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Abstract: Babesiosis is one of the most important tick-borne diseases in veterinary health, impacting
mainly cattle, equidae, and canidae, and limiting the development of livestock industries worldwide.
In humans, babesiosis is considered to be an emerging disease mostly due to Babesia divergens
in Europe and Babesia microti in America. Despite this importance, our knowledge of Babesia sp.
transmission by ticks is incomplete. The complexity of vectorial systems involving the vector,
vertebrate host, and pathogen, as well as the complex feeding biology of ticks, may be part of the
reason for the existing gaps in our knowledge. Indeed, this complexity renders the implementation
of experimental systems that are as close as possible to natural conditions and allowing the study
of tick-host-parasite interactions, quite difficult. However, it is unlikely that the development of
more effective and sustainable control measures against babesiosis will emerge unless significant
progress can be made in understanding this tripartite relationship. The various methods used to date
to achieve tick transmission of Babesia spp. of medical and veterinary importance under experimental
conditions are reviewed and discussed here.
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1. Introduction

Babesiosis remains prevalent worldwide and represents an important threat for both
humans and animals [1,2]. The disease, impacting mainly cattle, sheep, goat, equidae,
canidaecanidae, and accidentally humans, is caused by apicomplexan parasites belonging
to the Babesia genus that exclusively infect erythrocytes of their vertebrate hosts [3]. To
date, more than 100 Babesia species have been identified [1]. Babesia spp. are transmitted by
hard ticks—occasionally by blood transfusion—and require both a competent vertebrate
and invertebrate host to maintain the transmission cycle [3].

Human babesiosis is caused by Babesia microti, a Babesia crassa-like pathogen, Babesia di-
vergens, Babesia duncani, and Babesia venatorum, as well as other parasites closely genetically
related to these pathogens, such as B. divergens-like, B. duncani-like, and B. microti-like [4].
Infections in otherwise healthy individuals is usually mild to moderate and most cases
of severe disease occur in immunocompromised individuals. B. microti is endemic in the
northeastern and upper midwestern regions of the United States, while B. duncani is present
on the west coast of the country [4]. In Europe, most of the human cases are due to B.
divergens, whereas in Asia they are due to B. venatorum, B. crassa-like, and B. microti [4]. In
cattle, Babesia spp. have a significant worldwide economic, social, and epidemiological
impact and include, among the most important species, B. bovis, B. bigemina, Babesia major,
and B. divergens [5]. B. bovis and B. bigemina are present in many countries in Africa, Asia,
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Australia, Central and South America, and Southern Europe between 40◦ N and 32◦ S.
B. major is present in Europe, Northwest Africa and Asia, and B. divergens is present in
northern Europe [5]. Ovine babesiosis due to Babesia ovis and Babesia motasi is considered
as the most critical blood-borne parasitic disease of small ruminants in tropical and non-
tropical regions (occurring in South-eastern Europe, North Africa, and Asia) [6]. In equids,
Babesia caballi is (with Theileria equi and Theileria haneyi) the agent of equine piroplasmosis
known to be endemic in several countries of Africa, Asia, the Americas, and mainly in the
Mediterranean basin for Europe [7–9]. The disease represents a significant animal health
issue and causes notable economic losses for the equine industry. Finally, babesiosis is
one of the most important globally extended and quickly spreading tick-borne diseases in
dogs worldwide. Babesia canis is the main cause of canine babesiosis in Europe and is only
sporadically found around the world, whereas Babesia gibsoni, the most prevalent species,
and Babesia vogeli have a global distribution. Babesia rossi, one of the most pathogenic
species, is endemic in southern Africa [10].

The current approaches available for babesiosis control have many important lim-
itations, including increased resistance to acaricides by ticks, as well as the numerous
drawbacks of these acaricides and of the current vaccines and babesicidal drugs (e.g., effi-
cacy, toxicity, environmental effects) [11]. The development of improved control measures
against babesiosis is limited by the numerous and significant gaps in our understanding of
the biology of Babesia spp., especially regarding molecular interaction between parasites,
vectors, and vertebrate hosts, as well as the factors that may influence both the develop-
ment and the transmission of the parasite [12]. To fill these gaps, it is essential to be able to
reproduce the life cycle of Babesia species in controlled experimental conditions, including
transmission by ticks [13,14]. In addition, the validation of new methods of interruption of
the cycle requires that it can be first carried out entirely under such conditions. Finally, it is
important to mention that despite the promise of in vitro culture systems [15], maintenance
by in vitro culture [16] or needle-passage in the vertebrate host [17] in the absence of tick
passage may generate significant changes in the parasite population, potentially creating a
bias in research results.

Several laboratory studies that aimed to understand babesiosis pathogenesis have
focused their interest on infecting laboratory animals through artificial parasite injec-
tion [18,19]. Regarding tick-parasite interaction, the great majority of studies carried out
concern mainly epidemiological studies focusing on the detection of parasites in ticks
collected into the field [20]. Some in vitro studies have also been performed in order to
understand the interactions between parasites and the cells of their vertebrate [21–23] or
invertebrate hosts [24–27]. However, and certainly because of the difficulties inherent to
the studied model—including Babesia spp. culture, tick colony maintenance, and animal
models—relatively few studies have been based on the establishment, under experimental
conditions, of complete parasite transmission cycles from one vertebrate host to another
via the tick bite. Thanks to the experimental models developed for that purpose, these few
studies have nevertheless made significant advances in (1) the definition/confirmation of
the vector competence of various tick species; (2) the understanding of the modalities of
parasite acquisition and transmission by ticks; (3) the discovery of the molecular interac-
tions between the parasite and its invertebrate hosts; (4) the evaluation of some control
methods. The aim of this review is to summarize studies that include both tick infection
on Babesia-infected animals and Babesia infection of ticks through artificial systems, and to
comment on the major results they achieved.

2. General Description of the Babesia Life Cycle

Babesia spp. are transmitted by hard tick (ixodid) vectors. The tick vectors and reservoir
hosts differ depending on Babesia sp. and geographical location considered [1]. Several
tick species have been mentioned in the literature as vectors of Babesia sp., but, as shown
in Table 1, vector competence through experimental transmission has not been validated
for all of them. For those mentioned here as "suspected vectors" without realization of the
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complete transmission cycle under experimental conditions, their involvement is mostly
based on epidemiological evidence (e.g., correlation of tick species presence with disease
occurrence). Each of the three active stages of hard ticks (larva, nymph, and adult) takes a
single blood meal from a vertebrate host in order to mature to the next stage or lay eggs for
the female. Most of the tick species listed as confirmed or suspected vectors of some Babesia
species are three-hosts ticks—meaning that they take their three blood meals on three
different hosts. Some of them, however, have a two-host cycle such as some Hyalomma
spp., Rhipicephalus evertsi, and Rhipicephalus bursa, whereas Dermacentor nitens, Rhipicephalus
annulatus, Rhipicephalus microplus, and Rhipicephalus decoloratus are one-host ticks that use
the same individual host animal for all active tick stages.

Table 1. Major Babesia species infecting humans, dogs, cattle, sheep, goat, and equids; their suspected or confirmed main
vector and vertebrate hosts in the field; and the realization of the whole transmission cycle under experimental conditions.

Babesia spp. Suspected or Confirmed
Main Vectors Main Vertebrate Hosts

Realization of the Complete
Transmission Cycle Under
Experimental Conditions

Babesia microti

Ixodes persulcatus
Ixodes ovatus

Ixodes scapularis
Ixodes trianguliceps

Ixodes dammini
Ixodes ricinus

Rhipicephalus haemaphysaloides
Haemaphysalis longicornis

Human, rodent

ND
ND
[28]
[29]
[30]

[31,32]
[33]
[34]

Babesia divergens Ixodes ricinus Human, cattle [35–39]
Babesia venatorum Ixodes ricinus Human, roe deer [40]

Babesia duncani Dermacentor albipictus Human, mule deer ND

Babesia bovis
Rhipicephalus microplus
Rhipicephalus annulatus

Rhipicephalus geigyi
Cattle, buffalo

[41]
ND
ND

Babesia bigemina

Rhipicephalus annulatus
Rhipicephalus microplus

Rhipicephalus decoloratus
Rhipicephalus geigyi
Rhipicephalus evertsi

Cattle, buffalo

[42]
[43,44]
[45–47]

ND
ND

Babesia major Haemaphysalis punctata Cattle [48,49]
Babesia ovata Haemaphysalis longicornis Cattle [50]

Babesia orientalis Rhipicephalus haemaphysaloides Water buffalo ND

Babesia caballi

Dermacentor nitens
Dermacentor sp.
Hyalomma sp.

Rhipicephalus evertsi

Horse, Donkey, Mule

[51,52]
ND
ND
[53]

Babesia ovis Rhipicephalus bursa Sheep and Goat [54]

Babesia motasi Rhipicephalus bursa
Haemaphysalis punctata Sheep and Goat ND

ND

Babesia canis
Dermacentor reticulatus

Haemaphysalis spp.
Hyalomma spp.

Dog
[55–59]

ND
ND

Babesia gibsoni Haemaphysalis sp.
Rhipicephalus sanguineus Dog ND

ND
Babesia vogeli Rhipicephalus sanguineus Dog ND

Babesia rossi Haemaphysalis elliptica
Rhipicephalus sanguineus Dog [60]

ND

ND: no identified data.

The Babesia life cycle includes both asexual multiplication in the erythrocytes of the
vertebrate host and sexual reproduction in the tick vector [3,61]. The general life cycle
of the Babesia species is summarized in Figure 1 for Babesia sensu stricto (s.s.) species.
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Indeed, it is necessary to specify here that, quite recently, molecular phylogeny studies
using the 18S rRNA gene have led to the division of Babesia species into two large groups:
Babesia s.s. and Babesia sensu lato (s.l.). Species belonging to the latter group, such as B.
microti, are not capable of transovarial transmission within the tick but only a transstadial
mode of transmission [62,63]. Vertebrate hosts are infected by the injection of sporozoites
present in tick saliva during the tick bite. Each sporozoite penetrates the cell membrane
of an erythrocyte with the aid of a specialized apical complex. Once inside, the parasite
produces two merozoites by a process of merogony. Merozoites are then intermittently
released following erythrocyte lysis to infect new erythrocytes. The parasite may then
persist asymptomatically within its host for several years or lead to acute disease. When
they are ingested by the tick during the blood meal, some parasites present in infected
erythrocytes (pre-gametocytes) undergo further development in the passage from host
blood to the midgut of the tick vector to evolve into gametocytes. The sexual reproduction
between gametocytes takes place in the tick gut and leads to a zygote that penetrates the gut
epithelium, where further multiplication occurs, with development to motile and haploid
kinetes that escape into the tick hemolymph. The kinetes then infect a variety of tick cell
types and tissues, including the ovary in the female tick—for Babesia s.s. species—and the
tick salivary glands, where successive cycles of asexual multiplication take place. In this
last organ, sporozoite development usually only begins when the infected tick attaches to
the vertebrate host. The ticks thus transmit the sporozoites to a new host during a new
blood meal of the next life-stage for the ticks with several hosts or of the next generation
after transovarian transmission for the one-host ticks.
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Figure 1. Life cycle of Babesia spp. sensu stricto. Vertebrate hosts are infected following the bite of an infected hard
tick, through the invasion of the host erythrocytes by sporozoites excreted in the tick saliva. Inside the erythrocyte,
sporozoites develop into trophozoites that undergo an asexual multiplication called merogony, ending in the formation of
either merozoites that can infect other erythrocytes, or of gametocytes, which eventually develop into gametes. Infected
erythrocytes are taken up by the tick during its blood meal, but only the gametocytes survive, and they then undergo further
development, changing into gametes in the tick midgut. Then, sexual multiplication—gamogony—takes place with the fusion
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of two gametes to form a motile zygote that enters the midgut epithelial cells to develop into motile kinetes through meiotic
division. Kinetes disseminate to tick tissues, including ovarian and salivary gland cells. The invasion of tick ovaries results
in transovarial transmission while those of salivary glands leads to transmission to the vertebrate host through injection of
sporozoites with the saliva. Babesia microti-like species, which belong to Babesia spp. s.l. species, only invade the salivary
glands, not the ovary. The schematic representation was made using the software biorender.com.

3. Experimental Models of Babesia Species—Transmission by Ticks
3.1. Tick Infestations on Babesia spp. Infected Animals

The first experiments to transmit Babesia spp. naturally were carried out by applying
ticks suspected of being vectors on infected animals. Due to the huge economic impor-
tance of bovine babesiosis, these studies on vector competence for Babesia sp. were first
conducted on species that infect cattle. Indeed, in 1893, two American researchers, Smith
and Kilborne—the first authors to demonstrate the transmission of a disease organism
from an arthropod to a mammalian host—showed the vector competence of R. annulatus
for B. bigemina by placing ticks infected on animal onto naïve cattle that developed the
associated disease [42]. Thereafter, different species of animals were used depending on
the species of Babesia studied. Over time, the animal models and methodology used were
refined to optimize the infection of both animals and ticks, and to comply with health
and safety rules, and animal accommodation and tick containment methods during the
tick feeding process have been the subject of several tests and evolutions (see examples
in Figure 2A–F). In most cases, for cattle, animals were housed in individual, tick-proof
pens surrounded by moats with or without detergent or insecticide [43,45]. Concerning
the tick containment methods, in 1961, Callow and Hoyte used a hessian rug to protect
the larvae until adult repletion to demonstrate the transmission of B. bigemina to cattle
by R. microplus [43]. Ticks were either allowed to spread at will over the animal, or were
confined to one site by releasing them under a fabric patch (nylon or organdie), which was
glued along its edges to the flank of the bovine. A few years later, for the demonstration of
the vector competence of R. decoloratus for B. bigemina in Kenya, ticks were fed on cattle
until adult repletion by sprinkling larvae on the backs of the animals [45]. For the first
experimental transmission of B. divergens by Ixodes ricinus achieved by Joyner et al in 1963,
the ticks were contained in ear bags [36], a method also used later for sheep [64]. Regarding
rodents, several laboratory studies involving complete transmission cycles of B. microti
to the vertebrate host through the tick bite were performed [28–33]. In most instances,
rodents were maintained over trays of water from which detached engorged ticks—applied
by brush to animals—were harvested, whereas in some cases, ticks were contained in
plastic capsules attached with different adhesives. For horses, the first studies aimed to
validate the vector competence of D. nitens for B. caballi used larvae applied by brush on
the animal [51], whereas in subsequent studies, tick feedings were accomplished by placing
the larvae under a cloth patch glued to the back of the host [52].

The identification of a pathogen or pathogen DNA alone—which is even less convinc
ing—in an arthropod cannot be sufficient to prove its ability to transmit this pathogen.
Indeed, demonstrations of parasite presence in unfed field ticks, in tick salivary glands,
eggs, or unfed larvae, while more convincing than detection in ticks collected from animals,
also require confirmation only provided by the validation of vector competence in a
controlled experimental model. The best illustration of this corresponds to the following
studies performed in Iran in order to identify the vector of B. ovis to sheep. The kinetes
of B. ovis were observed in hemolymph and egg smears of Rhipicephalus sanguineus and
Hyalomma marginatum field ticks collected from sheep infected with B. ovis [69], so the
vector competence of both tick species was further evaluated by placing pairs of adult ticks
on sheep inoculated with B. ovis, but no transmission by any of the succeeding tick stages
could be demonstrated, thus showing that these tick species are not vectors [64].
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As recently reviewed by Gray and co-workers, the establishment of experimental
models of pathogens transmission by ticks using live animals has led to significant advances
in the understanding of transmission modalities and tick-parasite interactions [70]. For
example, it allowed the demonstration that transovarial transmission does not occur in
B. microti, leading to no longer classifying this parasite in Babesia spp. s.s. [31–33], and
that, in I. ricinus, the infection only survives one molt [31]. Laboratory models have
also demonstrated that B. microti may promote its transmission in rodents by enhancing
the feeding success and survival of its tick vector, Ixodes trianguliceps [29]. Likewise, the
establishment of the transmission of B. divergens by I. ricinus in a gerbil experimental
model [35] provided proof of sexual development of Babesia through DNA measurements
on the developmental stages of B. divergens in the blood of the vertebrate host and in the
gut, hemolymph, and salivary glands of the tick vector [38,39]. In addition, several studies
have been performed in order to establish which tick life stages are able to acquire and/or
to transmit the parasite. Most of them have concluded that only adult stages were able to
acquire Babesia sp. s.s. from infected animals, while all succeeding stages (larvae, nymphs,
and adults) were able to re-transmit the parasites to susceptible animals [36,37,43,44,48].
However, Schwint and co-workers demonstrated that only the first of three subsequent
generations from D. nitens females was able to transmit B. caballi to naïve horses, showing
that the parasite is unable to persist in ticks without continuing alimentary infection of
adult females [52], whereas other studies have also shown the acquisition of this parasite
by nymphs of R. evertsi [53].

Models of transmission of B. microti to rodents via ticks in the laboratory have also
made it possible to carry out studies on the phenomena of co-infections. In fact, a lower
transmission efficiency of B. microti than Borrelia burgdorferi to Ixodes dammini from both
hamsters [71] and white-footed mice [72] has been demonstrated. In the meantime, it was
shown that ticks that fed on mice with these concurrent pathogen infections exhibited
twice the incidence of B. burgdorferi infection compared with B. microti [72]. Twenty-
five years later, however, this laboratory model also showed an increase of the frequency of
B. microti-infected Ixodes scapularis (formerly I. dammini) nymphs when they fed as larvae
on white-footed mice coinfected with B. burgdorferi, as well as an increase of B. microti
parasitemia in co-infected mice [28]. This enhancement of B. microti establishment by
B. burgdorferi has been attributed to an immunological conflict in the adaptive immune
response of the vertebrate host against the two tick-borne pathogens [73].

The development of experimental models using animals also provided knowledge on
the infection acquisition by the vertebrate host following a Babesia-infected tick bite. For
example, by developing a laboratory model of B. bovis infection of calves through the bite of
R. microplus-infected ticks, Smith and co-workers demonstrated, in 1978, that tick-induced
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infection was more severe than in calves infected with carrier blood, even when very low
numbers of infected larvae were applied [41]. They attributed this difference in virulence
to the large number of infective doses injected by each infected tick but Salivary-Assisted
Transmission of tick-borne pathogens (see review in [74]) probably also contributed to
this observation.

Although, compared to other pathogens, few molecular studies have involved Babesia
parasites [70,75], experimental tick-transmission models of Babesia spp. using animals
have also made it possible to identify molecules potentially involved in this transmission.
Such studies are helping us to better understand the interactions involved and to identify
potential targets for blocking parasite transmission. Thus, infection of H. longicornis on
dogs infected with B. gibsoni has allowed to implicate a tick protein, longipain, in the
transmission of the parasite by its vector [76], and to demonstrate that the vitellogenin
receptor on the surface of tick oocytes is essential for its transovarial transmission [77].
Experimental models of B. bovis infection of cattle by R. microplus has also been used to
study the function of the tick protein Bm86 during B. bovis infection [78]. In the same way,
experimental tick infection models of both B. bigemina and B. bovis-infected cattle were
used to perform functional genomics studies on R. annulatus and R. microplus genes that
are differentially expressed in response to parasite infection [79,80].

Both the discovery and validation of methods to control the transmission of tick-
borne pathogens require experimental designs that include complete transmission cycles.
Regarding the Babesia spp. that infect cattle, experimental tick infection models for B.
bigemina-infected cattle were used to evaluate the efficiency of some vaccine candidates
and drugs against parasite transmission by R. microplus [81,82]. Rhipicephalus microplus
experimentally infected with B. bovis were also used to demonstrate the inefficiency of
the injectable and pour-on forms of both ivermectin and moxidectin to prevent parasite
transmission by ticks [82]. In Argentina, Mangold and co-workers developed a laboratory
model of B. bovis transmission to cattle by R. microplus in order to demonstrate the non-
transmissibility to ticks of an attenuated vaccine strain of the parasite [83]. Several studies
also involved experimental transmission of B. canis to dogs through the bite of infected
D. reticulatus ticks in order to evaluate the usefulness of different acaricides to prevent
parasite transmission [55–57,84], whereas similar experiments were performed regarding
B. canis transmission by R. sanguineus [85,86], and B. rossi transmission by Haemaphysalis
elliptica [60].

3.2. Tick Infection through Artificial Feeding Systems

The use of natural hosts for direct infection of ticks on infectious animals remains the
best method to obtain conditions that are closest to the physiological reality of tick-borne
pathogen transmission. However, firstly, ethical considerations lead us to limit the use
of animals as much as possible. Secondly, in addition to the constraints associated with
licensing the experiments and host specificity, obtaining the animals, keeping them in
the laboratory, and handling them can be expensive and difficult or even impossible in
the case of most species of wildlife. Finally, the difficulty of controlling parasitaemias of
infected animals for the whole feeding period of the ticks is an important consideration.
All these reasons have led to the development of artificial methods of tick infection in order
to complete the lifecycle of tick-borne pathogens under laboratory conditions. Artificial
feeding of ticks, mimicking the natural process, has been used for different purposes
including tick rearing, the study of tick physiology and the effects of antibodies or drugs
on tick physiology, functional genomic studies, and vaccine candidate discovery, as well
as the analysis of tick-borne pathogen transmission (see review by Bonnet and Liu [13]).
Nevertheless, relatively few studies have involved Babesia parasites. One of the factors
limiting these studies is undoubtedly the need for successful in vitro cultivation of the
Babesia species of interest [15].

The use of blood-filled capillary tubes placed over the mouthparts of ticks was first
reported in 1938 by Gregson, who used this technique to collect saliva from D. andersoni [87].
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Since then, this technique has been used to infect ticks with several tick-borne pathogens,
mainly bacteria (see review in [13]). Although this infection process has the advantage of
using the natural route of infection, i.e., the digestive tract of the tick, and allows control of
the quantity of pathogen ingested, it is quite far from natural conditions because the tick
absorbs a large amount of pathogen at once and this, regardless of the "true" full blood
meal. The other drawback is that it requires the use of animals before or after infection to
feed ticks to repletion. However, its use has led to some significant advances in the study of
Babesia spp. transmission. In 1998, Inokuma and Kemp used the capillary feeding technique
in order to infect R. microplus with B. bigemina [88]. Adult ticks were pre-fed on cattle and
then B. bigemina-infected red blood cells were offered to the ticks using glass capillaries on a
warm plate at 35 ◦C for 18 h in the dark. The authors subsequently demonstrated that ticks
were able to acquire the parasite and to transmit it to their progeny. The capillary feeding
technique has also been used by Antunes and co-workers in order to evaluate the impact
of purified rabbit polyclonal antibodies on some R. microplus proteins associated with both
tick physiology and tick infection by B. bigemina [89]. While an effect on tick weight and
oviposition was observed, no effect was observed on pathogen DNA levels. However, this
work has made it possible to set up an alternative system to the use of animals both to test
vaccine candidates and to obtain essential data on tick-pathogen interaction, as this could
also be done later with another protein, the calreticulin, identified as being involved in B.
bigemina infection in R. annulatus ticks [90].

The membrane feeding technique—consisting of feeding ticks on blood or culture
media through a membrane—was first developed by Pierce and Pierce in 1956 in order
to feed R. microplus using embryonated hen eggs [91]. Since then, several membranes of
animal or artificial origin have been used both to feed and to infect ticks with different
pathogens (see review in [13]). In this case, as the pathogen is mixed in blood and absorbed
throughout the blood meal via the digestive tract, the method mimics the natural conditions
of tick infection more closely than other methods. Its main disadvantages, however, are the
need to regularly change the blood used, and the need to use antibiotics and antifungals
to avoid contamination. It is also necessary to test pathogen viability under these feeding
conditions at regular intervals. In the case of artificial membranes such as silicone ones,
feeding systems also need olfactory stimuli for attachment and feeding. Regarding their
use to infect ticks with Babesia spp., and due to red blood cell sedimentation, it is important
to note that this requires the placing of blood above the membrane to produce a continuous
gravitational pressure, ensuring tick absorption of the intraerythrocytic parasites. In 2007,
Bonnet and co-workers developed a skin-feeding technique using the skins of both gerbils
(for larvae and nymphs) and rabbits (for nymphs and adults) to infect I. ricinus with B.
divergens without the need for additional stimuli (Figure 2G,H) [35]. To our knowledge,
this is the only membrane-feeding technique that has been used to date to infect ticks
with Babesia spp. All tick instars were allowed to acquire the parasite from infected red
blood cells maintained at 37 ◦C in a glass feeder through the animal skin until repletion.
Contrary to what was previously observed [36,37], this system showed that in addition to
adult females, I. ricinus larvae and nymphs can also acquire B. divergens infections, which
persists transtadially in the subsequent nymphal and adult stages (as determined by the
detection of DNA in their salivary glands). Babesia divergens DNA was also detected in
eggs and larvae produced by females that had fed on parasitized blood, demonstrating the
transovarial transmission of the parasite. Later, the use of this artificial tick infection system
also allowed the discovery of molecular markers for B. divergens sexual stages [92,93]. Lastly,
the same membrane feeding technique allowed the validation of the vector competence of
I. ricinus for Babesia (EU1) venatorum [40].

Finally, in order to understand tick-Babesia interactions and to follow parasite develop-
ment in the vector, Maeda and co-workers used a “semi-artificial” mouse skin membrane
feeding technique to infect H. longicornis with B. ovata [94]. In this case, female adult ticks
were first allowed to feed on the shaved back of mice, and after 4 to 5 days, a section
of the mouse skin with the ticks attached was removed immediately after euthanasia,
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and set up in artificial feeding units. The ticks were then fed on a mix of media and B.
ovata-infected red blood cells through the piece of mouse skin. This technique was then
used to demonstrate the transovarial persistence of B. ovata DNA in H. longicornis [50].
Thus, the mixing of animal use and membrane feeding makes it possible to control the
parasitemia of the meal offered to ticks, but does not prevent the use of live animals.

3.3. Tick Infection through Injection

Although this method is more distant from physiological reality than the ones previ-
ously detailed, some studies have also performed tick infections by injecting the pathogen
through the cuticle of the tick. In addition to requiring live animals to feed ticks after the
infection, this invasive method also has the disadvantage of a low survival rate of ticks
after injection [95]. Nevertheless, its use by some authors has led to important results
concerning Babesia spp. In 2018, Antunes and co-workers used a R. bursa-B. ovis-sheep
infection model to characterize tick salivary gland genes that were differentially expressed
in response to blood feeding and B. ovis infection [96]. In that experiment, female ticks
were inoculated with B. ovis in the trochanter-coxae articulation and allowed to feed on
rabbits. Vector competence was then confirmed by feeding B. ovis-infected ticks on a naïve
lamb. This study allowed both increased understanding of the role of tick salivary gland
genes in Babesia infections and identification of potential candidate vaccine antigens for
innovative control strategies.

4. Conclusions

It is likely that vector competence for Babesia spp. has yet to be determined in some tick
species. Furthermore, our understanding of the life cycles of Babesia spp. is still incomplete,
especially regarding the intimate mechanisms of molecular dialogue between the parasite
and its vertebrate and invertebrate hosts. Field experiments are less easy to control than
those under laboratory conditions, and the gaps in our knowledge can probably only be
filled by experimentally reproducing the transmission cycle as closely as possible to reality
and by involving all three actors of the vectorial system. Indeed, this review has shown
that the use of experimental systems for tick-borne pathogen infections that permit the
complete transmission cycles of Babesia parasites has led to major scientific advances in the
study of these pathogens. Despite these successes, efforts are still needed to standardize
and simplify laboratory protocols to improve our ability to exploit tick artificial infection
systems. It is hoped that, in the future, such models of artificial infection will be further
developed in order to acquire new knowledge and develop new control strategies while
avoiding the use of animals.
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