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Abstract

Vascularisation is a key feature of cancer growth, invasion and metastasis. To better under-

stand the governing biophysical processes and their relative importance, it is instructive to

develop physiologically representative mathematical models with which to compare to

experimental data. Previous studies have successfully applied this approach to test the

effect of various biochemical factors on tumour growth and angiogenesis. However, these

models do not account for the experimentally observed dependency of angiogenic network

evolution on growth-induced solid stresses. This work introduces two novel features: the

effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic

vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of

dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, cho-

sen, where possible, to provide a physiologically consistent description. The model is then

validated against in-vivo data from murine mammary carcinomas, with particular focus

placed on identifying the influence of mechanical factors. Crucially, we find that it is neces-

sary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distri-

butions of angiogenic vasculature.

Author Summary

Angiogenesis is a hallmark of tumour growth and a key feature for invasion and metasta-

sis. Thus, to elucidate the governing biological processes of cancer development, it is

instructive to develop physiologically representative mathematical and computational (in-

silico) models with which to compare to experimental data. We present a validated, three-

dimensional, in-silico model of tumour-induced angiogenesis and growth—unique in the

field of mathematical cancer modelling in its biophysical prescription and predictive accu-

racy. Our novel modelling approach encompasses the effects of both biochemical and bio-

mechanical processes on the development of angiogenic vasculature and solid tumour
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growth. Unlike other works—which typically focus on biochemical processes—our model

depicts a dynamic and coupled biophysical system of the tumour-host microenvironment.

In concert with in-vivo experimental data, we have a physiologically-representative in-sil-

ico model that enables us to classify and rank the governing biological processes. This

yielded the remarkable discovery that it is necessary to include biomechanical factors to

accurately describe angiogenic topology. Our model not only provides insight into funda-

mental cancer biophysics, but is also a powerful tool to aid in our overall objective of re-

engineering the tumour microenvironment to optimise the delivery of therapeutic drugs.

Introduction

The role of angiogenesis—the process whereby existing blood vessels produce new vascula-

ture—in cancerous growth, invasion and metastasis has been extensively studied over the

past five decades. Starting with the assertion of Folkman [1] that angiogenesis is a necessary

component for neoplasmic growth, the current paradigm is that tumours induce neo-vascu-

larisation upon reaching an avascular limit [2]. This limit represents a critical tumour size

that can be supported by oxygen diffusion from the existing vasculature alone, beyond which

substrate gradients produce internal regions of oxygen deprivation, i.e. hypoxia.

To avoid necrosis, cells in the hypoxic regions secrete diffusible chemical signals, termed

tumour angiogenic growth factors (TAFs). Upon reaching the existing vasculature, the TAFs

stimulate endothelial cells (ECs) to degrade their basement membrane and extracellular matrix

(ECM) via the secretion of matrix metalloproteases (MMPs) [1]. Motile ECs then migrate

from the vessel lining up the TAF gradient field towards the TAF source, forming tubes with

sprout-tips at the leading edge of a new vascular lumen. These tubes can form networks in a

process termed anastomosis and penetrate into the tumour, depending on how the ECs

respond to mechano-chemical factors. As blood flows through the vessels and remodels their

structure through its response to fluid shear stresses and vascular pressure, the tumour is pro-

vided with a direct supply of nutrients and oxygen, enabling further expansion into the sur-

rounding tissue. The neo-vasculature, however, is pathological and during tumour growth its

structural integrity can be compromised. Indeed solid stresses in the tumour are elevated as a

consequence of rapid growth into the confined space of the host tissue, which can compress

and ultimately collapse intra-tumoural blood vessels, rendering tumours hypo-vascular and

hypo-perfused [3, 4]. Hypo-perfusion, in turn, has been shown to inhibit the delivery of che-

motherapy, reducing drastically treatment efficacy [5, 6].

Furthermore, a key factor in angiogenic tumour growth is cell response to mechano-chemi-

cal cues. Of particular interest is their directed motion along chemical gradients, termed che-

motaxis and haptotaxis for soluble (e.g. oxygen) and insoluble (e.g. proteoglycan) substrates,

respectively, and mechanical gradients (e.g. solid stresses), termed mechanotaxis. This pro-

duces a biophysical system with multiple components interacting at multiple scales. In order

to study the effect of a given component and characterise its physical origins, it is instructive to

construct physiologically-representative mathematical models. Here we focus on continuum

models of tumour growth coupled with angiogenesis; for more detail on angiogenesis model-

ling alone, see the recent review by Scianna et al. [7]. Whereas previous studies have explored

the chemical, i.e. solute-driven, underpinning of both tumour growth and angiogenesis, here

we focus on the interplay between angiogenic network evolution and growth-induced solid

stress generation.
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Broadly speaking, the tumour and vasculature can each be described by continuum, dis-

crete or hybrid models, with their coupling either static or dynamic. One approach is to char-

acterise the angiogenic response in terms of the blood vessel density, with the dynamics and

chemical factors obeying continuum conservation laws. Prominent early examples are [8, 9],

which extended the seminal work of Balding and McElwain [10] to define a set of coupled inte-

gro-differential equations that characterise tumour-induced neo-vascularisation and network

formation. More recently in [11], the authors utilised a continuum approach to investigate the

role of feedback regulation processes on sprout inception. However, the blood vessel density

paradigm is unable to account for vascular morphology and its explicit impact on blood flow

heterogeneity.

In order to characterise network morphology and blood flow, it is necessary to model the

vasculature discretely in terms of line segments, curves or lattices. This approach was adopted

by Zheng et al. [12], who employed a hybrid model to describe the vasculature [13] coupled

with a nonlinear continuum description of the tumour mass [14]. The model simulated physi-

ologically-realistic tumour morphologies as a result of a static coupling with angiogenic

growth, but was limited in its description of tumour-environment interactions and mechanical

factors. This model was later extended by Macklin et al. [15] to include dynamic angiogenesis,

allowing for an explicit description of vascular remodelling and blood flow, and further

extended by Wu et al. [16] to model the effects of interstitial fluid pressure. A contrasting

approach was proposed by [17], who presented a solid mechanics description of the tumour

and its environment. Their model featured a dynamic coupling of angiogenesis and vascular

remodelling with a growing domain, and accounted for deformation due to growth, response

to hypoxia and blood flow. However, there was no account of the effect of solid stress on vascu-

lar development and integrity inside the tumour.

To account for the effect of haptotactic (i.e. insoluble) vascular endothelial growth factors

(VEGF), Milde et al. [18] presented a deterministic, hybrid model of sprouting angiogenesis.

The matrix-bound VEGF was cleaved by MMPs produced at the endothelial tip cells, and the

response characterised in terms of the resulting vessel geometries. Furthermore, they included

the effect of ECM fibre density and structure on the sprout tip migration velocity. They found

that high density matrices produced shorter capillary networks, and observed an increase in

the number of branches with the density of matrix-bound VEGF. Similar results were obtained

by Bauer et al. [19], who developed a cell-based model of tumour-induced angiogenesis. In

both models, however, there was no account of mechanotaxis or the effects of vessel wall col-

lapse due to applied solid stresses. Previous studies by Breward et al. [20] and Bartha et al. [21]

have presented models describing the effect of pressure on vessel integrity, but no attempt is

made to explicitly model vessel compression owing to intratumoural forces.

To our knowledge there is no existing model that dynamically couples capillary growth,

morphology and structure with mechanochemically-regulated blood flow and growth-induced

solid stresses. Numerical simulations of angiogenic tumour growth are performed for spheroi-

dal geometries, which we use to gain insight into the relationship between mechano-chemical

factors and tumour development. Key measures of vascular development, defined in the fol-

lowing section, are validated using data from in-vivo murine mammary carcinomas [22]. The

hypotheses we test are:

1. The model can quantitatively reproduce observations of vascular density and distribution

in pathological tissues.

2. The model can qualitatively reproduce observations that growth-associated stress influ-

ences vessel morphology and structural integrity.

Tumour Angiogenesis & Growth In-Silico Model
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One part of the novelty of the mathematical formulation lies in the introduction of a

mechanotactic term to the function defining the orientation of capillary tip elongation. The

second part is the use of a phenomenological description of the tip extension velocity. The

final part is a set of constitutive terms defining the capillary wall remodelling as a function of

mechanical factors. These features furnish the model with a complete, if simplified, description

of the biophysical factors influencing tumour-induced angiogenesis.

Specifically, a discrete three-dimensional model of vascular sprouting is employed to

describe the angiogenic response to TAF secretion, where the sprout-tips are represented as

point masses in a continuum substratum [23]. The secretion of TAFs and MMPs by the

tumour and vasculature, respectively, are described by coupled reaction-diffusion equations

[24]. Tumour growth is modelled according to a Gompertz-type relation derived in previous

work [25], and the quasi-static linear momentum equation is solved at the macroscopic scale

assuming hyperelastic material properties. Capillary elongation, branching and remodelling

are made dependent upon mechanical factors, such as traction and magnitude of wall shear

stress. Finally, similar to Stylianopoulos and Jain [26], intra-, trans- and extravascular fluid

flow is described by Poiseuille’s, Starling’s and Darcy’s laws respectively. To our knowledge,

we present here for the first time a validated, three-dimensional, tumour-induced angiogenesis

model using published in-vivo data. These data include the vascular density and structure

obtained from image analysis of MCaIV carcinomas. To constrain the model, ex-vivo mea-

surements of MCaIV carcinoma material properties were used as input parameters. Where

possible all other input parameters were specified according to either in-vivo or in-vitro data

from the literature.

Materials and Methods

Let us denote the volume of the tumour by OT and that of the host (healthy) tissue by OH, such

that O = OT [ OH is the total volume of the biological tissues involved (macroscopic level).

The analysis domain O is bounded by Γ = ΓV + ΓT, where ΓV are surfaces with vessel inlets or

outlets, ΓT are surfaces with no vessel inlets or outlets, and the tumour–host interface bound-

ary is denoted by ΓI. The boundary Γ is set sufficiently distant from the tumour region to

avoid the imposed boundary conditions impacting the solution in the tissue volume of interest.

Fig 1A shows a schematic representation of the analysis domain.

Fig 1. Schematics of the domain of analysis: the discretised tissue domain and the vascular network. Schematics of the domain of analysis: the

discretised tissue domain and the vascular network. A: Schematic representation of the tumour–host domain, from inside out: solid-tumour (ΩT) and healthy

tissue (ΩH) containing a network of capillaries. B: Graphical illustration of a representative grid of tissue elements (shown here using two-dimensional finite

elements) with the one-dimensional grid of the vascular tree projected on top. Black squares represent the tissue element nodes, and hollow black circles the

vascular element nodes. The hollow green diamonds represent vascular network end-points (i.e. tip ECs). C: An overlay of the two meshes, showing the tip

and functional vascular-node density, ρt and ρv, respectively. Note that the finite element mesh of the tissue domain is non-conforming to the corresponding

finite element mesh of the vascular network (see also S1 Fig).

doi:10.1371/journal.pcbi.1005259.g001
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The equations that describe the balance of the various biophysical species are expressed in a

Lagrangian frame of reference. Hence the Laplacian operators used to express Fickian diffu-

sion are expressed with respect to the initial (reference) setting: fX 2 O jO � R3g. Whilst the

vasculature is treated separately, the surrounding interstitium, comprised of cells and matrix,

is treated as one phase with uniform properties; inertial terms corresponding to interstitial

fluid flow are neglected for simplicity, given the small Reynolds number for these flows com-

pared to vascular transport (for example). The strong-form equations are then transformed

into the corresponding weak-form, and subsequently discretised using the conventional finite

element (FE) method. Time-integration of the biochemical solver module is achieved using an

explicit numerical scheme (forward Euler method), whereas the solid solver module, which

incorporates the growth model, utilises a full-implicit iterative (Newton-Raphson) scheme.

More details are provided in the Solution strategy: Coupled multiscale solver subsection.

A schematic illustration of the discretisation method of the tissue and the vascular-network

domain is shown in Fig 1B. It demonstrates that the two finite element meshes are non-

conforming, where the 1D vascular network is contained in the 3D grid of the tissues (either

healthy or pathological) without sharing any nodes. The two meshes are superimposed in Fig

1C. Here, two vascular network properties with respect to the tissue grid are defined: the tip

density, ρt, which is equal to the number of tip vascular nodes, Nt, contained in a tissue element;

and the vascular density ρv. Nv is the number of well-perfused vascular nodes contained in a tis-

sue element. Definition of a well-perfused vascular node is explicitly provided in the Capillary

wall remodelling subsection. Thus, in the initial state (t = 0), the vasculature is uniformly dis-

tributed in the healthy tissue with all inlets and outlets confined to two opposite planes.

The following section details the construction of the solid, biochemical, vascular and fluid

models. All variables (i.e. oxygen concentration, metalloproteinases concentration, etc.) are

normalised relative to typical values for ease of presentation; these normalisation scales, and all

parameter values within the models are given in the Supporting Information. We present the

model equations for each (solid, biochemical, vascular, fluid) model first, and suspend assign-

ing initial and boundary conditions for the model until the Initial and boundary conditions

subsection.

Tissue biomechanics

Extracellular matrix structural model. The structural integrity and composition of the

extracellular matrix (ECM) of the host tissue is assumed to change in time. It is well known

that the cleaving of the ECM is a crucial step in EC migration—and hence angiogenesis—

which is mediated by a group of proteins known as matrix metalloproteinases (MMPs) [27],

also referred to as matrix-degrading enzymes. We describe structural changes at the stroma of

the host tissue using a first-order ordinary differential equation for the ECM density, �, that

accounts for degradation of the matrix due to the presence of matrix-degrading enzymes, μ, in

the interstitium [28].

d�
dt
¼ � d� m � ; 8X 2 O

H
; ð1Þ

where δ� is the ECM degradation rate (given in days-1), while “d./dt” denotes the material

derivative (= @./@t + v � @./@x; v the velocity in spatial coordinates of a material point in the

ECM). A detailed description of the mathematical model for the μ state variable is given in the

following subsection.

Tissue solid biomechanics model. Using quantities related to a reference configuration

of the analysed domain—defined here as an avascular tumour embedded in a vascularised

Tumour Angiogenesis & Growth In-Silico Model
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extracellular matrix (which is the setup at t = 0), as in Fig 1A—equilibrium of the biological tis-

sues (tumour and host) can be described by the Navier-Cauchy equation. In this reference

state, initial pre-stresses are assumed negligible compared to the subsequent increase of solid

stresses and fluid pressure in the interstitium during vascular cancer growth. Thus, the linear

momentum equation in a Lagrangian framework is given by

@

@X
� F � S½ � þ r b ¼ 0 ; 8X 2 O ; ð2Þ

where S is the second Piola-Kirchhoff stress tensor, ρ is the mass density of the tissues involved

in the reference setting, and b a body force vector per unit of mass. Here both inertial and

body forces are considered negligibly small compared to the internal stresses produced by

large strains, and are hence eliminated. The former is justified by considering that, assuming

an approximately constant cell velocity, the tissue acceleration is approximately zero. Body

forces are neglected by assuming no external excitation, hence b = 0. In addition, viscous

forces are also considered negligible due to the low tissue velocities modelled in this analysis:

an approximate increase in diameter of 160 μm day-1.

Following the continuum mechanics theory of soft tissue growth in biomechanics, origi-

nally proposed by Fung [29], we assume a multiplicative decomposition of the deformation

gradient tensor into an inelastic (growth/irreversible) part, Fg, and an elastic (reversible) part,

Fe. Thus, the deformation gradient tensor, F, can be expressed as [25]: F = Fe � Fg, where

Fg = λg I, with I the identity tensor and λg the volumetric stretch ratio, related to the Green-

Lagrange volume strain through Wg ¼ ðl
2

g � 1Þ=2; note that this assumes isotropy of tissue

remodelling. In the present study, permanent volumetric deformation is expressed phenome-

nologically with respect to the concentration of oxygen, ξ 2 [0, 1], in the cancer mass via an

exponential growth function:

Wg ¼ ag exp � bg exp � gg x
h ih i

� ag exp � bg

h i
; ð3Þ

where αg, βg and γg are dimensionless growth parameters, while oxygen concentration is a

state variable numerically evaluated from the system (see Eq (13)). Note that the volumetric

strain is thus implicitly dependent on time via the concentration of oxygen.

This work extends the definition of Fg to account for the effect of intra-tumoural local gra-

dients of oxygen concentration,

Δ

ξ, and ECM density,

Δ

�, on growth. It is assumed that the

nominal strains in the direction of the respective gradients, εg-ξ and εg-�, obey a similar growth

function as Eq (3) with respect to ξ but with different parameter values. However, following

Lubarda and Hoger [30], for the general case of non-isotropic growth the deformation gradi-

ent tensor can be expressed as: Fg = λg I + (λg-ξ − λg)

Δ

ξ


Δ

ξ + (λg-� − λg)

Δ

�


Δ

�, where λg-ξ

and λg-� are the corresponding stretch ratios, and the dyadic operator “
” denotes a tensor

product. Having computed the inelastic deformation gradient, the elastic deformation gradient

tensor is returned via: Fe ¼ F � F� 1

g , with the Green-Lagrange elastic strain given by

Ee ¼ ðF
T
e � Fe � IÞ=2. Finally, making use of the above constitutive equation, the mechanical

stress tensor can be evaluated at any point of the tumour–host domain of analysis.

Both the tumour and the host tissue are modelled as a non-viscous, non-linear, hyperelastic

continuous medium that can undergo large deformations and rotations [25, 31]. The constitu-

tive description of the soft tissue biomechanics is given by the general form constitutive equa-

tion [32]: S ¼ @ �W=@Ee, where Ee the Green-Lagrange elastic strain, as explained below, and

�W is a potential function—also referred in the literature as stored-energy function—which

�W > 0 and is typically expressed with respect to the invariants of tensor Ee [32]. In this work,

Tumour Angiogenesis & Growth In-Silico Model
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we describe both the tumour and the host tissue using a generalised polynomial expression of

the stored-energy function: �W ¼ c10 ð
�I 1 � 3Þ þ c20 ð

�I 1 � 3Þ
2
þ c01 ð

�I 2 � 3Þ þ c02 ð
�I 2 � 3Þ

2

þc11 ð
�I 1 � 3Þ ð�I 2 � 3Þ þ k ðJ � 1Þ

2
=2, where J is the determinant of the elastic deformation

gradient tensor, while �I 1 and �I 2 is the first and second invariant of the deviatoric part of the

recoverable right Green-Cauchy tensor respectively [32]. The parameters cij, κ are material

constants, where the latter is approximately equal to the bulk modulus in the small deforma-

tion regime.

In order to effectively describe the coupling between the time-varying ECM density, due to

the interaction of MMPs with insoluble species (e.g. collagen fibres), with the solid macro-

mechanics of the host-tissue–we introduce a single factor describing the structural integrity of

the ECM through isotropic damage to the matrix (c.f. the reduction factor defined in Holzap-

fel’s book [32], Chapter 6). An internal scalar variable, termed here integrity factor, takes val-

ues within the range z 2 (0, 1] while it quantifies the magnitude of isotropic damage in the

continuous hyperelastic solid (i.e. the degradation of the ECM). Let z describe the structural

health condition of the matrix, therefore z is assumed to be equivalent to the extracellular

space density, �, in the host-tissue domain, OH. Thus, at the beginning of the cancer develop-

ment simulation z = 1, 8X 2 OH since � = 1 is taken as an initial condition. However, during

the course of the analysis the matrix-degrading enzymes concentration, μ, increases—owing to

the secretion of MMPs by the tumour and the tip endothelial cells—thus leading to a local

decrease of the ECM density, �. The matrix integrity factor, z, is introduced into the constitu-

tive equation through the stored-energy function; hence, isochoric mechanical stresses in the

ECM are scaled by z albeit the volumetric part is left intact, i.e. �W ¼ zc10 ð
�I 1 � 3Þ þ

zc20 ð
�I 1 � 3Þ

2
þzc01 ð

�I 2 � 3Þ þ zc02 ð
�I 2 � 3Þ

2
þ zc11 ð

�I 1 � 3Þ ð�I 2 � 3Þ þ k ðJ � 1Þ
2
=2. The

material parameter values for the above constitutive equations are provided in S1 Table,

including references to the relevant literature.

Blood and interstitial fluid flow model. We describe the haemodynamics in the individ-

ual capillaries using Poiseuille’s equation [29], where the volumetric flow rate in a vessel is

related to the pressure drop across it via

_Qvsc ¼ �
pR4ðtÞ

8 mB LvscðtÞ
Dpvsc ; ð4Þ

where μB the blood viscosity, R is the capillary lumen radius with cross-sectional area πR2, and

Lvsc is the length of a capillary segment. Note that R and Lvsc change in time since vessels are

deformed under solid stresses. The blood viscosity is assumed homogeneous and constant in

time; this is in order to remove an additional model parameter in lieu of suitable data with

which to inform it. Interstitial fluid flow is described using Darcy’s law [33, 34] so that the vol-

umetric fluid flow rate in the extracellular space is given by

_Q int ¼ �
Kint Aint

LintðtÞ
Dpint ; ð5Þ

where Kint is the hydraulic conductivity of the interstitium, Aint is the interstitium cross-sec-

tional area, and Lint is the length of a tissue segment whose interstitial fluid pressure difference

is denoted by Δpint. The cross-sectional area can be expressed with respect to the mean capil-

lary radius and the vascular density, Svsc, as Aint ¼ 2p�R=Svsc [35]. Here �R is the average capillary

radius in the local neighbourhood of the connective tissues under consideration.

To model the fluid movement across the capillary barrier that occurs as a result of filtration,

we use Starling’s equation. Similarly to Baish at al. [35], the volumetric transvascular flow rate

Tumour Angiogenesis & Growth In-Silico Model
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across the permeable endothelium is expressed through Starling’s law

_Qtrv ¼ KvscðtÞ AvscðtÞ peff � pintð Þ : ð6Þ

Here Kvsc is the hydraulic conductivity of the endothelial barrier, which can be expressed as a

function of the size of the fenestrations on the vessel (pores’ average radius), rp, the fraction of

vessel-wall surface occupied by pores, γp, and the blood viscosity, μB, via [36]:

Kvsc ¼
gp r2pðtÞ

8 mB hðtÞ
: ð7Þ

Finally, Avsc is the surface area of the blood vessel wall and the “effective” pressure is given by

peff ¼ pvsc � pvsc � pintð Þso ; ð8Þ

where σo is the average osmotic reflection coefficient of the plasma proteins, πvsc is the osmotic

pressure of the plasma at the permeable vascular wall, while πint is the corresponding osmotic

pressure of the interstitial fluid. This modelling approach accounts for the contribution of the

colloid osmotic pressure of plasma and interstitial fluid. Including those features are important

for a complete modelling description of the micro-circulation system. Nonetheless, numerical

experiments have revealed that the omission of the rightmost term in Eq (8) in the vascular–

interstitium interaction model has only marginally affected the qualitative predictions of the

proposed tumour-growth angiogenesis model. This is also supported by the experimental find-

ings of Tong and colleagues [37], who showed that the osmotic pressure difference across the

wall of tumour vessels is negligible.

It is important to note here that we do not include the lymphatic system in the current

model, given that it is generally assumed to be compromised in tumour tissues. However, this

would be a straightforward extension to the current framework.

The flow rate Eqs (4)–(6) are coupled to a model for the vascular and interstitial pres-

sures. In the vascular network, conservation of fluid flux at vessel junctions provides a linear

system of equations to solve for the nodal pressures, subject to pressure/flow boundary con-

ditions on the terminal nodal points of the network. The interstitial pressure, pint, satisfies

the Poisson equation, where the source term captures both vascular and osmotic contribu-

tions, following the approach of Stylianopoulos and Jain [26]. Quasi-steady state fluid flow

is solved numerically for the vascular and interstitial pressures (defined on nodal points in

the vascular network, and extravascular-space points, respectively). An interconnected grid

of tissue and vascular nodes is considered. Tissue nodes are connected to each other via the

3D FE mesh, where each tissue element corresponds to a two node edge element of the FE

grid. Vascular nodes are connected to each other according to the network structure gener-

ated by the vascular network module, defined in the Angiogenesis model subsection. Also,

as shown in the 2D illustration of Fig 1C, each vascular node is contained in a FE of the dis-

crete three-dimensional domain of analysis. Thus, in order to describe transvascular flow

through Eq (6), each vascular node is associated with the corresponding vertices (i.e. tissue

nodes) of the FE.

After every simulation of the flow model, the magnitude of the average wall shear stress

(WSS) distribution, τf, the axial blood-flow mean velocity in a vascular segment, vvsc, and the

Tumour Angiogenesis & Growth In-Silico Model
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fluid velocity at the interstitium, vint, can be evaluated using the following relationships:

tf ¼ R jDpvscj =Lvsc ; ð9Þ

vvsc ¼ _Qvsc =pR2 ; ð10Þ

vint ¼ � Kint Dpint =Lint ; ð11Þ

where Δpvsc and Δpint is the pressure difference between two vascular and two interstitial

nodes respectively of the corresponding discretised domains of analysis (i.e. the vascular net-

work and the ECM) respectively. The value set for the material parameters of the above equa-

tions are provided separately in S2 Table.

Tissue biochemical model

One of the first steps in angiogenesis is the production of diffusible angiogenic growth fac-

tors (such as VEGF, PDGF, etc.) by tumour cells, and their subsequent binding to corre-

sponding receptors of nearby blood vessels [38]. For model simplicity, we focus on a single

growth factor—referred here as the tumour-angiogenic factor (TAF)—as a homogenised

chemical modulator of capillary sprouting and elongation. It would be straightforward to

extend this model to account for multiple interacting growth factors (e.g. VEGF binding

receptors and inhibitors) to represent the complex patho-physiology of tumour-induced

angiogenesis. However, given that it is well-documented that interstitial fluid velocities are

weak compared to vascular flow and diffusion [39], we have not included advection in the

tissue biochemical transport model.

Transport of TAF (with normalised concentration denoted τ) is described by a reaction-dif-

fusion equation [15] that accounts for random spatial diffusion, TAF production as a function

of the normalised local oxygen concentration, ξ, in the tumour (defined below), and its natural

decay and finally loss due to cellular consumption,

dt

dt
¼

@

@X
� Dt

@t

@X

� �

þ Q � dt t ; 8X 2 O ; ð12Þ

where Dτ is the isotropic diffusion coefficient for TAF (given in m2 day-1), δτ represents the

aggregate loss due both decay and cellular consumption, the production rate Q (given in day-1)

is defined by

QðxÞ ¼
lt exp � 2 x=�x

� �
; if X 2 O

T

0; elsewhere

(

;

where �x is a scaling parameter that modulates the oxygen level at which cancer cells release

TAF, and λτ is a TAF-production rate parameter. Parameter values are provided in S3 Table,

including references to the relevant literature.

The microvascular network provides a uniform source of oxygen, which diffuses into the

interstitial space and is consumed by the cells [28], such that

dx

dt
¼

@

@X
� Dx

@x

@X

� �

þ lx rv � dx x ; 8X 2 O ; ð13Þ

where Dξ is the isotropic diffusion coefficient for oxygen (given in m2 day-1), λξ is the oxygen

production rate due to supply from the microvascular network and δξ is the consumption rate

of the species by the cancerous cells (both expressed in day-1). Here, the dimensionless
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parameter ρv represents the average vascular density in a tissue FE; if fully-functional, well-per-

fused blood vessels are present in a particular element then ρv = 1, whereas if the vessels are

hypo-perfused or non-functional (i.e. collapsed) or absent then ρv = 0; see Fig 1B and 1C for a

visual guide. Definition and differentiation of a well-perfused from a hypo-perfused node of

the vascular network is explicitly provided in the Capillary wall remodelling subsection, while

definition of a collapsed vascular node is given further in the Interaction between the tumour–

host biomechanics and the capillaries subsection.

Finally, the concentration of the matrix-degrading enzymes: MMPs, μ, in the extracellular

space of the host tissue is modelled through [15, 40]

dm

dt
¼

@

@X
� Dm

@m

@X

� �

þ F � dm m ; 8X 2 O
H
: ð14Þ

Here Dμ (m2 day-1) is the isotropic diffusion coefficient for MMPs, while δμ (day-1) represents

the natural decay of μ. The production rate function F of MMPs (day-1) is taken as the super-

position of contributions of production from the proliferating cancer cells and the tip-endo-

thelial cells, defined as:

F ¼
lm� c þ lm� v rt; if X 2 O

T

lm� v rt; elsewhere

(

:

In a similar fashion to ρv, the dimensionless variable ρt represents the density of tip vascular

nodes in a finite element of the tissue domain, which is zero when no newly-formed sprouts

are present and increases proportionally with the number of branches present (see Fig 1). Evi-

dently, both ρv and ρt vary with respect to space since not all finite elements contain vascular

segments or tip vessels, and also with respect to time due to the temporal evolution of the net-

work structure as it undergoes angiogenesis.

As is evidenced by Eqs (12), (13) and (14), the diffusion coefficients are assumed to be con-

stant and homogeneous everywhere (see S3 Table for the parameter values). The mathematical

model of tumour-induced angiogenesis hence assumes linear, Fickian diffusion of the chemi-

cal species.

Angiogenesis model

A description of the dynamic angiogenesis model is presented here. The model is decomposed

into to two primary components: a model of capillary sprouting, and a model that couples cap-

illary wall mechanics with growth-induced solid and fluid mechanical loads.

Capillary sprouting. The orientation vector of capillary sprout elongation—denoted by

the unit vector ê—is defined by the linear superposition of the vectors of: (i) the chemotactic

contribution due to TAF gradients,

Δ

τ; (ii) the haptotactic contribution due to insoluble ECM

gradients,

Δ

�; and (iii) the mechanotactic contribution due to mechanical stresses, t.

ê ¼ ‘ = k ‘ k ; where ‘ ¼ kt

Δ

tþ k�

Δ

� � km t : ð15Þ

Here the scalar parameters kτ, k� and km represent the relevant importance of each taxis com-

ponent in determining the capillary sprout elongation (see S4 Table for parameter values). The

traction vector t is equal to the eigenvector related to the minimum eigenvalue of the 3 × 3

symmetric mechanical stress tensor, S. The stresses and the gradients of τ and � at a point of

the vascular network (vessel tip or branch) are computed by interpolating the computed gradi-

ent fields at the quadrature points of the FE that contains this vascular node. Note that linear

additivity of each component is implicitly assumed to simplify the expression.

Tumour Angiogenesis & Growth In-Silico Model
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This description offers an extension to previous angiogenesis models in the literature. For

example, the authors [23] describe vessel elongation using a discrete modelling approach simi-

lar to Eq (15) above, but account for chemotaxis only. However, Milde et al. [18] described the

vascular elongation direction using a combination of chemo- and haptotactic cues in the extra-

cellular space. Furthermore, McDougall et al. [40] modelled vessel sprouting using a contin-

uum-based approach by considering both hapto- and chemotaxis for the endothelial cells

migration in the interstitium. However, they do not incorporate mechanotaxis, which has

been identified as playing an important role in endothelial cell kinematics: Li et al. [41]

observed that cells migrate preferentially in the direction of fluid shear stress. These observa-

tions were also made by Lin et al. [42] using micropatterned substrates. More recently, and

with particular relevance to our work, Edgar et al. [43] demonstrated the importance of

mechanics in in-vitro angiogenesis via a coupled FE model of neo-vessel growth and ECM

biomechanics.

Experimental observations made by Wood and his colleagues [44], obtained from an in-

vitro angiogenesis microfluidics platform, indicate that tip elongation speed is inversely corre-

lated with the radius of the vessel lumen. Following this description, the tip extension velocity,

vv, is related to the capillary lumen radius, R, via the relationship

vv ¼ vv� 0 þ vv� 1 exp � R=~R
� �

; ð16Þ

where vv-0, vv-1 and ~R are constants determined by fitting the above expression to measured

data [44] (plotted in Fig 2A for clarity). In order to avoid the computation (see Eq (16)) of a

non-physical tip-EC speed, when the predicted lumen size is very low (R< 2 μm), a maximum

elongation speed, vv-max, is enforced (see S4 Table). Currently the sprout tip speed does not

depend on the MMP concentration or gradient.

Finally, the extension length of a vessel sprout is computed by multiplying the tip velocity

with the adopted time increment, Δtv, of the vascular network update module (see Solution

strategy: Coupled multiscale solver subsection), thus, giving the direction vector of a sprout

Fig 2. Capillary-tip extension velocity and vessel wall mechanical model. A: Extension rate of vascular-tip endothelial cells versus the capillary

radius expressed by an exponential decay function, fitted to reported in-vitro angiogenesis experiments [44]. B: Stress–strain plot of the constitutive

equation used to describe the biomechanics of the blood vessels, including the pressure which induces vessel collapse, pc.

doi:10.1371/journal.pcbi.1005259.g002
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which is expressed by:

d ¼ ðvv DtvÞ ê : ð17Þ

To reflect numerical and physiological constraints, conditions are placed on capillary

growth. If a vascular segment intersects with the external domain boundary, no further exten-

sion or branching can take place on this node. Furthermore, given that capillary elongation

depends on the local concentration of chemical factors that regulate angiogenesis, a sprout is

allowed to grow only if the normalised TAF concentration: τ� τ?, with τ? an imposed thresh-

old value. Branching and anastomosis is modelled by following several rules when running the

vascular network module. In anastomosis, if a vascular tip node is within a certain distance

range of another vessel (i.e., 40 μm) then anastomosis occurs and a new vascular segment is

inserted in the tree to connect the two vascular nodes. In branching, we adopt a similar tech-

nique to that proposed by Edgar and colleagues [45], where the formation of branches is mod-

elled as a stochastic process. More precisely, during the simulation and for each angiogenesis

time-step, a random number between 0 and 1 is assigned to each node of the vascular network.

Then, for each vascular node, a branching probability density function, P, is invoked to pre-

dict the likelihood for a vascular node to form sprout. Thus, if the random number falls within

the branching probability range then a branch is generated [45]. Function P is equal to the

superposition of two normal distribution functions: (i) a probability density function of the

age of a vascular node, PA, and (ii) a probability density function of the relative position of a

vascular node with respect to the nearest branching node(s) of the residing vessel, PD. In this

work, both probability density functions are also expressed with respect to the local haemody-

namics of a vascular segment. The branching parameters of the probability density functions

(median and standard deviation) are provided in the second set of parameters in S4 Table.

Non-perfused or hypo-perfused tumour vessels—as opposed to sufficiently or well-perfused

ones—are distinguished in the branching algorithm, where the former tumour vessels are

allowed to bifurcate more easy when compared to the well-perfused vessels. A detailed descrip-

tion of these processes is given in the following paragraph. The angiogenesis model implicitly

promotes the formation of vascular shunts and hence a heterogeneously perfused vascular

tree, which has been experimentally observed in tumour vasculature [46]. As such, the angio-

genesis model is more likely to generate anastomoses in the far-field of the ECM, whereas the

presence of dead-end vessels is pronounced near the tumour–host interface.

Capillary wall remodelling. During angiogenesis, blood vessels undergo a remodelling

phase which is governed by various biophysical factors. In this section a model that describes

the dynamic biomechanical response of the newly formed blood vessels is presented, where

simple but rather intuitive constitutive relations of capillary wall remodelling are proposed.

It has been demonstrated that, theoretically, the structural properties of newly formed

capillaries can change dynamically in response to various mechanical stimuli [47]. Here the

blood vessel wall adaptivity (e.g. capillary radius, wall thickness and pore size) is described by a

single variable tm, referred to as the remodelling time. A vessel is defined as fully remodelled

when it makes the transition from a relatively poor blood perfusion state into a sufficient

blood perfusion state, where the perfusion state is defined through the WSS magnitude, τf, (see

Eq (9)). Vessel wall remodelling time is set to vary with respect to WSS—induced by the flow

of erythrocytes and plasma in the capillaries—via the following expression

tmðtfÞ ¼

tm� T; if tf � �tf

tm� T þ Dtm exp 1 � 1 � t2
f

.

�t2
f

� �� 1
" #

; elsewhere

8
>><

>>:

ð18Þ
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Here Δtm = tm-0 − tm-T, where tm-0 and tm-T are the corresponding time values for a vessel to

reach an upper bound of remodelling and structural integrity when WSS is zero, τf’ 0, and

above a certain threshold value, tf � �tf , respectively. In this work, tm-0 is set to a very high

value (= 100 d) to reflect the rather slow process of the vessel wall remodelling, while tm-T is

chosen empirically to be 10 days. As such, the rate of remodelling of the endothelial wall is

described as inversely proportional to the WSS magnitude distribution on the capillary lumen,

such that tm-T� tm-0. If we differentiate hypo-perfused from fully functional, well-perfused

transport vessels when the mean velocity of the blood flow is below 0.1 mm/s [48], then we can

estimate a threshold value of the WSS: �tf ¼ 2:4� 10� 8=R mm-Hg, which for a capillary of

typical size (e.g. R = 60 μm) gives �tf ¼ 4� 10� 4 mm-Hg. Therefore, the microvascular local

haemodynamics is related to the remodelling of the capillary lumen (i.e., endothelial cells’ pro-

liferation and basement membrane formation) via the smooth-function constitutive Eq (18).

In principle, the remodelling parameters tm-0 and tm-T are selected such that the model predic-

tions are physiologically relevant, and in good agreement with biological experiments. From

the results of the biomimetic three-dimensional culture system reported by Seano et al. [49],

we take nascent (non-perfused) tumour vessels to form initially tubular structures of very

small lumen size of about 5 μm in radius approximately; whereas when tumour vessels transit

to a well-perfused state—due to the WSS stimulus—the capillary lumen expands up to 50 μm

in radius approximately [22].

In contrast to previous published models in the field [40, 47], only the WSS distribution in

a vascular segment is allowed to stimulate capillary wall remodelling here; for example, the

model does not incorporate the affects of the microvascular pressure distribution or the meta-

bolic haematocrit-related stimulus. The reasons for this decision are as follows:

1. All inlets and outlets of the vascular tree are designed to serve as arterial and venous ends of

the vascular system. However, simulations performed in this analysis (see for example in

S12 and S13 Videos) indicate that the vascular pressure, pvsc does not change abruptly when

anastomosis occurs, vascular shunts are formed, or even when vessels are collapsing during

tumour development. It was therefore concluded that pvsc has a low effect on capillary wall

adaptivity.

2. It was reasoned that fine tuning the extra parameters associated with the elaborate adaptiv-

ity model of Pries et al. [50] requires experimental data that are not currently available,

hence making the validation of this model less feasible.

The change of the capillary radius is modelled as a function of time and a parameter, tm,

which describes the average time for a blood vessel to become fully remodelled, i.e. when the

lumen size and the wall thickness reaches a natural upper ceiling. The capillary radius is

expressed in time using the following growth expression

Rð�tÞ ¼
Rmin ; if tip vascular node

Rmin þ AR exp½ � BR exp � CR �t½ �� ; elsewhere

(

; ð19Þ

where AR = Rmax − Rmin, BR = 11 and CR = 4.4. Furthermore, �t ¼ ðt � tgÞ=tm is the normalised

dimensionless time-variable, tg is the actual time when a vascular point is generated, and tm
the time required for the vessel wall to become fully remodelled, i.e. form a well-structured

endothelium with few pronounced fenestrations. The values of the minimum and maximum

radius of a newly-formed capillary vessel (Rmin, Rmax) are provided in S4 Table. It is important

to mention here that the pre-existing vascular segments (tg = 0) do not undergo any remodel-

ling; as such, their properties are maintained throughout the tumour–angiogenesis simulation
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unless they become compressed, as discussed at the end of this section. Furthermore, even

though the radius of the tumour capillaries can vary considerably and reach a large size, we

define a maximum radius to be used in Eq 19 based on experimental data [22, 51].

Under physiological conditions, the wall thickness is assumed to increase linearly as a func-

tion of blood vessel remodelling hð�tÞ ¼ hmax þ ð1 � �tÞ hmin, where hmax and hmin are the upper

and lower limit of the capillary wall thickness (see S4 Table). A similar approach is taken to

modelling vessel pore size, with the radius of the pores, rp, expected to reduce in time due effects

such as vessel wall and basal layer reinforcement and the recruitment of pericytes, according to

rpð�tÞ ¼
rminp ; 8�t � 1

Ar
�t3 þ Br �t2 þ Cr ; elsewhere

(

; ð20Þ

where the coefficients Cr ¼ rmaxp , Br ¼ 3ðrminp � r
max
p Þ, Ar ¼ 2ðrmaxp � r

min
p Þ are expressed with

respect to the maximum and minimum pore size rmaxp and rminp , respectively.

In summary, when a new vascular node is introduced in the vascular network—as part of a

tip-EC elongating or after the formation of a sprouting branch—the corresponding lumen

size, wall thickness and pore-size at this node is initialised to Rmin, hmin and rmax respectively

(see parameters values in S3 Table). Evidently, during the remodelling of the capillary wall,

when �t � 1 (i.e. in time t� tg + tm) then the lumen size, wall thickness and pore-size is set

Rmax, hmax and rmin respectively. However, in the event of elevated mechanical forces from the

extravascular space the vascular wall may deform, hence, leading to a reduction of the effective

lumen size. Detailed explanation of the biomechanics of the wall—with respect to external

mechanical loads—is provided in the subsection that follows.

In case a vascular anastomosis occurs, then the formation of the vascular shunt may lead to

significant changes of the local haemodynamics at the vascular nodes under consideration, e.g.

give rise to high pressure gradients. Subsequently, this will fuel substantial increase of the WSS

magnitude. This in turn will speed-up the dilation of the vascular lumen and the capillary wall

remodelling, as it is expressed in the above mathematical expressions.

Interaction between the tumour–host biomechanics and the capillaries. In a healthy

tissue environment, the interstitial fluid pressure remains at low levels (due to the fully func-

tional work of the lymphatic system) and, if physiological in-vivo loading conditions are

ignored, residual stresses in the extracellular space can be assumed negligible. However, during

abnormal tissue growth—such as in cancer development—compressive mechanical forces, ph,

increase locally (ph") due to the displacement of tissue by the growing cancer mass, while the

increased permeability of leaky tumour vessels give rise to the interstitial fluid pressure (pint").

To reflect these processes, the model defines a pressure ratio, �p

�p ¼ ðpint þ phÞ=pvsc ; ð21Þ

which measures the balance of forces applied both internally and externally to the vessel wall.

Here the convention of positive hydrostatic pressure under compression and negative under

extension is adopted. Blood pressure at a vascular node, pvsc, is obtained directly from the fluid

flow model, while the solid mechanics pressure (i.e. tr(S)/3) is evaluated at the quadrature

points of each finite element of the tissue solid domain and then projected at the vascular node,

whereas pint is averaged from the proximal—to a vascular node—interstitial nodes (see Fig 1C).

The vascular wall is treated as a shell structure under uniform internal (pvsc) and external

(pint + ph) pressure, which can buckle if the overall external load is greater than a critical value.

Hence two regimes are defined: if the numerator in Eq (21) is smaller or equal to the denomi-

nator then the micro-vessel is under physiological conditions, otherwise the vessel is under

compression and the effective lumen radius decreases non-linearly. This work defines a
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threshold for pressure induced vessel collapse, pc, such that if �p � pc then the vessel wall radial

deformation increases drastically and the vessel is assumed non-functional (see Fig 2B). In this

situation blood flow is blocked while the corresponding vascular segment is “cleaved” from the

network; consequently, further capillary sprouting and branching is halted.

In the pressure range 1 < �p < pc, the constitutive function relating pressure and radial

strain, er, is given by: �p ¼ 1þ ð2pc � 2Þðer=ecÞ � ðpc � 1Þðer=ecÞ
2
, where ec is the critical strain

at the point of collapse. As such, the maximum modulus of rigidity of the pressurised vessel

wall (when �p ¼ 1) reads: Ew-max = 2(pc − 1)/ec, which in turn is assumed here to vary linearly

with respect to the level of “remodelling” of the vascular wall, and by extension the lumen size,

the wall thickness and the pore size of the blood vessel. Values of the dimensionless stiffness

parameter Ew-max are provided in S3 Table, where the minimum value corresponds to the

mechanical load resistance capacity of the newly formed capillaries having radius Rmin and the

maximum to the pre-existing parent vessels of the vascular network. A similar non-linear con-

stitutive biomechanical response was predicted recently by Mpekris et al. [52] where the vessel

wall was modelled as a Neo-Hookean material. Here a simple quadratic polynomial constitu-

tive expression is proposed that can reproduce the mechanics of the capillary wall during

angiogenesis by encapsulating the effect of interstitial fluid pressure, tissue solid stresses and

microvascular pressure.

Having evaluated the radial deformation of the capillary node, er, for a given pressure load

the corresponding radial stretch ratio can be computed via: λr = er + 1. If 1 < �p < pc then

λr 6¼ 1, therefore, the effective capillary radius scales down via: R R/λr. When �p � pc, then

er� ec and the scaling parameter is set equal to a very large number (e.g. λr = 103), in order to

describe the collapse the capillary wall and the resulting drastic reduction of the effective

lumen size. Evidently, if �p � 1 then capillary radius is given by Eq (19) while the wall thickness

obeys the remodelling expression provided in the previous subsection.

Initial and boundary conditions

Using Fig 1A as reference, the solid solver boundary conditions are defined as follows: trac-

tion-free (S � n = 0, where n is the outward surface normal) on the outer surfaces without inlets

or outlets, ΓV; zero displacements (u = 0) on the outer surfaces with inlets or outlets, ΓT (to

avoid rigid body motion); continuity of stress and displacement on the tumour–host interface,

ΓI. No residual stresses are considered in the present analysis, hence the initial tissue deforma-

tion is zero (Fe = Fg = I).

In order to replicate an initially healthy host environment (i.e. prior to angiogenic tumour

development), a uniform distribution of capillaries having approximately uniform diameter,

thickness and pore size is imposed initially (see S3 Table), whereas the tumour environment is

initially avascular with the mean inter-capillary distance being 0.6 millimetres approximately.

The assumption of initial-state parallel, unbranched vessels is based on previous pertinent

work in tumour-induced angiogenesis [13, 15].

For the fluid solver, 0.1 mm-Hg interstitial fluid pressure was assigned on the tissue bound-

ary ΓV according to [53], and the interstitial fluid flux was assumed continuous at the tumour–

host interface. The vascular pressure, pvsc, is prescribed at the inlet and outlet vascular nodes of

the initial network as 25 mm-Hg and 10 mm-Hg, respectively [54]. Furthermore, throughout

the analysis, pvsc = 0 is enforced at every node belonging to a collapsed vessel, in order to effec-

tively model the obstruction of the natural flow of erythrocytes and plasma at that part of the

vascular network.

For the biochemical solver, zero-flux boundary conditions of all species are applied at the

outer boundary of the tissue region, Γ (and note the domain is chosen to be sufficiently
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large that this does not impact the solution in the main body of the tissue). Continuity of

concentration and its flux are assumed at the tumour–host interface. The initial conditions

are τ = ξ = μ = 0 everywhere except for the healthy tissue domain, where ξ = 1. The initial

condition for the ordinary differential Eq (1) describing the ECM density is � = 1 in the

entire region of the analysis domain.

Solution strategy: Coupled multiscale solver

The problem under consideration is transient by nature and the modelling framework, as

described in the previous section, consists of four interconnected core components, namely

the Vascular Network Module, the Biochemical Solver Module, the Solid Solver Module and the

Fluid Solver Module. Fig 3 illustrates the building blocks of the proposed modelling framework

in a flow diagram and the interaction amongst them. The numerical procedure of the coupled

tumour-growth and tumour-induced angiogenesis multiscale solver is outlined in the follow-

ing section.

The mathematical model identifies three different time-discretisation scales, one for each of

the first three solver modules:

1. The time integration step of the reaction-diffusion equations in the Tissue biochemical

model subsection.

2. The time step between successive solutions of the linear momentum equation for the tissue

solid mechanics.

Fig 3. Flow diagram of the coupled multiscale solver. Schematic representation of the work flow diagram of the three-dimensional tumour growth and

angiogenesis model that shows the interaction between the biochemical module, the vascular network module and the solid and fluid mechanics solver

modules.

doi:10.1371/journal.pcbi.1005259.g003

Tumour Angiogenesis & Growth In-Silico Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005259 January 26, 2017 16 / 38



3. The time increment (see Eq (17)) used to update the vascular network.

In order to ensure that the explicit time integration scheme of the biochemical equations

produces stable solutions, the Courant-Friedrichs-Lewy condition needs to be satisfied;

given the smallest-element size in the 3D mesh, a very short time step has been adopted of

the order of a few seconds. Similarly, to ensure that the nonlinear solid mechanics solver

converges after a reasonable number of Newton-Raphson iterations (e.g. four or five), the

corresponding time increment has been set equal to approximately one hour. Finally, after

parametrically investigating the results produced by the vascular network update module,

time increment Δtv has been set to six hours. It is important to note here that using large val-

ues of Δtv can generate long, straight vascular segments, hence influencing the prediction of

the vascular tree “shape” and organisation; whereas using very small Δtv can increase the

computational cost substantially, since the generation of very small vascular segments will

result in a rapid increase in the number of degrees-of-freedom in the final system of the fluid

mechanics solver. In light of the model variables ρv and ρt, to ensure that a newly-formed vas-

cular segments passes through (and not crosses) any tissue element (see Fig 1), the 3D mesh

density of the analysis domain must be properly selected, as follows. The maximum elonga-

tion length from Eq (17) gives: (vv-max Δtv) = 0.0625 mm (see material parameter S4 Table).

Therefore, the minimum element size of the 3D mesh must be greater or equal to maximum

elongation length—in the present analysis the minimum edge length (at the centre of the

analysis domain; see S1 Fig) is 0.07 mm approximately.

The algorithmic structure is as follows:

Initialisation:

Load the 3D finite element grid of the analysed domain. Label elements as either tumour or

healthy tissue and assign corresponding material properties (see tables in the Supporting

Information). Initialise deformations and stresses at the quadrature points, and set initial

nodal values for all state variables (see Tissue biochemical model subsection). Load the 1D

grid of the vascular network and associate each vascular node with a 3D tissue element of

the analysis domain. The initial vascular tree comprises of (parent) capillaries of the host

tissue, having geometric properties defined in S4 Table.

Iterate in Time:

1. Run the Biochemical Solver:

Numerically solve the parabolic Eqs (12)–(14) together with Eq (1), and compute state

variables: {τ, ξ, μ, �} at the vertex nodes of the 3D FE mesh. Compute the gradients of the

species at the quadrature points of the grid using Lagrange interpolation. Pass these vari-

ables to the Solid Solver Module to compute tumour growth and update the structural

integrity of the ECM; also inform the Vascular Network Module accordingly in order to

inform blood-vessel sprouting and development according to Eq (15).

2. Run the Solid Solver:

Numerically solve the nonlinear elliptic equations for the solid domain to evaluate nodal

displacements [55]; then compute the deformation, F, and stress field, S, at the quadra-

ture points of the finite elements. Pass these variables to the Vascular Network Module to

evaluate the blood vessels’ sprouting orientation vectors, and predict the distensibility of

the vascular network due to tumour–host tissue deformation.

3. Update the Vascular Network:

Evaluate the extension at every node of the 1D vascular network using Eqs (15) and (16).

Loop for all vascular nodes of the tree, and check if the node has �p � pc: if this is true

Tumour Angiogenesis & Growth In-Silico Model
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then check if the node can sprout or extend its tip (τ� τ?) and evaluate the geometric

features (radius/thickness/pore-size) of the existing and newly formed capillaries; other-

wise ignore subsequent calculations for this vascular node. Also, mark connected nodes

as collapsed (due to local obstruction of flow) unless anastomosis has occurred. Com-

pute and update the density of functional vascular segments, ρv, for each 3D finite ele-

ment. Project the solution (i.e. displacements, mechanical stresses) from the Solid Solver
Module onto the vascular network nodes. Finally, assess the state (i.e. normal/com-

pressed/collapsed) of the vascular segments in the tree.

4. Run the Fluid Solver:

Solve Eqs (4)–(6) to compute the interstitial fluid pressure in the extravascular space

nodes, and the blood pressure distribution at the vascular tree nodes. Evaluate the trans-

vascular pressure difference and the interstitial fluid velocity.

5. Re-update the Vascular Network:

Re-assess the state of the vascular segments inside or proximal to the tumour region, and

revise the list of collapsed blood vessels and update the microvascular pressure and inter-

stitial fluid pressure distribution.

The above procedure is repeated until the termination of tumour growth. Details about the

FE implementation of the proposed tumour-induced angiogenesis and growth model are pro-

vided in the S1 File.

Results and Discussion

A series of simulations are performed and parameters related to the growth of the tumour, the

evolution of intra-tumoural fluid and solid stresses, as well as the vascular density and func-

tionality are presented and validated against published experimental data. The predicted vas-

cular geometry is compared with geometrical characteristics of experimentally-derived

vascular networks that we calculated from angiography images of MCaIV murine mammary

adenocarcinomas. We find that the model is able to replicate features of angiogenic tumour

growth in MCaIV mouse tumours, and also demonstrate that a mechano-sensitive model is

necessary to provide a representative physiological description. Details of the analysis per-

formed to obtain the mouse model data are provided in S2 File.

For the simulations, a cubic domain (12 mm edge length) of tissue is considered, with an

initial cancer mass embedded in the cube centre, represented by a sphere of 1 mm diameter.

This tumour geometry is representative of tumours grown in immunodeficient mice.

A three-dimensional finite element mesh is constructed using Gmsh, consisting of 3320

hexahedra and 3963 nodes. S1 Fig depicts the modelling domain, including the finite element

meshes, the tumour location and size, and the initial network of capillaries embedded in the

ECM. Note that the tumour is initially avascular.

The material parameters adopted in this study are listed in the Supporting Information

Tables. Most parameters are taken from the literature, with some chosen specifically from

murine mammary adenocarcinoma experiments. First of all we discuss the validation of the

model, and next we present the simulation results.

Model validation from the literature

Here we present the validation of the model in terms of vascular and interstitial fluid pressure

and velocity, and vascular density predictions against published data.

To qualitatively validate the fluid solver predictions, Fig 4A presents the average interstitial

fluid pressure, pint, distribution in the tumour and the peri-tumoural area for various time
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instants, where the centre of the tumour is at zero radial distance. Complementary to this plot,

the significant variability of the IFP is shown in Fig 5 as a function of radial distance from the

tumour centre for a number of time points. Interestingly, a rapid increase in the IFP is

observed within one day, as a result of the formation and elongation of new and hyper-perme-

able capillary sprouts. This reflects the patho-physiological nature of such sprouts, which typi-

cally have a discontinuous endothelial lining and no basal membrane, rendering them hyper-

permeable. Boucher and colleagues [56] measured the IFP for two rat tissue tumour types

(mammary adenocarcinoma and Walker 256 carcinoma) using micro-pipettes. Comparing

the numerical predictions, shown in Fig 4A, with the experimental results reported by Boucher

et al. (see Fig 3 in [56]), a strong qualitative agreement is observed in the drop of the IFP away

from the tumour–host interface. The numerical predictions also show that the IFP reaches a

maximum plateau throughout the tumour, which, despite the significant increase of tumour

volume—from 19.06 mm3 in day-10 to 141.37 mm3 in day-40—remains relatively stable. The

mean plateau IFP predicted by the model is approximately 8.3 mm-Hg. This falls within the

experimentally measured pressure range reported previously for tissue-isolated (9.1±3.9 mm-

Hg; see Table 2 in [56]) and subcutaneous (7.8±3.8 mm-Hg; see Table 2 in [56]) small-size

tumours (<1 g), while it is also in qualitative agreement with the IFP measurements [37] for

MCaIV-type murine mammary carcinomas (5.6±1.2 mm-Hg; see Fig 3F in [37]).

Further qualitative validation of the fluid solver was performed by examining the interstitial

fluid velocity (IFV), calculated from Darcy’s law (see Eq (11)). Assuming that the tissue

hydraulic conductivity is constant, the IFV is driven only by gradients of the IFP local to the

tumour–host tissue. However, as illustrated in Fig 5, the IFP remains relatively flat in the

tumour region and decreases rapidly when moving from the tumour to the healthy tissue.

Therefore, the IFV in the tumour centre is negligible compared to the corresponding pro-

nounced IFV measured near the tumour boundary. This effect is visualised in S10 and S11

Fig 4. Spatial distribution of interstitial fluid pressure (IFP) and the tissue hydrostatic pressure (THP). Arrows show the direction of time

increasing. A: IFP remains relatively flat within the cancer mass, while the predicted value agrees very well with reported in-vivo data on MCaIV murine

mammary carcinomas [57]. Pronounced tumour growth results in an increase in the IFP in the peri-tumoural area, up to approximately 1.5 mm-Hg. B: THP

peaks at the tumour periphery, symptomatic of increased compressive solid stresses due to the cancer mass growth in this region. Increased

circumferential solid stresses at the tumour periphery induces compression of the vessels, which are subsequently pruned. Note that negative THP

denotes tension and positive compression.

doi:10.1371/journal.pcbi.1005259.g004
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Videos: the IFV gradually increases in the tumour centre during angiogenesis, whereas abrupt

IFV elevation is observed at the tumour periphery. The latter observation is made more evi-

dent in S12 and S13 Videos, where the IFV peak values are predicted primarily in the vicinity

of collapsing blood vessels of the original network. Thus, drastic changes in the functionality

of the tumour vasculature lead to loss of balance in the microvascular pressure distribution

and the intra- and extravasation flux of plasma/proteins in the capillaries. This drives dynamic

changes in the IFP, which subsequently result in larger IFP gradients and hence a larger IFV.

As such, the above predictions confirm the hypothesis that there is significant interstitial

hypertension in the tumour. The maximum estimated value of the fluid velocity in the intersti-

tium was approximately 0.15 μm/s, which is in qualitative agreement with the experimentally

measured values (0.6±0.2 μm/s) reported in the early paper of Chary and Jain [58].

In Fig 4B, the magnitude of the mechanical forces in the stroma—i.e. the tissue hydrostatic

pressure (THP) which is equal to one third of the trace of the stress tensor, also referred as the

mean solid stress—is shown as a function of the radial distance from the centre of the tumour

at several time points. Also Fig 6 reports the spatial distribution of THP at various time

instants, where both the average value of the THP and the standard deviation (in error bars) is

shown. In contrast to the fluid-pressure distributions in the interstitium shown in the Fig 5,

THP shows substantial spatio-temporal variability primarily at the interface of the tumour and

the host tissue (vertical red bar in Fig 6). This can be explained by the anisotropic growth

driven by the irregular angiogenic vasculature, which provides a non-uniform supply of oxy-

gen to the tumour. These results support the idea of a heterogeneous force environment at the

tumour periphery, consistent with the observations reported in the past [4, 59].

Numerous features of our evolving vascular structures recapitulate experimental observa-

tions. First of all, the mean inter-capillary distance increased from around 0.557 mm to 0.771

mm at the end of simulation time. This is consistent with experimental measurements, for

example in stage IIb and III carcinomas of the cervix (measured using histochemistry, see

[60]), where the average inter-capillary distance in the cancerous tissue was around 304±30

μm higher than that in healthy tissue. Secondly, our predictions of tumour vascular density

(defined as blood vessel surface area divided by the tissue volume, normalised against the cor-

responding healthy tissue value) are reported in Fig 7, for mechano- and haptotactic stimuli

switched on or off. The normalised vascular density increases in time as the tumour grows,

reaching around 3.4 and 3.0 with/without the mechano-/haptotactic stimuli by the end of the

simulation. This is in good agreement with reported measurements [61–63], which lie in the

range 3.3 to 5.0, with the inclusion of mechanical stimuli improving the agreement with mea-

sured observations.

Validation against new experimental analysis

Vascular density and inter-capillary distance alone do not assess the functionality of the three-

dimensional vasculature in its entirety. In particular, solute (such as oxygen and drugs) deliv-

ery is determined by diffusion distances from the vessels, and influenced by the spatial archi-

tecture and organisation. We consider the averaged power spectrum of the distance map

computed on the vascular network, which was originally proposed by Risser et al. [64] in brain

tumours (and further used by Baish et al. [65]) for assessing the diffusive capacity of drugs in

normal tissue and tumours. We introduce two scaling parameters λv and δv-max, following the

approach of Baish [65]; the first measures the shape of the space between blood vessels,

whereas the second estimates the shortest distance between a tissue point and vessel.

We compare here the model predictions of parameters λv and δv-max against the experimen-

tally measured values, extracted by quantifying the vascular structure in murine breast
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Fig 5. Interstitial fluid pressure (IFP) spatial distribution at various time instants. Within 24 hours of relatively slow avascular

tumour growth, tumour-secreted angiogenic chemical factors have sufficiently diffused in the extracellular space. In the tumour-

induced angiogenesis simulation, day-1 marks the formation and elongation of new blood vessel sprouts. The vertical red line in the

plots defines the tumour–host interface boundary which corresponds to the averaged tumour radius, where the centre of the cancer

mass is at zero radial distance. The solid line corresponds to the mean IFP distribution, evaluated at fourteen azimuthal directions,
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carcinomas using in-vivo imaging. The images of the tumour vasculature were obtained in a

previous research study using the optical frequency domain imaging [22]. However, brief

description of the present analysis of the in-vivo images can be found in S2 File. The compari-

son of the two scaling parameters is summarised in Fig 8. Model predictions of λv agree very

well with the in-vivo data, and this agreement is improved with the mechano-/haptotactic sti-

muli switched on compared to off. This is an extremely promising validation step of our in-sil-

ico cancer model, which provides strong evidence that our inclusion of mechano- and

haptotaxis is highly relevant to predicting and testing delivery of diffusible agents to vascular

tumours. The analysis of the parameter δv-max is less conclusive. The trend offered by the

experimental data points here is less well-defined (see Fig 8B); our model certainly predicts dif-

fering behaviours with the mechano- and haptotactic terms switched on/off, and there are cur-

rently insufficient experimental data points to draw a conclusion on which model prediction is

correct.

Oxygen-driven growth and network remodelling

Non-isotropic growth is driven by the non-uniform spatial distribution of capillaries at the

tumour periphery and hence—as described by Eq (3) and the relation defining Fg—the result-

ing oxygen distribution. In Fig 9 (see also S1 video), the tumour is illustrated to grow due to

the oxygen transcending from the vasculature and diffusing in the interstitial space. The visual-

isation also demonstrates dynamic network remodelling: not only do the vessels lack a regular

hierarchy and structure, but they also display a higher degree of tortuosity than the initial

(healthy) vascular network. In S2 Fig, the numerically predicted increase of the cancer mass as

a function of time (in days) is illustrated.

Model enables quantification of vessel perfusion

The in-silico cancer model enables a quantitative investigation of blood flow in the evolving

vascular network. S5 fig compares the mean blood flow velocity with vessel diameter (consid-

ering functional i.e. non-collapsed vessels only) at different time points. Such information is

extremely hard to measure accurately using experimental methods, given the requirement to

image flow in individual microvessels of micron-level diameters; a validated in-silico frame-

work is therefore highly valuable in providing insight into microvessel functional behaviours.

Fig 10 shows the perfusion state of the vasculature as a function of time. The blood vessels are

distinguished into functional and non-functional (i.e. collapsed) vessels, with the former being

categorised according to their mean blood velocity (MBV) as hypo-perfused (BMV <0.1 mm/

s), perfused (BMV in the range 0.1–0.5 mm/s) and well-perfused (BMV >0.5 mm/s) (this fol-

lows the convention proposed by Kamun et al. [48]). The proportion of hypo-perfused vessels

increases quickly over the first 10 to 15 days, primarily driven by the unregulated vessel sprout-

ing. After this time, the increase slows as a consequence of anastomosis and branching of

vessels.

Mechano- and haptotaxis play an important role in tumour-induced

angiogenesis

To date, mathematical models of angiogenesis have mostly focused on chemotactic (e.g.

VEGF) and haptotactic tip cell migration as determinants of vascular sprouting and branching

while the vertical bars denote the IFP standard deviation. These plots also illustrate the gradual increase of the cancer mass, while

depicting the significant variability of IFP in the vicinity of the tumour interstitium.

doi:10.1371/journal.pcbi.1005259.g005
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Fig 6. Average tissue hydrostatic pressure (THP) spatial distribution at various time instants. Various snapshots of THP—i.e. the

mean solid stress—distribution evaluated at fourteen azimuthal directions, plotted with respect to the radial distance from the tumour centre.

Positive pressure is compressive and negative extensive, while the vertical bars denote standard deviation. The vertical red line in the plots

defines the tumour–host interface boundary, while the vertical bars denote the THP standard deviation. Notably, during the tumour

development mechanical forces are propagating, in the form of a pressure wave, with an approximately linearly increasing amplitude in time.

doi:10.1371/journal.pcbi.1005259.g006
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(key example papers [18, 23, 66–68]). These studies do not incorporate the impact of mechan-

otaxis in determining vascular topology, and both vascular and tumour growth. Here we inves-

tigate the hypothesis that vascular structure during tumour growth is influenced by chemo-,

mechano- and haptotactic stimuli in combination. Specifically, we carry out simulations when

Fig 7. Normalised vascular density when mechano- and haptotaxis is included or discarded in the

angiogenesis model. Comparison of the numerically predicted normalised vascular density when blood

vessel sprouting is modulated by chemo-, mechano- and haptotaxis against the simplified chemotaxis case.

Vascular density is defined as the ratio of the surface area of the blood vessels to the tissue volume, and is

normalised against the corresponding initial value (day-0).

doi:10.1371/journal.pcbi.1005259.g007

Fig 8. History plots of the parameters characterising the morphology of the microvascular tree. Numerically predicted parameters λv and δv-max

with respect to time, compared to in-vivo measurements in murine mammary carcinoma (MCaIV-type) [22]. A: The geometrical exponent, λv, is obtained

after linear regression on the pair of data: frequency of voxels versus the distance to nearest vessel (δv) [65] while the vertical bars denote standard

deviation of the mean.

doi:10.1371/journal.pcbi.1005259.g008
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chemotaxis alone determines the vessel tip extension rate and direction, and compare them

against those where all three stimuli are included (see Eq (15)).

In Fig 7 we compare the normalised vascular density (as defined previously) as a function

of time with chemotaxis in isolation, with the case of combined chemo-, hapto- and mechano-

taxis. When only chemotaxis is active, the pathway of the tumour vessels is dictated by the gra-

dients of TAF, where TAF—owing to the isotropic diffusion of these chemical cues in the

ECM—is distributed spherically. Therefore, the elongation direction vector of the newly-

formed sprouts points towards the tumour centre. However, owing to the growing tumour

mass, solid stresses increase dramatically at the peritumoural stroma (especially at day 10 and

onwards; see Fig 6), inducing collapse of the infiltrating nascent vessels when mechanical cues

for vessel growth are included. Therefore, when chemo-, hapto- and mechanotaxis are com-

bined, the pattern of angiogenesis changes significantly. Careful inspection of the simulation

results reveals that the elevated mechanical forces at the peritumoural stroma re-direct the ves-

sels to elongate circumferentially and, thus, increase the likelihood for the formation of anasto-

moses and vascular shunts. Notably, anastomoses are evident after day 10 owing to the

growing population of microvessels and the significant increase of branches adjacent to the

Fig 9. Snapshots of the tumour growth and angiogenesis simulation illustrating the remodelling of the

microvasculature and haemodynamics. Visualisation of the developing tumour and the formation of new vascular

sprouts, branches and anastomoses over a period of 40 days (from top to bottom and from left to right: day-0, day-5, day-

10, day-15, day-20, day-25, day-30 and day-40). In the contour maps, the vascular lumen radius range is 5–80 μm and the

wall shear stress magnitude range is 10−1—103 mm-Hg (on logarithmic scale).

doi:10.1371/journal.pcbi.1005259.g009
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tumour. Summarising the above, and as shown in Fig 7, our in-silico model predicts an

increase of the normalised vascular density in the combined taxis case of angiogenesis.

Also, Fig 8 compares the numerically predicted scalar parameters λv and δv-max in the two

cases of taxis. The combined mode model produces higher normalised vascular densities,

more consistent with experimental measurements, and also provides an excellent prediction of

λv, as discussed in the previous section. This analysis indicates that hapto- and mechanotaxis

may play an important role in determining the density and three-dimensional spatial arrange-

ment of angiogenic vessels in tumours; in turn, these structural features of the vasculature are

key in predicting diffusion of solutes (e.g. oxygen, drugs) into the interstitial space, and thus

drug penetration and efficacy. Our model incorporates these mechanical stimuli, and could be

used in the future to optimise tumour drug delivery and dosage. Furthermore, the model has

predictive capability to characterise tumour solid stresses, and their interplay with tumour

growth.

Fig 11 illustrates in snapshots the in-silico predictions of tumour-induced angiogenesis

when chemo-, mechano- and haptotaxis is taken into account (images on the left of each col-

umn), and when chemotaxis applies only. Notably, from day 30 onwards, the tumour vessels

follow a rather radial extension pattern in the pure chemotaxis case. However, when mechano-

and haptotactic cues are also considered, the growing vessels are observed to encapsulate

(rather than penetrate) the tumour. This “tumour framing” effect becomes more striking

when the minimum TAF threshold required for angiogenesis, τ�, is lowered (see following

subsection). Also, particularly at days 35 and 40, the formation of vascular shunts is also more

pronounced when all three taxes (referred to as the ‘combined mode’) are included, vessel tor-

tuosity is increased, and the presence of anastomoses is also more frequent (see also S14

Video). These are characteristic features of tumour vasculature, and it is highly promising that

they are promoted by an in-silico model that includes mechanotaxis.

Fig 10. Perfusion state of the vascular network in time. Following [48], hypo-perfused vessels are

characterised as those with mean intravascular velocity below 0.1 mm/s, perfused vessels are those falling in

the range of [0.1, 0.5] mm/s, and the rest (>0.5 mm/s) are considered well-perfused blood vessels. The

percentage of collapsed vessels fell between approximately 4–6% with respect to the total amount of vessels

in the vascular tree.

doi:10.1371/journal.pcbi.1005259.g010
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Angiogenesis is strongly determined by TAF-levels and vascular-wall

rigidity

Finally, the dependency of angiogenic vascular growth on various model parameters was

examined. A sensitivity analysis of all parameters was performed and those with the largest

influence on the normalised vascular density were identified, namely the TAF concentration

and vascular wall stiffness. Fig 12A shows the normalised vascular density as a function of time

for various values of the TAF threshold, (τ�), above which angiogenesis is permitted (all other

parameters were kept constant). A non-linear dependency of the vascular density on τ� is

observed, with a value of τ� = 0.02 producing a monotonic increase. This reflects the inherent

non-linearity of TAF-induced vessel production, and suggests that the TAF threshold can

quash other limiting factors—such as collapse from solid stress—which cause a decrease in

vascular density above day 35 for the lower threshold values. This establishes TAF as a domi-

nant factor in angiogenesis, which is in agreement with previous findings [69].

To test the response on vascular mechanics, Fig 12B shows the normalised vascular density

as a function of time for various values of the maximum wall stiffness, Ew-max; all other param-

eters were kept constant. Specifically, in the baseline test 1.3� Ew-max� 5.22, which—as

described in the previous section, and given that the critical radial strain a capillary can sustain

is approximately 0.92—is equivalent to the critical pressure for capillary wall collapse 1.6� pc

� 3.4. In the first sensitivity test the stiffness was increased by a factor of 10, and in the second

Fig 11. Comparison snapshots showing the effect of taxis to the tumour angiogenesis model

predictions. Tumour induced angiogenesis simulation results are compared when chemo-, mechano- and

haptotaxis is taken into account for the capillary sprouting kinematics (left image) and when chemotaxis

applies only (right image), while each row corresponds (from left to right and from top to bottom) in days 15,

20, 25, 30, 35 and 40. Functional blood vessels are coloured red while collapsed vessels are in blue. The

green-colour cloud denotes the TAF concentration level in the extracellular matrix, where both the host-tissue

and tumour domain is invisible for illustration purposes.

doi:10.1371/journal.pcbi.1005259.g011

Tumour Angiogenesis & Growth In-Silico Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005259 January 26, 2017 27 / 38



test by a further factor of 10. This produced a highly nonlinear response, with a monotonic

increase in the vascular density in time observed for both sensitivity tests. Considering Eq (21),

a capillary segment is assumed collapsed when the sum of the interstitial fluid pressure and the

tissue hydrostatic pressure is at least pc-times larger than the microvascular pressure at this seg-

ment. As such, these results suggest that increasing pc by a factor of 10 renders the vessels

essentially immune to collapse by external solid and fluid pressure.

Fig 13 illustrates the impact of the microvascular wall stiffness in the predictions of the

tumour growth and angiogenesis simulator (see also the animation of S15 Video). It is evident

from this figure that enabling vessel wall more resilient (rightmost column of images), nascent

vessels can resist and withstand the elevated mechanical forces at the tumour periphery. Thus,

they can penetrate the tumour whose growth is speeded up and is slightly pronounced—pro-

vided that functional and well-perfused vessels supply the core of the cancer mass with vital

nutrients and oxygen—as opposed to for example the baseline case (leftmost column of

images). In summary, varying the wall stiffness in our coupled model produces a similar effect

on the vascular density predictions to that when varying the TAF threshold triggering

angiogenesis.

Conclusion

This work presents a validated three-dimensional mathematical and computational framework

that encompasses solid tumour growth and tumour induced angiogenesis. The in-silico cancer

model has been implemented in our in-house, open-source numerical platform FEB3 (see for

details S1 file). The proposed multiscale approach is capable of modelling the mechanical

interactions between healthy and cancerous tissues, and associated vasculature, with the solid

(tissue) and the fluid (blood) part of the tumour environment modelled separately. The impor-

tant novel contributions of our model are: (i) the dynamic remodelling of the vascular network

under mechanical stress during tumour growth, (ii) the incorporation of mechanotaxis (along-

side chemo- and haptotaxis) in the determination of vessel sprouting orientation and speed,

Fig 12. Predictions of the normalised vascular density as a function of time. Increase of tumour vascular network density with respect to time when

varying: A: the TAF angiogenesis threshold τ*, and B: the capillary wall stiffness, Ew-max. See also description in Fig 7 for the definition of the normalised

vascular density.

doi:10.1371/journal.pcbi.1005259.g012
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Fig 13. Comparison snapshots showing the effect of vascular wall stiffness to the tumour

angiogenesis model predictions. Microvascular wall stiffness (from left to right) takes values: Ew-max = 1.3–

5.22, Ew-max = 13.—52.2 and Ew-max = 130.—522. respectively, while each row corresponds (from top to

bottom) to day-15, day-20, day-25 and day-30. Blood vessels are coloured green if they reside at the peri-

tumoural area, red if they are located in the rest of the healthy tissue domain, and blue if the are inside the

tumour. Note that for lower values of stiffness, Ew-max, nascent vessels are non-existent inside the tumour as

opposed to higher values. The green-colour cloud denotes the TAF concentration level in the extracellular

matrix, where both the host-tissue and tumour domain is invisible for illustration purposes.

doi:10.1371/journal.pcbi.1005259.g013
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(iii) the collapse of tumour blood vessels as a consequence of solid stress produced by the sur-

rounding tissue. The model recapitulates experimental observations of fluid and solid pressure

(and fluid velocity) distributions, vascular density and three-dimensional spatial arrangement,

with the improvement between experimentally measured and theoretically predicted vascular

measurements increasing upon the inclusion of hapto- and mechano-tactic (alongside chemo-

tactic) stimuli in the model. This supports our hypothesis that hapto- and mechanotaxis play

an important role in determining the density and 3D spatial arrangement of tumour induced

vasculature. As further data that quantify tumour vascular structures become available, we will

continue to test the applicability of the metrics δv-max, λv in capturing intra-tumour heteroge-

neity, as well as tumour-to-tumour variations, alongside the ability of our mechanotactic

model in predicting these changes.

Despite the complexity of the proposed framework, our model remains subject to some lim-

itations; particularly, we do not model space- and time-varying haematocrit and relative blood

viscosity [50, 54, 70], or the impact of the lymphatic system. The focus of this study was the

investigation of the coupling between tumour vasculature, growth and the generation of solid

stresses, and therefore these features were ignored at this stage, for the sake of simplicity. Also,

we envisage to incorporate in a future version of the tumour angiogenesis module an elaborate

model of vascular wall-remodelling and biomechanics. For example, the biomechanical prop-

erties of the microvascular wall (i.e. lumen size, thickness and pore size) could explicitly be

described with respect to local gradients of chemical cues affecting the endothelium integrity

(i.e. stiffness, permeability). As such, we will model the spatio-temporal biomechanics of the

microvasculature in a more physiologically realistic manner; this will, for example, overcome

the simplification of isotropic mechanical compression. In addition, we plan to extend the

present in-silico tumour model to account for polyclonal cell populations and, thus, investigate

the importance of the angiogenesis in the interplay between different cancer cell phenotypes

(i.e. proliferative versus invasive phenotype) under different vascularisation regimes [71], as

well for various tumour-related cell types (e.g. cancer-associated fibroblasts, cancer-associated

macrophages, etc.).

However, the increased sophistication of our computational framework results in a large

number of model parameters presented in S1–S4 Tables. Most of the model parameters were

determined independently from the others based on previous studies and experimental data.

Other parameters—not found in the literature—were defined in the current study so that

model predictions to be physiologically relevant. The good agreement of model predictions

with experiments that has been demonstrated in this work validates the choice of model

parameters. Furthermore, we performed a parametric analysis of the parameters that play a

key role in the angiogenesis procedure and in the compression of the blood vessels (i.e.

mechano-/haptotaxis, TAF threshold for angiogenesis, vessel wall stiffness), which are the two

factors of tumour progression that our work has been focused on. Variation of other model

parameters is expected to change the results only quantitatively, while qualitatively the model

predictions and the conclusions of this study will remain the same. We also note that the

model framework we present is deterministic; a natural next step would be to investigate vari-

ability in the model predictions induced by stochastic features, for example, of the initial vas-

culature (length, diameter and separation of vessels), informed by distributions of these data as

measured in practice. We leave this to future work, but note its important in understanding

tissue heterogeneity, both within an individual tumour, and between tumours of the same/dif-

ferent type.

Finally, our model can be further used as a platform for the study of the delivery of drugs to

solid tumours by adding equations for the transport of the therapeutic agent into the vascular

network, across the vessel walls and into the tumour interstitial space [4, 26, 72]. Additionally,
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the efficacy of strategies that target the tumour microenvironment to enhance the delivery of

drugs—such as vascular normalization and stress alleviation treatments—can be studied in

more detail than by existing models.

Supporting Information

S1 File. FE implementation of the tumour angiogenesis and growth model.

(PDF)

S2 File. Quantification of the structure of in-vivo tumour vasculature.

(PDF)

S1 Fig. Three-dimensional finite element mesh and vascular network. A: Clipped mesh,

showing the internal structure of the grid. B: The extracted tumour region (shown as a small

sphere) with the complete micro-vasculature rendered as red tubes.

(TIFF)

S2 Fig. Tumour volume and approximate diameter development in time. Increase of

tumour volume, OT, and approximate diameter (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4O
T
=3p

3
q

) with respect to time (in days). In

all simulations the tumour is allowed to grow approximately seven times in diameter. The

plots do not retain one-to-one correspondence due to the non-isotropic growth of the cancer

mass.

(TIFF)

S3 Fig. History plots of the interstitial fluid pressure (IFP) and the tissue hydrostatic pres-

sure (THP) at the centre of the cancer mass. A: IFP grows exponentially as a result of the

rapid production of immature, leaky vessels. The sharp drops and fluctuations of the IFP coin-

cide with the pruning of neighbourhood blood vessels (due to growth-induced stresses) and

the eventual collapse of some parent capillaries that supply the extravascular space with blood.

However, interstitial tension is restored by the generation of new sprouts and subsequent anas-

tomoses that continuously fuel the leaky vessels with more extravasating biological fluid. B:

The solid-phase pressure (referred here as THP) at the tumour centre increases initially

towards significant tension. This can be justified by the passive biomechanical response of the

hypo-perfused cancer core, whose cellular status is rather dormant. Subsequently, after day-8,

the core of the tumour transits into a necrotic state, while getting compressed by the highly

proliferative tumour periphery.

(TIFF)

S4 Fig. Histograms illustrating the dynamic changes of the vascular network (lumen diam-

eter versus length) at various time instants. The normalised vascular length on the vertical

axis is determined by the fraction of the total length of vascular segments of a specific diameter

size over the total length of the functional (non-collapsed) vessels at each time frame. The

labels on the horizontal axis correspond to the following blood vessel diameter range: (1) func-

tional vessels of diameter 4–10 μm, (2) functional vessels of diameter 10–20 μm, (3) 20–30 μm,

etc. The histograms highlight the dilated capillaries in the tumour-associated vascular network,

which confirms established in-vivo observations in solid tumours [37]. The corresponding

normalised length of the collapsed vessels (not plotted below) is computed: 0.043, 0.186, 0.391,

0.623, 0.929, 1.278 and 1.639 for days 10, 15, 20, 25, 30, 35 and 40 respectively. Comparing the

figures with the above data, it becomes evident that this is due to the progressive compression

and pruning of blood vessels throughout the analysis.

(TIFF)
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S5 Fig. Histograms of the intravascular velocity with respect to the lumen diameter of the

functional capillaries in the vascular tree. Intravascular velocity is given in mm/s, while the

labels on the horizontal axis correspond to the following diameter range: (1) 4–10 μm, (2) 10–

20 μm, (3) 20–30 μm, etc. Note that bars exceeding 1 mm/s blood mean velocity (not shown

here) are observed to have an exponential increase trend with respect to vessel diameter from

day-30 to day-40, while from day-15 to day-25 the distribution is rather random.

(TIFF)

S1 Video. Tumour growth and angiogenesis animation that illustrates the capillary radius

dynamics. Visualisation of the tumour growth and angiogenesis model predictions, over a

period of 40 days, where the tumour is shown as a transparent object and the blood vessels are

rendered as tubes, thus, depicting the adaptive behaviour to capillaries to the mechanical sti-

muli (i.e. fluid viscous forces and solid stresses). The colour contour on the vascular network

represents the vessel radius, in μm. Since vessel wall remodelling is modulated by the local

flow WSS magnitude, note the direct correlation of the radius development with respect to the

WSS in S3 Video. Note also that some parent vessels (originally shown white) are compressed

due to the local increase of the mechanical forces, while others during the course of the analysis

are collapsed and hence vanish from the network. Finally, note the formation of vascular

shunts at the top left and inferior of the tumour, and the pronounced tortuosity of the newly

formed vessels in the the peri-tumoural area.

(MP4)

S2 Video. Tumour growth and angiogenesis animation that illustrates the intravascular

blood mean velocity (BMV). As in S1 video, this animation illustrates BMV, in mm/s. Here it

is clearly observed that non-functional (i.e. collapsed) vessels are pruned from the vascular net-

work throughout the analysis, as explained in the Capillary wall remodelling subsection. Note

that the mean velocity of the well perfused vessels (shown in dark red) can reach up to several

mm/s, while functional poorly perfused vessels are shown white. In this regard, it is interesting

to observe that a few of the parent vessels have also collapsed, and hence obstruct the natural

blood flow.

(MP4)

S3 Video. Tumour growth and angiogenesis animation that illustrates the wall shear stress

(WSS) magnitude. This video shows dynamic changes of the WSS magnitude, in mm-Hg,

induced by the blood as it flows through the vessels, over a period of 40 days. As expected, poorly

perfused vessels have low WSS, whereas the highly perfused parent vessels have high WSS.

(MP4)

S4 Video. Tumour growth and angiogenesis animation that illustrates the tumour-angio-

genic growth factor (TAF) distribution and the functional state of the vascular network.

This video shows TAF spatial distribution as a green cloud—secreted by the tumour cells—

while diffusing into the extracellular space of the host tissue (c.f. Eq (12)). The functional

blood vessels are rendered as red tubes, while the collapsed vessels appear as thin blue lines.

(MP4)

S5 Video. Animation of the blood pressure distribution in the vascular network during a

40-day tumour-induced angiogenesis process. Inlet and outlet vascular nodes are randomly

chosen, where a 25 mm-Hg arterial and a 10 mm-Hg venous pressure is applied respectively.

Intravascular blood pressure distribution, also referred to as the capillary hydrostatic pressure,

is given in mm-Hg.

(MP4)
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S6 Video. Three-dimensional contour plot of the interstitial fluid pressure (IFP) distribu-

tion in the tumour-host soft tissue domain and the blood vessels. The growing tumour is

shown as a transparent sphere, while the vascular network is presented as a scaffold by showing

only the centreline tree. The predicted IFP solution, in mm-Hg, is projected from the nodes of

the three-dimensional finite element grid onto the vascular nodes via a conventional interpola-

tion scheme (i.e. the inverse distance algorithm).

(MP4)

S7 Video. Opposite view of S6 Video. See caption of supplementary material S6 Video.

(MP4)

S8 Video. Dynamic three-dimensional contour plot of the tissue hydrostatic pressure

(THP) distribution in the tumour–host tissue domain and the blood vessels. For an inter-

pretation of the tumour and vascular network geometry consult the description of S6 video,

while THP is given in mm-Hg.

(MP4)

S9 Video. Opposite view of S8 Video. See caption of supplementary material S8 Video.

(MP4)

S10 Video. Three-dimensional contour plot of the interstitial fluid velocity (IFV) distribu-

tion in the tumour-host soft tissue domain. The blood vessels are coloured with respect to

the microvascular (blood) pressure distribution. The growing tumour is shown as a transpar-

ent sphere, while the vascular network is presented as a scaffold by showing only the centreline

tree. Note also the logarithmic scale used for displaying the contour of the IFV, in μm/s.

(MP4)

S11 Video. Opposite view of S10 Video. See caption of supplementary material S10 Video.

(MP4)

S12 Video. Animation of the microvascular pressure and interstitial fluid velocity. Com-

bined visualisation, as in S10 Video, of the microvascular pressure and the IFV using vectors,

during a 40-day period of tumour growth. The transparent growing sphere corresponds to the

tumour, with the centre-line of the vascular tree shown only. IFV increases smoothly within

the tumour during the simulation, as a result of the space-varying IFP as shown in Fig 5. How-

ever, IFV peaks at some points, mainly in the vicinity of collapsing blood vessels of the original

network. This is due to sudden pruning of highly perfused vessels that leads to the loss micro-

vascular pressure balance, which dynamically changes the intravasation and extravasation of

plasma/proteins in the vessels. This, subsequently, dramatically modifies the distribution of

the IFP.

(MP4)

S13 Video. Opposite view of S12 Video. See caption of supplementary material S12 Video.

(MP4)

S14 Video. The effect of taxis to the tumour angiogenesis model predictions. This anima-

tion compares (left hand side) the tumour growth angiogenesis simulation result when

chemo-, mechano- and haptotaxis is taken into account for the capillary sprouting kinemat-

ics—as described in Eq (15)—with (right hand side) the result when only chemotaxis is con-

sidered. Similar to S4 video, the green cloud corresponds to the distribution of TAF in the

ECM, while the functional blood vessels are rendered as red tubes and collapsed as blue. It is

interesting to observe on the left the tangential distribution of vessels at the tumour periph-

ery, as opposed to the relatively radial direction of vessels on the right hand side simulation.
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The former leads to the formation of vascular shunts in the peri-tumoural stroma, while

blood vessels are more likely to anastomose and hence enhance their perfusion.

(MP4)

S15 Video. The effect of vascular wall stiffness to the tumour angiogenesis model predic-

tions. In this video we provide a direct comparison of the simulation results, in a 30-day win-

dow, for various values of the capillary wall stiffness. As illustrated in the legend of Fig 12B, the

simulation cases from left to right correspond to Ew-max = 1.3–5.22 (baseline value range),

Ew-max = 13.—52.2, and Ew-max = 130.—522. respectively. Blood vessels are coloured green if

they reside at the peri-tumoural area, red if they are located in the rest of the healthy tissue

domain, and blue if the are inside the tumour. Again, the green cloud in the centre of each

visualisation denotes the concentration of TAF secreted by the tumour cells. It is interesting to

see the excessive vessel pruning in the baseline case compared to the pronounced vascularisa-

tion of the rightmost simulation. Note also in the latter case the significant speed up of tumour

growth due to the presence of perfused vessels in the core of the cancer mass.

(MP4)

S1 Table. Solid mechanics model parameters. List of model parameters associated with the

Solid Solver Module. Set of parameters in the last three rows are non-applicable for the host tis-

sue region.

(PDF)

S2 Table. Fluid mechanics model parameters. List of model parameters associated with the

Fluid Solver Module. Cells marked with an asterisk denote shared values for both tissue types.

(PDF)

S3 Table. Biochemical model parameters. List of model parameters associated with the Bio-
chemical Solver Module. Cells marked with an asterisk denote shared values for both tissue

types, while “NA” denotes non-applicable.

(PDF)

S4 Table. Vascular network model parameters. List of model parameters associated with the

Vascular Network Module. Parameters with a star (?) correspond to non-perfused or hypo-per-

fused vessels, while those with a dagger (†) correspond to well-perfused vessels. The parame-

ters with a double dagger (‡) denote the pre-set parameter values of the original vascular

network.

(PDF)
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