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Abstract: The purpose of this study was to assess the concurrent validity and test–retest reliability
of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson’s disease (PD)
patients were asked to complete gait tasks whilst wearing two inertial measurement units at their
feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from
a reference camera-based motion capture system concerning concurrent validity. Test–retest reliability
was assessed for five healthy subjects at three different days in a two week period. The two systems
were highly correlated for all gait parameters (r > 0.93). The bias for stride time was 0 ± 16 ms
and for stride length was 1.4 ± 6.7 cm. No systematic range dependent errors were observed and
no significant changes existed between healthy subjects and PD patients. Test-retest reliability was
excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55).
The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared
to the reference camera-based system for normal and impaired gait. The system’s high retest reliability
renders the use in recurrent clinical measurements and in long-term applications feasible.

Keywords: walking; stride parameters; ambulatory motion tracking; human gait; movement analysis;
inertial measurement unit; sensors; wearable sensors; accelerometer; gyroscope

1. Introduction

Parkinson’s disease (PD) is the most frequent neuro-degenerative disorder with a high
prevalence [1]. It is characterized by movement impairments with the cardinal symptoms tremor,
bradykinesia, rigidity, and loss of postural reflexes as well as secondary gait symptoms such as
shuffling gait and freezing [2]. To clinically assess motor symptoms, the patient’s gait impairment is
observed and rated on a four-point scale as a subitem of the Unified Parkinson’s Disease Rating Scale
(UPDRS-III) [3]. However, it has been demonstrated that subjectively performed observational gait
assessment shows only moderate reliability and validity [4,5], and hence more objective measures are
needed in order to support diagnosis, assessment of treatments, and therapeutic decision making.

Gold standard motion analysis systems such as marker-based infrared cinematography are useful
for obtaining accurate estimates of gait kinematics and gait parameters for clinical diagnosis. However,
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they are stationary, expensive and require manual post processing, limiting their feasibility in clinical
practice [6]. Clinical or laboratory environments may also cause deviations from everyday walking
patterns and suffer from potential patient-doctor expectancy effects [7]. Additionally, clinical visits are
only snapshots of the patients history. Responses to treatment such as medication are not necessarily
captured in singular clinical visits, and more frequent updates on health statuses might be desirable [8].

Mobile gait analysis systems are a promising approach to assist clinical decision making in the
hospital by supplying objective gait measures with less expertise required than for motion capture
systems [6,9]. Furthermore, they can be applied to monitor long-term gait changes and responses to
treatments in free living environments (e.g., in home monitoring settings) [10] without the need for
regular appointments and potential patient–doctor expectancy effects might be reduced.

Separating disease and treatment effects detected by the sensor system from measurement errors
of the system is essential for clinical applications. It is therefore important to evaluate the measurement
system’s validity as compared to external reference systems (i.e., concurrent validity). In the context
of recurrent clinical measurements, test–retest reliability of the spatio-temporal gait parameters
is important and a prerequisite if the measurement system is employed to monitor longitudinal
treatment effects over several weeks or if the measurement system is transferred to unsupervised home
monitoring applications.

Wearable inertial measurement units have increasingly been used in gait analysis applications
with their validity or reliability usually assessed in healthy subjects [11–13]. Hamacher et al. presented
a mobile system exhibiting a high reliability, which was based on sensors attached to the forefeet [11].
They used a sensor recalibration technique in order to improve retest reliability of gait parameters.
Donath et al. assessed the reliability of a sensor attached to the lateral aspects of the shoe [12], but only
assessed treadmill and not overground walking. Orlowski et al. employed sensors laterally attached to
the shanks above the ankle to derive gait parameters [13]. Gait event detection was based on angular
shank velocity, which might be problematic for pathological gait, as angular velocities are only indirect
measures of those gait events [14]. The mobile gait analysis systems above were thus based on different
sensor setups and gait parameter extraction algorithms. Validity and reliability was, however, only
assessed with healthy subject populations.

Mobile gait analysis system are, however, often designed for spatio-temporal gait parameter
extraction in clinical applications such as disease assessment and treatment evaluation [10,15–17].
Patient populations that exhibit specific gait disorders should therefore also be assessed regarding
validity and reliability. Papi and colleagues, for example, investigated the validity of wearable sensors
in a rehabilitating knee osteoarthritis population with three sensors attached to the lower body (knee,
thigh, waist), but no sensor was attached to the feet [18]. Kobsar and colleagues investigated different
attitude correction methods for sensors’ positions at the back, thigh, shank, and foot concerning
reliability with knee osteoarthritis patients and characterized acceleration waveforms, which can
potentially replace biomechanical measures such as spatio-temporal gait parameters. However, they do
not provide a direct clinical interpretation of clinical parameters [19]. Kitawaga and colleagues
employed foot-worn sensors to calculate foot trajectories and associated gait parameters by direct
integration and achieved a mean accuracy of 2.0 ± 5.0 cm for stride length [20].

In this study, we present the evaluation of a new sensor-based gait analysis system that employs
lightweight sensors worn only on the feet for the extraction of clinically interpretable spatio-temporal
gait parameters using state-of-the-art algorithms. The main aim of our study was to assess the
concurrent validity of this mobile system against an external camera-based system for a healthy and
PD patient population and to assess the test–retest reliability over three measurement sessions with
healthy subjects. We hypothesized that the gait parameters obtained present an accurate estimate of
the subjects’ gait patterns that render the use in clinical applications and long-term monitoring studies
feasible. We used a markerless motion capture system as reference system, which could potentially be
used complementary to enhance gait assessment in future semi-supervised scenarios.
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2. Materials and Methods

2.1. Subjects

Eleven healthy subjects and four patients suffering from PD volunteered for this study. The healthy
subjects reported no orthopedic or neurological disorders, acute pain or other complaints that might
have affected gait. The patients were recruited from the Movement Disorders outpatient clinic of the
Department of Molecular Neurology at the University Hospital Erlangen, Germany. PD was defined
according to the Guidelines of the German Association for Neurology (DGN), which are similar to
the UK PD Society Brain Bank criteria [21]. All subjects gave their informed consent for inclusion
before they participated in the study. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the local ethics committee of the University Hospital
Erlangen (Re.-No. 4208).

Prior to data acquisition, clinical ratings of the patients with PD were acquired by a Movement
Disorder specialist. The motor score of the UPDRS-III and the Hoehn and Yahr disease staging were
used to assess disease severity and clinical symptoms [3,22]. The population characteristics are shown
in Table 1.

Table 1. Population statistics for the healthy subjects and the patients with Parkinson’s disease (PD).

Healthy Subjects PD Patients

Gender (m:f) 6:5 2:2
Age (years) 33.6 ± 5.7 70.5 ± 6.6
Mass (kg) 77.1 ± 20.7 72.6 ± 5.3

Height (cm) 180.3 ± 9.9 172.8 ± 6.7
UPDRS-III - 20.0 ± 6.4

Hoehn & Yahr - 2.4 ± 0.8

2.2. Study Protocol

A battery of different short distance walking tests that provide clinically useful measures in
a population of patients with PD [23] were performed as previously described [24]. For the following
evaluation, only data from the 4 × 10 m walking test at different speeds was considered, as this test
provided straight walking distances. This test consists of walking four times a straight 10 m distance
with turning movements in between. The subjects performed the test at three different self-selected
walking speeds (fixed order: normal, slow, fast) to cover a high range of different walking speeds.

For the test–retest evaluation, we performed this protocol with five of the healthy subjects at
three different days during a two week measurement period. The data acquisition was performed by
the same examiner in all measurement sessions. The data of this study is accessible for collaborative
research [25].

2.3. Measurement Setup

The measurements took place in a laboratory environment within the METEAN center
(joint venture of the Fraunhofer Institute for Integrated Circuits and the University Hospital Erlangen,
Germany). The eight cameras of the camera-based reference system were positioned around a 10 m
walkway (Figure 1). Due to the limited field of view of the cameras, full body motion was visible in all
eight cameras only in the middle of the acquisition volume along 3 m of the 10 m walkway as indicated
by the red box in Figure 1. Motion tracking data based on less than eight cameras were neglected in
the subsequent analysis to ensure good tracking results.

By using only the strides from the middle section of the measurement volume, we also assured
that the subjects were walking at steady speed in all assessments and that no turnings, initiation or
stopping strides were included in the further analysis.
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Figure 1. (a) measurement setup; (b) placement of cameras around the 10 m walkway. The red box
indicates the volume in which full body markerless tracking using all eight cameras could be performed.
The 4 × 10 m walk is schematically shown.

2.4. Sensor-Based Gait Analysis

We used an inertial measurement setup consisting of two Shimmer3 sensors (Shimmer, Dublin,
Ireland) [26], which contained a three-axis gyroscope (range: ±500 ◦ s−1) and a three-axis accelerometer
(range: ±8 g) sampling at a rate of 102.4 Hz. The data was transferred via Bluetooth to a mobile device
for storage. The sensors were attached laterally to each shoe below the ankle joint by using rigid
sensor mounts (Figure 2). All subjects wore the same shoe model (Adidas Duramo 6, Herzogenaurach,
Germany) for practical reasons and to restrict gait differences due to differing footwear [27]. This
sensor setup has previously been used for the detection of motor impairment in PD patients [28].

Figure 2. Attachment of the sensors to the shoes. (a) frontal view; (b) lateral view.

The calculation of spatio-temporal parameters of our system was based on the following steps:
stride segmentation, followed by the determination of gait events to determine temporal parameters
and foot trajectory calculation to derive spatial parameters. The processing of the sensor data was
performed in Matlab (R2016b, MathWorks Inc., Natick, MA, USA).

First, a sensor calibration of the raw sensor signals to physical units was accomplished using
a calibration procedure described by Ferraris and colleagues [29]. Due to the mirrored mounting of the
sensors at the lateral side of the shoes, the axes had to be aligned in order to process the signals of the
left and right foot analogously.

From the continuous inertial data stream, single strides were detected using the multi-dimensional
sub sequence dynamic time warping approach (msDTW) as described by Barth and colleagues [30].
The method uses a template based approach to nonlinearly match time series of different length to
a pre-defined template. In the application described by Barth et al. [30], this allows the identification
of single strides within an inertial data stream. Their approach involves computing a distance function
based on accumulated costs between the gait signal and the template that identifies suitable starting
positions of template-matches. From these starting positions, optimal segments are then found based
on the previously computed costs. The DTW threshold is variable and has been set to 35 in our study,
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which has previously been identified to be suitable for stride segmentation [30]. It has been shown,
for the sensor setup used in this study, that the gyroscope information of the sagittal and rotational
plane yielded the best segmentation results regarding recall and precision in healthy elderly subjects,
patients with PD, and geriatric patients in standardized gait tests and free walks [30]. The template in
this study was based on 25 healthy elderly subjects and 681 individual strides.

For each individual stride, the gait events heel strike (HS), toe off (TO) and mid stance (MS) were
detected. HS corresponded to the maximal deceleration of the sensor in walking direction at ground
contact. TO was defined as the change from plantar flexion to dorsal extension of the foot, which
was equivalent to a zero crossing in the corresponding gyroscope signal. MS was the time point with
lowest energy in all gyroscope axes and corresponded to the foot resting flat on the ground. More
details can be found in the work of Rampp and colleagues [31].

For the estimation of the foot orientation, the Euston complementary filter was used [32].
In contrast to simpler orientation estimation schemes that solely rely on integration of gyroscope data,
the Euston filter additionally uses the acceleration signal to gain orientation clues and incorporates
them in the estimation process. Based on the estimated orientation over each stride, the measurements
from the local frame of measurement, which was fixed to and rotated with the shoe, were then
transformed to a global coordinate frame, which was stationary and given by the initial position and
orientation of the shoe. In this global frame, gravity removal was achieved by subtracting the constant,
downward gravity component from the measured signal.

The gravity-free acceleration signal was then used for the estimation of the foot’s trajectory
by double integration. Because direct integration of the acceleration signals shows drift effects, the
following algorithm for drift correction was used. Zok and colleagues [33] proposed a combination
of the direct (trapezoidal) integration of the acceleration signal with an integration of the reverse
acceleration signal with known boundary conditions (zero-velocity assumption) and a subsequent
fusion of both signals by a sigmoid shaped weighting function to obtain a drift free velocity signal.
From the drift free velocity signal, the trajectory was then obtained by direct integration. We then
calculated the spatio-temporal parameters stride time, stance time, swing time, stride length and gait
velocity from the gait events HS and TO and from the foot trajectories.

2.5. Camera-Based Gait Analysis

The reference video data was acquired using an optical markerless motion capture system
(Simi Reality Motion Systems, Unterschleißheim, Germany) with eight 0.3 megapixel (MP) color
cameras (Basler scA640-120gc cameras, resolution of 658 × 492 pixels, Ahrensburg, Germany). The
sampling rate was 100 Hz. Calibration of the measurement volume was performed to define a
global coordinate system and to correct for camera distortion. Calibration and subsequent data
acquisition was performed using the software Simi Motion (version 9.2.1, Simi Reality Motion Systems,
Unterschleißheim, Germany). We synchronized the camera with the sensor system by clapping the
two inertial sensors together in front of one camera before and after each measurement. We then
aligned the data sets based on those initial and final synchronization events. We used the markerless
motion tracking capabilities of the software Simi Shape 3D (version 2.2.1, Simi Reality Motion Systems,
Unterschleißheim, Germany) for the tracking of the subjects’ body segments. The process was based
on silhouette motion tracking and was composed of the following steps. By subtracting an initially
acquired empty background image of the captured volume from the motion images, the 2D silhouettes
of the subject were extracted for each single camera. Then, a 3D silhouette was calculated by combining
multiple camera views. A biomechanical model consisting of 16 segments (pelvis, torso, neck, head,
upper arm, forearm, hand, thigh, shank, and foot) was fitted to the 3D silhouette for each consecutive
frame. To assure good silhouette extraction, we used the same lighting conditions (shading against
sunlight and constant artificial lighting), and the subjects were asked to wear clothing with a good
contrast to the laboratory background.
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In order to calculate spatio-temporal gait parameters, we first labeled the gait events heel strike
(HS), toe off (TO) and heel off (HO) in the raw video stream using the data acquisition software.
These events subdivide the gait cycle into sub phases [34]. HS was characterized by the heel touching
the ground as indicated by a soft heel deformation of the shoe. TO was defined as the last frame at
which the toe was still in contact with the ground. HO was the first frame in which upward movement
of the heel could be detected visually in the video stream. The same examiner performed manual frame
by frame labeling of all measurement trials using the views from all eight cameras. The reference data
was thus based on a semi-automatic gait analysis system composed of manual gait event detection
and automatic trajectory calculation.

The trajectories and gait events were exported and further processed in Matlab. The events were
used to directly calculate stride, stance and swing time. The trajectory of the proximal joint of the foot
as biomechanically modeled and the stride time were then used to calculate stride length and velocity
to obtain the same gait parameters as described for the sensor-based system.

2.6. Statistical Analysis

A total of 1166 strides was used for the subsequent statistical analysis of concurrent validity and
test–retest reliability, which was performed in R version 3.4.0 (R Development Core Team, Vienna,
Austria) [35]. From healthy subjects, 1037 strides were used for the evaluation, while the remaining
129 strides originated from patients. We assessed concurrent validity of all above mentioned gait
parameters by calculating Pearson’s correlation, bias (mean difference), absolute error and the relative
absolute error as agreement measures between the two systems. We used all single strides from all
speeds in the validity analysis to cover a large range of gait parameters.

Correlation alone is not a sufficient measure of agreement, as it measures only the strength of
relation between two variables. A perfect correlation would be obtained for any linear relationship
between both systems. Thus, any scaling of the measurements would not change the correlation,
but would strongly affect the agreement. Bland–Altman diagrams are more specific, since they present
residual like plots of the differences of observed pairs of system readings against the mean values.
They therefore also yield information about magnitude dependent systematic errors [36]. Additionally,
Bland–Altman diagrams visualize the mean of the difference (bias) as well as the 95% confidence
interval of the bias (i.e., limits of agreement).

Agreement between both systems was also assessed for healthy and patient group separately
to evaluate whether mildly affected gait would affect the system’s accuracy. Differences between
both populations were assessed using independent t-tests with a priori significance levels α of 0.05,
assuming normality and homogeneity of variance.

To determine test–retest reliability, intraclass correlation (ICC) was calculated [37,38]. The ICC
assesses the ratio of the intraclass variation in the regarded parameter to the between-class variation
due to repeated measurements. The basis of calculating ICCs are thus analysis of variance models
that include as variation terms the individual deviation from the overall population mean (subject
factor), systematic test errors in the retest measurements (test factor) as well as random measurement
errors. We chose a two-way model, as we expected the subject and test effect to be significant in our
study and used a two-way random effect model to calculate the reliability of a single measurement
ICC(2,1) and the reliability of the average measurement ICC(2,k) (with k = 3 repeated measurements)
as evaluation metrics of the test–retest assessment. We evaluated the ICC concerning the mean gait
parameters (per subject and leg) using all strides of each 4 × 10 m gait test, as the average parameters
per test are usually of clinical interest. We therefore included # legs · # subjects = 10 samples in the ICC
calculation for each of the three measurement dates. ICC values below 0.40 were considered to be poor,
between 0.40 and 0.59 to be fair, between 0.60 and 0.74 to be good, and above 0.75 to be excellent [39].



Sensors 2017, 17, 1522 7 of 14

3. Results

3.1. Concurrent Validity

Mean (±SD) values of the investigated spatio-temporal gait parameters together with agreement
measures are given in Table 2. High correlations (r > 0.93) with low errors were observed for all gait
parameters. While no bias was observed for the stride time, the stance time was slightly overestimated
and the swing time underestimated, respectively, by 37 ms. The stride length was underestimated by
1.4 cm and the velocity was underestimated by 1.2 cm/s. The absolute relative error of the sensor-based
gait parameters was below 9% for all parameters. The best agreement was present for stride time
(1.1%) and the worst for swing time (8.3%). The results of the parameters involving spatial information
(stride length and velocity) showed an error of less than 4%.

Table 2. Overview of spatio-temporal gait parameters for eleven healthy subjects and four PD patients
(n = 1166 steps). Shown are the mean parameters (SD), Pearson correlation coefficient r, bias (SD),
absolute error (SD) and the relative absolute error.

Parameter Sensor Camera r Bias Abs. Error Abs. Error (%)
Stride time (s) 1.15 (0.18) 1.15 (0.18) 1.00 −0.000 (0.016) 0.013 (0.010) 1.1
Stance time (s) 0.74 (0.14) 0.70 (0.13) 0.99 0.037 (0.020) 0.037 (0.019) 5.4
Swing time (s) 0.41 (0.05) 0.45 (0.05) 0.93 −0.037 (0.020) 0.037 (0.019) 8.3

Stride length (m) 1.43 (0.22) 1.45 (0.22) 0.95 −0.014 (0.067) 0.053 (0.043) 3.6
Velocity (m/s) 1.30 (0.37) 1.31 (0.37) 0.99 −0.012 (0.061) 0.048 (0.040) 3.7

Good agreement of the sensor-based system compared to the reference system was observed for
all gait parameters (Figure 3). Walking speed did not influence the bias. Only velocity showed slightly
higher errors at higher walking speeds. The regular patterns for stance time, swing time and stride
time arise from the temporal discretization (camera system: 100 Hz; sensor system: 102.4 Hz), which
limits the accuracy of temporal measurement to around 10 ms.

Figure 3. Bland–Altman diagrams of gait parameters show the difference versus the mean of both
systems for all single strides. The solid line indicates the bias and the dashed lines the limits of
agreement (95% confidence interval of the bias). Highlighted by colors are the three different test
speeds (normal, slow, fast).
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Table 3 compares the agreement as grouped by the study participants being either healthy
subjects or patients with PD. All gait parameters between both populations were significantly different
(p < 0.001 for both systems). The agreement measures were similar for both populations. The bias was
significantly different for stance time (p = 0.005) and stride length (p = 0.018) and not significant for
stride time (p = 0.072), swing time (p = 0.389) and velocity (p = 0.055).

Table 3. Overview of spatio-temporal gait parameters for eleven healthy subjects and four PD patients
(n = 1166 steps). Shown are the mean parameters (SD), Pearson correlation coefficient r, bias (SD),
absolute error (SD) and the relative absolute error.

Parameter Sensor Camera r Bias Abs. Error Abs. Error (%)
Stride time (s)

Healthy 1.13 (0.18) 1.13 (0.18) 1.00 −0.001 (0.015) 0.012 (0.009) 1.1
Patient 1.27 (0.15) 1.27 (0.15) 0.99 0.003 (0.020) 0.016 (0.013) 1.3

Stance time (s)
Healthy 0.72 (0.13) 0.69 (0.13) 0.99 0.036 (0.020) 0.037 (0.019) 5.4
Patient 0.84 (0.12) 0.80 (0.12) 0.99 0.042 (0.020) 0.042 (0.020) 5.4

Swing time (s)
Healthy 0.41 (0.05) 0.44 (0.05) 0.94 −0.037 (0.019) 0.037 (0.019) 8.2
Patient 0.43 (0.04) 0.47 (0.04) 0.82 −0.039 (0.026) 0.041 (0.023) 8.5

Stride length (m)
Healthy 1.45 (0.21) 1.47 (0.21) 0.95 −0.016 (0.066) 0.053 (0.044) 3.6
Patient 1.25 (0.18) 1.26 (0.17) 0.93 −0.001 (0.065) 0.052 (0.039) 4.2

Velocity (m/s)
Healthy 1.34 (0.37) 1.35 (0.37) 0.99 −0.013 (0.062) 0.049 (0.041) 3.6
Patient 1.01 (0.24) 1.02 (0.24) 0.98 −0.004 (0.052) 0.041 (0.031) 4.2

Figure 4 visualizes the agreement between both systems regarding both populations in
Bland–Altman diagrams. While the patients cover higher stride times, the bias and distribution
of the errors were not affected by the PD condition. This is also reflected by the corresponding
agreement measures (Table 3).

Figure 4. Bland–Altman diagrams of gait parameters show the difference versus the mean of both
systems for all single strides. The solid line indicates the bias and the dashed lines the limits of
agreement (95% confidence interval of the bias). Highlighted by colors are healthy subjects and the
patient group.
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3.2. Retest Reliability

The single measurement intraclass correlation ICC (2,1) was excellent for stride time (>0.89), stance
time (>0.87), swing time (>0.81) and the stride length (>0.81) in both measurement systems (Table 4).
Gait velocity showed good reliability in the fast and normal walking conditions and fair reliability
for slow walking. When considering the use of multiple measurements (ICC(2,k)), all gait parameters
reach an excellent reliability above 0.79. Both measurement systems exhibit similar high ICCs for all
gait parameters, indicating that both systems can be employed equally well for the determination of
spatio-temporal gait parameters.

Table 4. Overview of the intraclass correlation (ICC) for the spatio-temporal gait parameters for five
healthy subjects (n = 10 legs). Shown are the reliability of a single measurement ICC(2,1) and the
reliability of the average measurement ICC(2,k) with k = 3 repeated (test–retest) measurements.

Sensor System Camera System

ICC(2,1) ICC(2,k) ICC(2,1) ICC(2,k)

Stride time (s)
fast 0.89 0.96 0.91 0.97
normal 0.92 0.97 0.91 0.97
slow 0.94 0.98 0.93 0.98

Stance time (s)
fast 0.87 0.95 0.89 0.96
normal 0.90 0.97 0.92 0.97
slow 0.94 0.98 0.91 0.97

Swing time (s)
fast 0.92 0.97 0.83 0.94
normal 0.92 0.97 0.81 0.93
slow 0.86 0.95 0.88 0.96

Stride length (m)
fast 0.87 0.95 0.87 0.95
normal 0.81 0.93 0.83 0.94
slow 0.87 0.95 0.92 0.97

Velocity (m/s)
fast 0.75 0.90 0.72 0.88
normal 0.78 0.92 0.74 0.89
slow 0.55 0.79 0.55 0.79

4. Discussion

The present study provides evidence that the employed sensor-based gait analysis system is
a promising tool for the assessment of spatio-temporal gait parameters. The results suggest very
good agreement between the sensor-based and the camera-based gait analysis system. Low errors
were observed for stride time, stride length and velocity, while the separation of the stance and swing
phases showed slightly worse results. The spatio-temporal gait parameters measured in this study
are in agreement with the expected parameters determined in literature concerning healthy adults
and patients with PD [40,41], indicating that reasonable gait parameter ranges have been measured.
The bias of the gait parameters was not speed dependent. Only the variance of the bias increased
slightly at higher speeds. Additionally, no systematic magnitude dependent errors were obvious from
the investigation via Bland–Altman diagrams.

The parameters involving spatial information are dependent on accurate foot orientation
estimation and double integration. As the accuracy of the stride length showed very good results,
the employed methods (Euston complementary filter for orientation estimation [32] and direct and
reverse integration for the velocity estimation [33]) are promising algorithms for trajectory estimation
and gait parameter extraction. We obtained with our system similar results compared to other
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sensor-based systems for the assessment of spatio-temporal parameters [18,20,42]. Papi and colleagues
used treadmill walking [18], which could, however, affect the subjects’ gait patterns [43]. Whether
our sensor system and the associated algorithms are independent of overground or treadmill walking
should be assessed in a future study.

The highest errors occurred for stance and swing time. Those phases are separated by the toe-off
gait event, which was defined as the change from plantar flexion to dorsal extension of the foot.
However, as the foot is not a rigid body segment, this assumption may not hold for all strides and
might vary inter-individually, thus potentially leading to a less accurate detection of the toe-off event.

The sensor system’s accuracy did not differ between healthy subjects and patients. Besides disease,
age was a major discriminating factor between the two populations, which should be considered
when interpreting the gait parameters obtained. A major limitation of this study is that only four
PD patients were included (UPDRS-III scores ranged between 14 and 26). For severely impaired
gait, stride segmentation might work less reliably. Deviations from the template due to abnormal
gait waveforms can lead to falsely undetected strides, potentially biasing the results, as only well
detected strides would be considered in subsequent analysis and interpretation of the data. This would
necessitate either adjusted (disease-specific or individualized) templates or other stride segmentation
methodologies. It should thus be evaluated whether severely affected gait can still be assessed using
our system. Future work should focus on the validation of the system specifically for diverse groups
of patients suffering from various diseases.

The results of this study may differ if a larger clinical population with a larger variety in disease
severity or even other diseases had been investigated. An increased heterogeneity in the population
would largely increase the external validity due to higher inter-individual variability in spatio-temporal
gait parameters of patients as observed for PD, osteoarthritis or stroke [44–46]. The patients’ gait in
this study was not severely impaired. The gait parameters were significantly different from the healthy
population (i.e., significantly longer stride times and smaller steps). However, the ranges covered did
not differ largely.

Slightly lower correlation coefficients between the measurement systems were observed for the
gait of patients. It must be noted, though, that the number of strides contributing to the analysis is
unbalanced, as only four patients contributed to the analysis and patients only represented about
one-tenth of all strides performed.

Generally, test–retest reliability over the three measurement sessions was excellent. The range
of ICC values as compared to other sensor-based systems was similar [11–13]. Only the estimation
of gait velocity at slow walking was worse in comparison to other gait parameters and other studies.
It has to be noted, that only five subjects of this study contributed to the estimation of the test–retest
reliability, which could limit the validity of the reliability measure. The reliability results were consistent
between the sensor-based and the camera-based systems, indicating that both systems could be used
interchangeably for instrumented gait analysis. The sensor-based system thus presents an efficient
method to acquire accurate gait parameters.

The prerequisite for the assessment of test–retest reliability is the temporal stability of gait
parameters over several measurement sessions. A low reliability might be due to measurement errors
or individual gait pattern changes over time. However, we observed a high reliability measure,
indicating that the measurement system worked consistently well and the regarded parameters were
temporally stable. The consistently lower ICCs for velocity in both measurement systems might
indicate that velocity was an unstable underlying parameter.

Reliability was only assessed for healthy adults. The assumption of stability of underlying
parameters renders the evaluation of retest reliability difficult in many clinical populations, as the
clinical symptoms of patients suffering from gait disorders may vary over several assessment sessions.
More gait data of healthy subjects and of patients should be incorporated into retest reliability
assessment in future work.
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Besides temporal stability of the gait patterns exhibited by the participants, the correct
reattachment of the sensors to the body poses a potential error source regarding test–retest reliability.
We attached the sensors using a non-removable sensor mount that was rigidly attached to the shoe.
Thus, the same sensor position was assured in each retest measurement.

The laboratory like environment allowed full control over the study protocol and a supervised
acquisition of gait. However, this constraint to a laboratory environment might affect gait [7] and
lower the external validity of the results obtained in our study, as stride detection and the accuracy of
gait parameters might be affected in unsupervised free living environments due to a higher variability
of activities.

Only straight walking was evaluated in this study as the laboratory environment and the limitation
of the field of view of the reference system constrained the captured movements. No turnings or other
free living movements were assessed, which should be considered in future studies in order to assess
the accuracy in less constrained movement situations.

The validity of the markerless motion capture system used in our study has been assessed in
previous studies, where good agreement with marker-based motion analysis systems was shown.
Especially, sagittal plane movements could be accurately assessed while movements in the transversal
plane could not be measured equally well [47,48]. Other markerless motion capture system have also
shown good agreement compared to marker-based motion capture systems [49,50], allowing the use of
those systems as reference systems. A general advantage of markerless motion capture systems is that
no errors due to marker misplacement occur, which is a relevant error source in marker-based motion
capture systems [51,52]. Additionally to previous validation studies, the markerless video tracking
system exhibited a high test–retest reliability in the assessment of the investigated spatio-temporal gait
parameters in our study. Furthermore, the absence of markers allows the complementary use of both
camera- and sensor- based gait assessment to enhance the quality of data in semi-supervised scenarios.

Synchronization of hardware was only assured in order to correspond the spatio-temporal
parameters between the camera and the sensor system. Future work should incorporate an additional
automatic synchronization between the two sensors at the feet, so that gait parameters such as double
limb support and other phase information that depend on both legs can be calculated and evaluated
with respect to accuracy. Additionally, other gait parameters, which could potentially yield insight into
differences between healthy and pathological gait, should be implemented and assessed in the future.

Body-worn sensor systems in general still have some drawbacks as compared to stationary
movement analysis systems. Obtaining kinematic information of sensor-based systems is challenging
due to drift effects and inertial frame alignment [6]. Stationary systems are still considered gold
standard systems, especially in biomechanical studies for the analysis of inverse kinematics and kinetics.
Therefore, the most suitable movement analysis system should be chosen based on the application.

5. Conclusions

In summary, the sensor-based system presented in this study has great potential for the assessment
of spatio-temporal gait parameters of healthy subjects and mildly affected gait of patients with PD.
The possibility to quickly analyze a large number of steps that contribute to clinical decision making
or treatment evaluation is an advantage compared to traditional motion capture laboratories. Given a
validation in an unsupervised environment, this gait analysis system could potentially be used for
unsupervised gait analysis in applications such as therapy monitoring and treatment evaluation in
the future.
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