Individual floating sludge islets from the surface of the anoxic tank of the Schifflange biological wastewater treatment plant were 
sampled due to their richness in lipid accumulating organisms. They were then subjected to a concomitant biomolecular extraction of 
DNA, RNA an proteins, and a high throughput measurements to obtain metagenomic, metatranscriptomic and metaproteomic 
datasets to be computationally analysed.

Sampling strategy Samples were collected from Schifflange biological wastewater treatment plant (Esch-sur-Alzette, Luxembourg; 49°30ʹ48.29ʺN; 6°1ʹ
4.53ʺE). Individual floating sludge islets were collected from the same spot of the anoxic tank, along with physico-chemical 
parameters of the water, i.e. pH, temperature, conductivity, oxygen. 
Two initial samples were collected on 2010-10-04 and 2011-01-25 in the context of previously published work (https://
doi.org/10.1038/ncomms6603 and https://doi.org/10.1038/npjbiofilms.2015.7). More frequent sampling was performed from 
2011-03-21 to 2012-05-03, of which data from three samples (2011-10-05, 2011-10-05 and 2012-01-11) have been previously 
published (https://doi.org/10.1038/ncomms6603). A total of 53 samples were collected over a period of 578 days. The mean sample 
frequency was 8 days (SD=16 days). The sampling procedure was designed to span at least one entire annual seasonal cycle (i.e. 
winter, spring, summer, autumn) while the sampling frequency corresponded to the doubling time of the dominant bacterial 
population of approximately 8 days, thus representing an approximate generational time scale.  
Sampling was performed by Laura A. Lebrun and Emilie E.L. Muller. 
This work represents part of a larger ongoing multi-annual project. Thus, all the samples  were subjected to the same experimental 
protocols. Please refer to detailed methods on sampling procedures in previous publications: 
https://doi.org/10.1038/ncomms6603 
https://doi.org/10.1038/npjbiofilms.2015.7 

Data collection Laura A. Lebrun and Emilie E.L. Muller performed the concomitant biomolecular extractions resulting in fractions of DNA, RNA, 
proteins and metabolites for each in situ sample. They also performed the bacterial strain isolation (re-plating), screening and 
genomic DNA extraction for lipid accumulating bacteria. 
Nathan D. Hicks, Cindy M. Liu, Lance B. Price, John D. Gillece, James M. Schupp and Paul S. Keim performed the DNA and RNA library 
preparation and next-generation sequencing (NGS) to obtain MG and MT data. They also performed the DNA library preparation and 
NGS of isolate genomic data. 
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Michael R. Hoopmann and Robert L. Moritz performed the mass-spectrometry measurements of the protein fractions.  
This work represents part of a larger ongoing multi-annual project. For detailed information and descriptions about data collection, 
experimental protocols, experimental kit versions, DNA and RNA library preparation, proteomic sample preparation, high-throughput 
platforms, please refer to the following articles: 
https://doi.org/10.1038/ismej.2012.72 
https://doi.org/10.1038/ncomms6603 
https://doi.org/10.1038/npjbiofilms.2015.7 
https://doi.org/10.1186/s40793-017-0274-y 

Timing and spatial scale Individual floating sludge islets within anoxic tank number one of the Schifflange BWWT plant (Esch-sur-Alzette, Luxembourg; 49°
30'48.29"N; 6°1'4.53"E) were sampled always on the same spot. Sampling was carried out from 2010-10-04 to 2012-05-03. Two 
samples were collected on 2010-10-04 and 2011-01-25, to determine the sequencing conditions and the microbial diversity and was 
published in previous work. Subsequently, samples were collected on a weekly basis  from 2011-03-21 to 2012-05-03, which 
approximately corresponds to the generational time scale of the sludge of eight days. The lack of samples in periods; from 
2011-07-08 to 2011-08-05, from 2011-10-12 to 2011-11-02, and from 2011-11-20 to 2012-12-21 are due to absence of foaming 
islets as consequence of (i) heavy or continued rain and/or (ii) natural decrease of foam during summer and autumn seasons.

Data exclusions The first two samples, collected on 2010-10-04 and 2011-01-25, were excluded from the all analyses after the "population 
abundance estimation" (in the "Binning, selection of representative genomic bins, taxonomy and estimation of abundance" section) 
because the sampling occurred before the period of weekly sample collection (i.e. 2011-03-21 to 2012-05-03) and therefore did not 
fit within the generational time-scale.

Reproducibility Experimental procedures adhered to previously published protocols. Open source software was used in all the computational 
analyses. All custom scripts and commands are available within multiple Gitlab repositories. Wherever applicable, the software 
versions are reported in "Methods and Material" within the manuscript.

Randomization Samples collected from 2011-03-21 to 2012-05-03 were randomized before biomolecular extractions. The biomolecular fractions 
were further randomized prior to the high-throughput measurements.  
The two initial samples, collected on 2010-10-04 and 2011-01-25, were not included within the aforementioned randomization 
procedure(s) as they were collected in the context of previous work (https://doi.org/10.1038/ncomms6603 and https://
doi.org/10.1038/npjbiofilms.2015.7) and were used to pilot the experimental protocols which was conducted prior to the higher 
frequency sampling (i.e. from 2011-03-21 to 2012-05-03).  

Blinding Blinding is not applicable in this study as it did not involve human subjects, but rather data from in situ samples from a naturally 
occurring environment.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Anoxic tank of an activated sludge (biological) wastewater treatment facility under seasonal climatic conditions (i.e. spring, 

summer, autumn and winter).

Location Schifflange biological wastewater treatment plant (Esch-sur-Alzette, Luxembourg; 49°30ʹ48.29ʺN; 6°1ʹ4.53ʺE).

Access and import/export Access was granted to the research personnel based on agreement between the principal investigator, Prof. Paul Wilmes (on 
behalf of the research institution), and the wastewater treatment facility management (Mr. Bissen and Mr. Di Pentima) from the 
Syndicat Intercommunal a Vocation Ecologique (SIVEC), Schifflange, Luxembourg. All research personnel are informally 
introduced to the management and personnel of the facility prior to conducting any work. Research personnel were not 
provided with keys or electronic access cards, and thus could only enter the premises upon the permission of personnel at the 
entrance of the facility.

Disturbance Sampling had a minimum-to-no impact on the operations of the wastewater treatment facility. The work of the researchers did 
not require (complete or partial) shutdown or any operational disruption of the facility. Sampling was performed by the research 
personnel (Emilie E.L. Muller and Laura A. Lebrun) without any involvement of the staff of the facility. Research personnel either 
brought their own equipment or used equipment from the site, which was dedicated to them, thus not hindering any operations 
or personnel within facility. Researchers could access operational readings (e.g. temperature, inflow, outflow, etc.) of the facility 
directly via a dedicated web portal of the facility using login credentials provided by the facility management. Two formal 
meetings weres organized between researchers and management of the facility over the past five years.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
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