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Abstract: It is well known that fibers improve the performance of cementitious composites by acting
as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests.
The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix
interface. However, such a relation varies significantly with the fiber inclination angle. In the current
work, we establish a numerical model to simulate the entire pullout process by explicitly representing
the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed
with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the
interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional
contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the
loading direction, then validated against experimental results for steel fibers oriented at 30◦ and 60◦.
Parametric studies are then performed to explore the influences of both material properties (fiber yield
strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment
length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout
load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given
angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty
lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.
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1. Introduction

Since conventional concrete tends to fail in a brittle manner under excessive loading, fibers are
often added to improve its ductility and durability. Typical examples of high-performance
fiber-reinforced cement-based composites are slurry infiltrated fiber concrete (SIFCON) [1–3],
engineered cement composites (ECC) [4–6], steel fiber-reinforced self-compacting concrete [7,8]
or high performance concrete [9], as well as ultra-high toughness cementitious composites [10].
The effectiveness of the given type of fibers, steel fibers in particular, is often assessed through a
pullout test, in which the force required to pull a fiber out of the hardened concrete is measured.
The transmission of this force is achieved through the interfacial bond, defined as the shear stress at
the interface between the fiber and the surrounding matrix [7,11–13]. In order to capture the interface
failure, the stress criterion [14,15] or the energy criterion [16–18], as well as cohesive approaches
where bond stress is determined by the relative slip between the fiber and matrix [12,16,19–21] have
been adopted.

Naaman et al. [12] pointed out that aligned fibers (i.e., load is applied at the fiber longitudinal
direction) exhibit two types of shear bonds at the interface: elastic and frictional. When the elastic shear
stress at the interface exceeds the bond strength of the interface, the bond becomes frictional in nature.
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This means that the bond-broken process was considered abrupt, not gradual. Based on this hypothesis,
Naaman et al. [12] developed a fundamental study of the bond in fiber-reinforced cement composites,
as well as the relationship between pullout curves and bond shear stress vs. slip curves. In their
analysis, a complete pullout curve was analytically derived from an assumed bond-slip relationship,
and the dual problem in which the bond-slip relationship was obtained from an experimental pullout
curve was solved. Furthermore, they related the frictional behavior of the interface by shrink-fit and
fiber-matrix misfit theory. Other examples of aligned fibers can be found in [22,23]. For instance,
by focusing on the interfacial properties, Chanvillard [22] developed a micro-mechanical model to
account for the different phenomena observed in a non-straight fiber. Ellis et al. [23] conducted the
simulation of a single fiber taking into account the fiber morphology. Even though good agreement
was obtained, only aligned fibers were considered in these two models.

When fibers are randomly distributed, however, besides bond strength and friction along the
interface, additional phenomena, such as fiber bending, matrix spalling and local friction effects,
are involved [24–27]. Furthermore, the contributions of these micro-mechanisms are dependent on
the fiber inclination angle and the fiber material properties [13,18,24–26,28,29]. The contribution of
fiber bending increases with inclination angle. The fiber curvature also plays an important role in the
distribution of pressure against the surrounding matrix. Due to the local curvature of the fiber and
residual stress at the interface, the matrix tends to crack and spall [24,26,29]. This has a direct impact
on the effective embedment length and deformation within the fiber. Moreover, snubbing friction
near the fiber exit point can increase the pull-out resistance [24]. Considerable efforts have been put
into modeling the mentioned phenomena involved in the pullout process of inclined fibers. Some
models considered the bending mechanism of inclined fibers while ignoring the matrix spalling. For
example, Mortons and Groves [30] employed an elementary beam theory to calculate the force needed
to produce a plastic hinge in the fiber as it is withdrawn from the matrix. In this way, the magnitude of
the additional pull-out force due to fiber inclination was accounted for. The model reproduced well the
experimental observations for lower inclination angles, but failed to do so for steeper ones. Li et al. [24]
assumed an exponential increase of the pullout load with fiber orientation to capture the maximum
pullout load; however, detailed information of the entire pullout process was omitted. By treating
the fiber as a beam on an elastic foundation with variable stiffness and the possibility of spalling,
Leung and Li [18] developed a micro-mechanical model to analyze the coupled fiber bending-matrix
spalling mechanism and to determine crack bridging stress in random fiber-reinforced brittle matrix
composites. Afterwards, the model was extended to ductile fibers [31]. Nevertheless, friction was left
out of the picture. More comprehensive models, like that of Cailleux et al. [29] and Fantilli et al. [20],
involve considerable parameters, which can only be estimated through pullout tests of aligned, as well
as inclined fibers. In addition, tedious numerical iterative procedures are required.

In spite of the above models, detailed simulations to consider all of the aforementioned
phenomena have been seldom conducted to explicitly model the entire pullout process for fibers
at an arbitrary angle and considering both fiber bending and matrix spalling. In the current work,
we endeavor to do so. Cohesive models capable of representing mixed-mode fracture and Coulomb’s
friction are employed to simulate the interface between fiber and matrix: both the de-bonding and
frictional phases. In addition, fiber bending and matrix spalling are taken into account naturally thanks
to the explicit representation of the fiber, the matrix and the interface in between. The rest of the
paper is organized as follows. The interface bond characteristics and matrix spalling are presented in
Section 2. Model calibration and validation are given in Section 3. Numerical results and parametric
studies are depicted in Sections 4 and 5. Finally, relevant conclusions are drawn in Section 6.

2. Bond Characterization and Matrix Spalling

In this section, two essential features that determine the pullout response of a fiber with arbitrary
orientation are explained in detail; namely bond characterization and the quantification of matrix
spalling. The former deals with the identification of the distinct mechanisms behind interface bond
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deterioration and friction from pullout tests of both aligned and inclined fibers. The latter tackles the
matrix failure near the fiber exit point when an inclined fiber is pulled out.

2.1. Interface Bond Characterization

The shear stress vs. slip relationship is considered to be a constitutive property of the interface.
Its characterization is of primary importance for predicting both the mechanical and fracture properties
of fiber-reinforced composites. Naaman et al. [11] attributed the presence and combination of distinct
components to the complex nature of the bond: physical and chemical adhesion, the mechanical effect
of deformed or hooked fibers, the entanglement of fibers and friction, which is greatly influenced by
confinement. In the current work, we concentrate on the case of a single smooth straight fiber being
pulled out from a cementitious matrix. Consequently, only the interface adhesion and friction are dealt
with. By fitting with the experimental data of Leung and Shapiro [26], the contribution of internal
friction to interface strength will be identified and quantified. It needs to be emphasized that the same
methodology can be applied for hooked or deformed steel fibers with additional efforts to represent
the detailed fiber geometry.

Either for an aligned fiber or an inclined one, there exists certain frictional resistance after
debonding when being pulled out. This friction is mainly dominated by the surface roughness,
and it is often assumed to be constant regardless of the fiber orientation. This component is defined as
internal friction, τf (s), which is a function of the slip displacement, s. As for inclined fibers, however,
the mechanisms are quite different. Pullout load can be decomposed into a parallel force and a
perpendicular one. The former pulls the fiber out, while the latter bends the fiber and changes its
direction during the pullout process. In addition, due to the non-uniform compression at the interface,
the brittle matrix may spall, and the fiber embedment length is reduced.

In order to take into consideration the above phenomena, we propose a generic constitutive law
that has three constituents to govern the interface deterioration process as follows:

τ(θ, s) = τb(s) + τf (s) + µ p(θ) (1)

where µ is Coulomb’s friction coefficient, θ is the fiber inclination angle with respect to the external load
direction, whereas p(θ) is the compressive stress as a function of θ. The first term, τb(s), illustrates the
interfacial bond relation due to internal physical and chemical cohesion; it is often a decaying function
of the slip displacement, s. In addition, τb(s) is cohesive in nature; thus, it can be modeled through
cohesive elements [32,33] with Mode-II fracture capacity. The second term, τf (s), is a contribution
from internal friction, which resists the motion between the fiber and the matrix; it can be constant or
decreasing; see Figure 1. The third term gives the shear stress due to dry friction, which plays a role
only when the fiber is oriented at a non-zero angle with respect to the load direction.

In the current work, the bond stress is assumed to be linear-decreasing with respect to s, whereas
internal friction is assumed to be constant; namely:

τb(s) = (τmax − τfc)

(
1− s

sbc

)
, 0 ≤ s ≤ sbc (2)

τf (s) = τfc (3)

where τmax is the maximum shear stress resisted at the interface; it covers the effect of both the internal
bond and internal friction. sbc is the critical slip displacement, when the bond is completely broken.
τfc is the internal frictional resistance, which is a property of the interface.

The constitutive law encompassed in Equations (2) and (3) highlights a gradual failure at the
interface; see Figure 1. This, on the one hand, differs from the abrupt bond failure assumed by
Naanman et al. [12]; on the other hand, it appears particularly important, since in most practical fiber
applications, the slip displacement is less than 1 mm; see Yu et al. [34]. When working in a corrosive
environment, the maximum allowed crack opening in steel fiber-reinforced composites is around
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0.3 mm. This makes it especially important to be able to capture the detailed failure process at small
slip values.
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Figure 1. Bond stress vs. relative slip at the interface: the contribution of friction.

2.2. Matrix Spalling

During the pullout process of inclined fibers, due to the local curvature and stretching of the fiber
segment at the free end, matrix spalling is inevitable [24,26,29]. Detailed modeling of the spalling
process is not an easy task. Since the deterioration process occurs within a narrow band near the
interface, excessive mesh distortion often leads to convergence problems and, thus, impedes the
further modeling of the entire pullout process. Consequently, simplifications are often assumed, so that
the spalling part is taken off from the numerical representation, once the matrix tensile strength is
reached [27,29,35,36]. The length of the eroded matrix along the fiber direction is the so-called spalling
length, denoted as Lsp by Laranjeira et al. [35]. A simplified failure criterion was adopted in [35],
i.e., if the spalling force imposed by fiber curvature is larger than the resistance provided by the matrix
at the cracked surface, the matrix will spall. Accordingly, an estimated length of the spalled matrix can
be obtained as follows:

a L2
sp + b Lsp + c = 0 (4)

where:

a =

√
2

sin θ
+

cos θ

sin2 θ
, b =

d f

sin θ
, c = −Pmax sin θ

ft
. (5)

In the above expressions, d f stands for the fiber diameter, θ is the inclination angle, Pmax is the
peak pullout load of an aligned fiber, whereas ft is the tensile strength of the matrix. The estimated
values from Equation (4) closely match the ones measured through scanning electron microscopy
(SEM) by Leung and Shapiro [26].

In the current work, Equation (4) is adopted as a first approximation to represent the matrix wedge,
which is to be spalled off later on. A line of cohesive elements connects the wedge to the main part of
the matrix. Trial runs are performed to determine the moment at which the matrix wedge should be
deactivated. From then on, the elements within the matrix wedge cease to contribute to the overall
stiffness. It bears emphasis that such a treatment is only to save computational time without detriment
to the modeled phenomenon, since the first principal stresses within the matrix are checked, and the
spalled length is adjusted if necessary, to ensure that the matrix would not present hyper-strength.

3. Finite Element Methodology: Model Calibration and Validation

As mentioned before, the objective is to explicitly model the matrix, the fiber and the interface in
between. In this section, a 2D setting, as shown in Figure 2a, is chosen. Both the fiber and the matrix are
represented with four-node iso-parametric elements (K-L-M-N and G-H-I-J), whereas the interface is
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discretized into pairs of two-node line segments (I-J and K-L). The constitutive behavior of the interface
is governed by a cohesive law, as shown in Figure 2b. The initial ascending part is aimed at eliminating
the numerical instability, which can be caused by near-zero slip displacements derived from machine
error. Consequently, the zero-damage is set for a small slip displacement, s0, when the bond strength,
τc, is attained; whereas the complete damage is reached for the critical slip displacement, sc, beyond
which, only frictional forces exist at the interface. Additionally implemented is a pair of contact-target
elements (I-J and K-L) superposed at the same location as the interface elements, so that when the
interface is under compression, no penetration should occur.
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by the matrix at the cracked surface, the matrix will spall. An estimated length of the spalled matrix
can be obtained according to the work of Laranjeira et al. [34] as follows:
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Figure 2. (a) A 2D interface element I-J-K-L formed between two four-node solid elements G-H-I-J
and K-L-M-N, where s and w are the tangential and normal displacement jumps.
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a L2
sp + b Lsp + c = 0 (5)

where
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p
2

sin q
+

cos q

sin2 q
, b =

d f

sin q
, c = �Pmax sin q

ft
(6)
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Figure 2. (a) A 2D interface element I-J-K-L formed between two four-node solid elements G-H-I-J
and K-L-M-N, where s and w are the tangential and normal displacement jumps, and n is the normal
direction of the two line segments; (b) the bond-slip law (shown for a linear-decreasing case).

The above configuration is implemented in the commercial software ANSYS 12.0, using its APDL
programming language. Regarding the constitutive laws, linear elasticity for the matrix and bilinear
plasticity with isotropic hardening for steel fiber are adopted, respectively.

3.1. Experimental Setup of Leung and Shapiro, 1999

In order to assess the effect of fiber yield strength on reinforcement efficiency in terms of
maximum crack bridging force and total energy absorption, Leung and Shapiro [26] carried out
pullout tests for steel fibers of different yield strengths and inclination angles at 0◦, 30◦ or 60◦.
All of the fibers are 0.5 mm in diameter and 22 mm in length. The pullout specimens are blocks
of 25.4 mm× 12.7 mm × 9.5 mm in size, with an effective fiber length (equal to the embedment length
in this case), L f , of 10 mm. The material parameters for the matrix, the fiber and the interface are
given in Table 1, whereas the yield and tensile strengths of the four types of fibers are listed in Table 2.
Additionally listed in Table 2 is the critical fiber length, i.e., the maximum embedded length for a fiber
to be pulled out from a matrix without rupture [24]. It is related to the maximum shear stress, τmax,
fiber tensile strength, fr, fiber cross-section, A f , and perimeter, p f , as follows

Lc =
A f fr

p f τmax
=

(π d2
f /4) fr

π d f τmax
=

d f fr

4 τmax
. (6)

It needs to be pointed out that this estimation is for aligned fibers only; in the case of inclined
ones, this length is considerably smaller due to the contribution of fiber bending.
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Table 1. Material parameters for the matrix and the fiber given in [26].

ρ E ν fc ft
(kg/m3) (GPa) - (MPa) (MPa)

Matrix 2100 30 0.20 36.5 ± 2.5 fc/12 (estimated)
Steel fiber 7800 200 0.33 - -

Table 2. Yield and tensile strength of the four types of fibers tested in [26]; the corresponding Lc is
listed for a diameter of 0.5 mm, where (1) and (2) are calculated using the tensile strength, fr, and the
yield strength, fy, respectively.

Fiber Type 1 2 3 4

fy (MPa) 275 469 635 954
fr (MPa) - 783 847 1023

(1)Lc (mm) 12.7 21.7 29.4 44.2
(2)Lc (mm) - 36.3 39.2 47.4

3.2. Identification of the Fiber-Matrix Interface Properties

In order to extract the interface properties from experimental pullout curves, we first introduce
the concept of apparent interfacial shear stress, which is defined as:

τ∗ =
1
Le

∫ Le

0
τ(s)ds (7)

where τ(s) is the actual bond stress distribution at the interface and Le is the initial embedment length,
the value of which is equal to L f .

Assuming the fiber-matrix interface property is uniform, the maximum pullout load and peak
frictional load are respectively calculated as:

Pmax = π d f Le τmax, Pf = π d f Le τfc . (8)

The values for Pmax and Pf are determined from the pullout response of aligned fibers, as shown
in Figure 3. Note that the values for Pmax and Pf are averaged for the four types of fibers listed in
Table 2 to obtain those of τmax and τfc , as well as their standard deviations in Table 3. The critical slip
for interfacial bond, sbc , 0.3 mm, is determined through trial and error, so that the first decaying branch
of the numerical pullout responses, as demonstrated in Figure 3, should fall within the experimental
range. As regards the friction coefficient given in Table 3, it is estimated according to the experimental
results of Chanvillard [22], which was also adopted by Laranjeira et al. [27].
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Figure 3. Experimental range (light blue lines) for pullout curves for aligned fiber Type 2 (yield strength
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and the transitional pullout forces.
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Table 3. Extracted parameters of the fiber-matrix interface from the experimental data of Leung and
Shapiro [26].

τmax τfc sbc µ

(MPa) (MPa) (mm) -

2.7 ± 0.1 0.5 ± 0.1 0.3 0.60

3.3. Numerical Model

The in-plane dimensions and boundary conditions to simulate the pullout tests performed by
Leung and Shapiro [26] are illustrated in Figure 3. Note that within a two-dimensional plain stress
framework, the fiber thickness, Tf , is calculated through Equation (9) so that the contact area at the
interface is the same as that of the original one. In the same way, the fiber height, H f , is determined
via Equation (10) so that the moment of inertia of the original fiber is the same. For the case of a fiber
diameter of 0.5 mm, Tf and H f are computed as 0.785 and 0.36 mm, respectively.

Tf =
π d f L f

2 L f
(9)

H f =

(
π d4

f /64

Tf /12

)1/3

(10)

Additional described in Figure 4 are the boundary conditions imposed. Vertical displacements
are prevented on the top and bottom sides, whereas horizontal movements are impeded on the left.
The right end of the fiber is fixed in the vertical direction so that only horizontal movement is permitted.
Note that the same boundary conditions are imposed for inclined fibers. The pulling process is carried
out with intervals of 0.001 mm in the horizontal direction until 0.3 mm, followed with increments of
0.01 mm until the end.

 

30º 60º 

10mm 

12.7mm 

25.4mm 

0.36mm 

Figure 4. In-plane dimensions and boundary conditions (the same for all cases, shown only for aligned
fibers) for the pullout tests performed by Leung and Shapiro [26], with fiber inclination angles of 0◦,
30◦ and 60◦.

3.4. Mesh Description

A typical mesh and detailed element distribution around the fiber for the inclination angle of
30◦ are demonstrated in Figure 5. Note that the right end of the fiber leans on a matrix wedge, which
will spall later on. For this particular case, the matrix and the fiber consist of 2198 and 154 four-node
solid elements, respectively, whereas 289 two-node contact pairs are placed at the interface. The mesh
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sensitivity analysis performed to achieve a balance between the computational efficiency and accuracy
is going to be presented in Section 4.

10 
 

worth noting that this numerical model is mesh sensitive. To specify, contact is a 

highly nonlinear problem so the mesh density will influence the efficiency of 

calculation. Moreover, a coarse mesh will lead to higher stiffness of elements thus 

causing larger pulling forces. After trial and error (discussed later), this mesh is the 

overall best one to compromise between the computational efficiency and accuracy.  

 

Figure 3. Meshing 

On the other hand, the effect of matrix spalling should be investigated during the 

simulation of inclined fibre pullout. As crack grows, increasing bending of the 

debonded segments of the fibre occurs and the most superficial pieces of matrix 

wedge tend to spall off. Some literatures provided methods to calculate the spalled 

length (Brandt (1985), Laranjeira (2010). After geometry and dimensions of spalled 

wedge is determined, this wedge can be established as a component before calculation. 

Furthermore, ANSYS can deactivate specific elements. After being killed, these 

elements contribute near-zero stiffnesses to the overall stiffness matrix and the 

solution-dependent state variables (such as stress, plastic strain, creep strain, etc.) are 

Figure 5. Typical mesh (left), zoomed in around the fiber (top right) and discretisation of the fiber
(bottom right).

4. Numerical Results and Discussion

In this section, mesh sensitivity analysis is first conducted along the fiber transverse and
longitudinal directions in order to determine the particular mesh to be employed for further studies.
Second, the entire pullout load vs. slip displacement curves are extracted to compare with those
obtained experimentally by Leung and Shapiro [26]. Third, the von Mises stress and the first principal
stress evolutions are explored both for the fiber and the matrix. Finally, the pullout work is obtained.

4.1. Mesh Sensitivity Analysis

The mesh sensitivity analysis is carried out for the inclination angle of 30◦ and the yield strength
of 635 MPa (Type 3 in Table 2). Two kinds of mesh sensitivities are studied: the refinement in the
transverse direction and along the axial direction of the fiber. The former is to check the capacity of
the mesh in the fiber to bear bending moments, whereas the latter is to assess if the discretisation is
fine enough to resolve the slip length. In the transverse direction, the fiber is split into one, two or
four divisions (see Figure 6a); the corresponding load-displacement curves are plotted in Figure 6b.
On the one hand, convergence is achieved as the mesh is refined. On the other hand, slight differences
among the three curves are perceivable. This means that the mesh sensitivity in the transversal
direction is rather modest. Meshes of two divisions across the transverse direction are employed for
further studies.

Along the longitudinal direction of the fiber, four different element sizes are considered, 0.303 mm,
0.222 mm, 0.135 mm and 0.068 mm, which lead to 33, 45, 74 and 148 divisions along the 10-mm
length (see Figure 7a); the corresponding pullout load vs. slip end displacement curves are depicted in
Figure 7b. Note that as the mesh gets finer, the response is smoother, and convergence is achieved.
Specifically, the same peak load is obtained for the two finer meshes. In order to keep a balance
between the computational efficiency and accuracy of the results sought, the mesh size of 0.135 mm is
selected for further studies. It needs to be emphasized that the mesh sensitivity in the longitudinal
direction is more pronounced than that in the transverse direction. In addition, from Figure 7b, it is
observed that the maximum pullout load was achieved at a slip displacement of 0.07 mm, which
agrees with the statement of Morton and Groves [30], who claimed that this value should be of the
order of, but less than half, a fiber diameter.
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Figure 6. (a) Different numbers of divisions in the fiber transverse direction (one, two and four); and
(b) the corresponding pullout load vs. displacement responses.
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4.2. Validation against Experimental Pullout Load vs. Displacement Response

In order to verify the previously developed methodology, we compare the entire pullout curves
with their experimental counterparts given by Leung and Shapiro [26]. This comparison is displayed in
Figure 8 for fibers inclined at 30◦ and 60◦ with four different yield strengths given in Table 2. Note that
both the peak loads and the general tendency are well captured; the numerical curves fall within the
experimental range; in particular, the rising tail at the end of each pullout process is also reproduced.
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Figure 8. Numerical-experimental [26] comparison: complete pullout curves for the four yield strengths
given in Table 2; the fiber is inclined either at 30◦ (left column) or 60◦ (right column).

It needs to be pointed out that as the fiber yield strength increases, the numerical pullout curves
exhibit more oscillations. This means that the relative slip between fiber and matrix is more unstable;
thus, finer meshes are needed to reduce the noise observed in those curves for fibers of higher strength.

4.3. Stress Evolution within the Fiber

Taking Type 2 fiber (yield strength 469 MPa) with an inclination angle of 30◦ as an example,
the von Mises stress evolutions for several characteristic points within the fiber are examined. These
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points are the pullout end A, the embedded end D and two intermediate ones B (location of the matrix
spalling) and C, as depicted in Figure 9. Note that at Point A, the first peak stress was obtained when
the pullout load reached its maximum due to interface debonding. Then, after a slight decrease, this
stress increased again until yielding at the slip end displacement of 3 mm. Similar peaks are observed
for B and C at slip displacement of 0.3 mm and a second peak upon yielding at 2 mm for Point B and
5 mm for Point C, respectively. The second peak is attributed to the stress concentration due to the
cusp formed by matrix spalling. This is the snubbing effect described by Li et al. [24].
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Figure 9. Four positions (A, B, C and D) within the fiber during pullout and the corresponding
von Mises stress evolutions for Type 2 fibers (fiber yield strength 469 MPa).

In Figures 10 and 11, the first principal stress distributions in the fiber at different loading stages are
plotted for Type 2 fiber inclined at 30◦ and Type 3 fiber inclined at 60◦, respectively. Note that during the
pullout process, there are stress gradients both in the transversal direction and along the longitudinal
one, which indicates a clear bending contribution. Stress concentration is also observed at the fiber exit
point. In addition, the maximum tensile stress is always inferior to the fiber tensile strength. This means
that the fiber was pulled out, but not broken. Furthermore, increasing separation is observed at the
upper interface as the pullout process advances; this requires a numerical model that is able to capture
a mixed-mode interface failure to correctly reproduce the experimentally-observed phenomenon.

There is an interesting result that goes against our intuition, which is that the stress along the fiber
should be compressive on the concave surface and tensile on the convex one. However, the opposite is
observed particularly in Figure 11. This is because a fiber segment bends the most right before passing
the cusp; then, it is straightened by the pulling force, leading to compression on the convex part and
tension on the concave part. Additionally observed from Figure 11 is that the length of the red region
in the fiber is almost constant since the segment on the right gets unloaded as the left part is being
stressed. This further demonstrates the stable deterioration of the interface during pullout. Only when
a small fragment of the fiber is remaining in the matrix block, it serves as a hook, which grips the
matrix tightly due to its relatively large stiffness. This leads to the tail-rise phenomenon, which is
increasingly obvious when the yield strength is larger, since a stronger grip is formed.
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Figure 10. The first principal stress evolution for pullout displacement from 0.01 mm to 8.20 mm for a
fiber inclination of 30◦ and a yield strength of 469 MPa (Type 2 in Table 2).
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Figure 11. The first principal stress evolution for pullout displacement from 0.3 mm to 7.8 mm for a
fiber inclination of 60◦ and a yield strength of 635 MPa (Type 3 in Table 2).

4.4. Stress Evolution in the Matrix

For the matrix, we are more concerned with the tensile stress distribution to ensure that no
fracture should take place where matrix spalling is not expected. Three representative points, E, F
and G (see Figure 12), are selected to display the first principal stress evolution in the matrix. Point E
is where the matrix is expected to spall. Point G is the location where the fiber is anchored, whereas
F is the point in the matrix close to the fiber center. Since the tensile strength was not measured,
we estimate it to be 1/12 of the compressive strength, which is 3.0 MPa, as shown in Table 1. Note
that at Point E, there is relatively large stress oscillation during the pullout process. This indicates,
on the one hand, the stressing-relaxing cycle endured by the matrix. On the other hand, it can be
attributed to the fact that the spalled matrix is assigned with a zero stiffness at the moment of spalling,
whereas the real failure process is gradual. The stress evolution curves at Points F and G, assimilate
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those of global pullout curves in Figure 8, each with a different amplitude. Furthermore, it is noted
from Figure 12 that the maximum tensile stress due to the axial pullout of the fiber and bending load
occurs at the close region of the fiber exit point. This agrees with the assumption adopted by Zhang
and Li [37] in their study on the effect of inclination angle on fiber rupture load in fiber-reinforced
cementitious composites.
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Figure 12. Three positions (E, F and G) in the matrix and the corresponding first principal stress
evolutions during the pullout process.

4.5. Variation of the Pullout Work with Respect to Fiber Yield Strength

The pullout work is calculated as the area under the load vs. slip displacement curve. In Figure 13,
both experimental and numerical values for fibers inclined at 30◦ and 60◦ are depicted. Note that as a
general trend, the pullout work increases with the increase of fiber yield strength, and such a tendency
is correctly captured by our numerical model.
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Figure 13. Pullout work vs. fiber yield strength.
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5. Parametric Studies

In this section, the influences of both material properties (fiber yield strength, matrix tensile
strength, interface bond) and geometric factors (fiber diameter, embedment length and inclination
angle) on the overall pullout behavior, in particular on the maximum pullout load, are studied.

5.1. Interface-Related Parameters

The influence of the bond strength, the critical slip displacement, the internal frictional resistance
and the friction coefficient is herein explored.

5.1.1. Interfacial Bond Strength and Internal Frictional Resistance

As described above, the interfacial bond between fiber and matrix is mainly composed of two
parts, internal frictional resistance and bond strength. Simulations focusing on varying τmax and τfc

separately for fibers inclined at 0◦, 15◦, 30◦ and 60◦ are carried out. The obtained pullout curves
are demonstrated in Figure 14, where three different values, 1.3, 2.7 and 5.4 MPa for τmax, 0.25, 0.50
and 1.0 MPa for τfc , are considered. It is noted that τmax has a dominant influence at the pre-peak
stage (when the slip-end displacement is less than 0.3 mm), in particular over the peak load, whereas
τfc plays a more important role during the post-peak phase. In addition, the total slip displacement
decreases as the inclination angle increases. This means the critical embedment length decreases with
the inclination angle.

It needs to be pointed out that the highest peak load is obtained when the inclination angle is at
15◦ for all cases. This is confirmed in Section 5.2.5, in Table 5, where θmax falls between 12◦ and 15◦ for
different values of fiber yield strength.
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Figure 14. Pullout curves for: (a) τmax at 1.3, 2.7 and 5.4 MPa; τfc is kept at 0.5 MPa; and (b) τfc

at 0.25, 0.50 and 1.0 MPa, whereas τmax is fixed at 2.7 MPa. Fibers are inclined at 0◦, 15◦, 30◦ and
60◦, respectively.

5.1.2. Critical Slip for Interfacial Bond

As mentioned before, the critical slip displacement, sbc , denotes the maximum value for which
interfacial bonding due to internal physical and chemical cohesion is active. Three different values,
0.15, 0.30 and 0.60 mm, of sbc are selected to demonstrate such an effect for fibers inclined at 0◦, 15◦,
30◦ and 60◦, respectively, in Figure 15. Note that the difference of the pullout curves is only perceived
at the first decaying branch; larger sbc leads to a less steep drop from the maximum pullout load.
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Figure 15. Pullout curves for sbc equal to 0.15, 0.3 or 0.6 mm, with a fiber inclinations of 0◦, 15◦, 30◦

and 60◦, respectively.
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5.1.3. Friction Coefficient

As mentioned before, the interfacial friction consists of an internal friction and a
pressure-dominated one due to fiber inclination (dry friction). The former is considered as a property
of the interface, whereas the effect of the latter is only revealed when the fiber is inclined to the load
direction. Four inclination angles (0◦, 15◦, 30◦ and 60◦) and three different values of the friction
coefficient (0.3, 0.6 and 0.9) are simulated. The obtained pullout curves are demonstrated in Figure 16.
Note that a higher friction coefficient leads to a load increment during the entire pullout process,
and this effect is more pronounced for larger slip displacements. This evolution is attributable to the
snubbing effect around the matrix cusp and corresponds well with the results of Cailleux [29].
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Figure 16. Pullout curves for µ equal to 0.3, 0.6 or 0.9, with fiber inclinations of 0◦, 15◦, 30◦ and
60◦, respectively.

5.2. Fiber-Related Parameters

Parameters related to fiber, such as the yield strength, fiber diameter and length and the inclination
angle, all play an important role in the pullout curves. Herein, the influence of each parameter is
studied while keeping the remaining ones unchanged.

5.2.1. Fiber Yield Strength

The influence of fiber yield strength has been experimentally demonstrated by Leung and
Shapiro [26] and our numerical results in Figure 8. It is expected that when a fiber of the same size and
surface treatment is pulled out, the same amount of energy will be consumed to overcome the interface
bonding and frictional resistance. Furthermore, since the coefficient of friction is mainly dependent
on the surface property, it is assumed constant for the same type of matrix and fiber. Consequently,
the frictional energy will vary little with the fiber yielding strength. However, more energy is needed
to bend the fiber as the yielding stress increases. This is clearly illustrated in Figure 17, where the entire
pullout curves are moved upwards as the fiber yield strength is augmented. An interesting observation
from Figure 17 is that the tail of the curve goes up, which was also seen in the experimental curves of
Leung and Shapiro [26]. When the fiber is nearly pulled out, the short remaining end is rather stiff;
thus, it may rotate as a short rigid cylinder, which subsequently cuts into the matrix. This has been



Materials 2016, 9, 800 17 of 24

explained previously through the first principal stress distribution in Figure 11, where the red areas
represent the regions in heavy tension (nearly yielding), whereas the blue ones stand for the regions
under less tension or compression.
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Figure 17. Pullout load vs. displacement result for fibers of different yield strengths at inclination
angles of 30◦ (left) and 60◦ (right).

5.2.2. Fiber Diameter

The overall pullout response is closely related to the fiber diameter. First, a larger diameter will
lead to a wider contact area between the fiber and the matrix. Consequently, a higher pullout load is
attained. Second, different diameters lead to different moments of inertia of the fiber cross-section;
thus, the dissipated energy will differ. To explore this influence in detail, three values of fiber diameter
(0.25 mm, 0.50 mm, 1.00 mm) with four inclination angles (0◦, 15◦, 30◦ and 60◦) are selected to perform
the numerical pullout simulations. The related parameters are documented in Table 4, whereas the
pullout responses are shown in Figure 18. Additionally given in Table 4 is the aspect ratio, Le/d f ,
which is herein defined as the ratio between the fiber embedment length, Le, and the fiber diameter,
d f . It is commonly accepted that the higher the aspect ratio is, the more efficient is the fiber at
bridging cracks.
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Figure 18. The influence of fiber diameter: apparent shear stress, τ∗, vs. slip end displacement, s, for
fibers of 1.0, 0.50 and 0.25 mm in diameter, inclined at 0◦, 15◦, 30◦ and 60◦, respectively.
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Table 4. Parameters for the case studies on fiber diameter and fiber length.

Le d f Le/d f Tf H f τmax fy Lc
(mm) (mm) - (mm) (mm) (MPa) (MPa) (mm)

10 0.50 20 0.79 0.36 2.7 635 29.4
10 0.25 40 0.39 0.18 2.7 635 14.7
10 1.00 10 1.57 0.72 2.7 635 58.8
4.0 0.50 8 0.79 0.36 2.7 635 29.4
5.0 0.50 10 0.79 0.36 2.7 635 29.4
7.5 0.50 15 0.79 0.36 2.7 635 29.4
10.0 0.50 20 0.79 0.36 2.7 635 29.4
12.5 0.50 25 0.79 0.36 2.7 635 29.4
15.0 0.50 30 0.79 0.36 2.7 635 29.4
17.5 0.50 35 0.79 0.36 2.7 635 29.4

It is observed from Figure 18 that it is more difficult to pull a thicker fiber out. Consequently, more
energy is consumed to pull an inclined thick fiber. Furthermore, the phenomenon of the rising tail
of the pullout response is particularly noticeable for thicker fibers. In addition, the effect of bending
is more pronounced for a thicker fiber, whereas more energy is consumed at the interface for a slim
fiber. This explains the result that a larger peak pullout value is obtained at 30◦ than at 15◦ for the
fiber of 1.0 mm in diameter, whereas the opposite is observed for the fibers of 0.25 mm and 0.5 mm in
diameter. At the same time, it is noted that when a thin fiber is pulled, it may yield or get ruptured
instead of being pulled out. This is the reason that the curve fluctuates around 5-mm-slip in the case of
the 0.25 mm-diameter fiber inclined at 60◦.

5.2.3. Fiber Length

In Figure 19, the pullout responses for fibers of different lengths from 4 mm to 17.5 mm inclined
at 0◦ and 30◦ are illustrated. Since a longer fiber length also means a wider interface area, thus a
higher pullout load is attained. For a more clear representation, the apparent interfacial shear stress
vs. relative slip normalized by the initial embedment length, which is equal to L f , is also shown. It is
observed that, for both aligned and inclined fibers, convergent results are achieved for longer fibers.
This indicates that, when the rest is kept the same, the apparent bond strength coincides with the
real one if the fiber embedment length is relatively large. Otherwise, the interface strength obtained
through the pullout tests will be over-estimated.
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Figure 19. The influence of fiber length: pullout curves (left) and apparent bond stress vs. normalized
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17.5 mm, whereas the diameter is kept at 0.50 mm.
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5.2.4. Fiber Inclination Angle

The effect of the fiber inclination angle on the entire pullout response is explored for six
orientations from 10◦ to 70◦ as demonstrated in Figure 20. Note that peak values for fibers inclined at
10◦ and 20◦ are higher than the rest, whereas the post-peak values during 2 to 7 mm only vary slightly.
This is due to the fact that the pullout force is only a component of the bonding force before de-bonding.
Afterwards, the contribution of fiber bending and friction is increased for all inclination angles.

26 
 

Furthermore, several inclinations (10º, 20º, 30º, 45º, 60º, 70º) are simulated to explore 

the influence of spalling length on the whole curve of pullout load-displacement.  

 

Figure 21. Whole curve of pullout load vs. displacement result of different 

inclinations 

From Figure 21, it could be seen that less inclination leads to smaller peak load. This 

is because the pullout force is just a component of the bonding force before debonding. 

Afterwards, the contribution of fibre bending and friction turns greater for all 

inclinations. The post-peak values during 2-7mm are almost insignificant for all 

inclinations within the variation of 10N while the fibre of 10º is the lowest. From 10º 

to 45º, with the increment of angles, the post-peak value climbs up as the ones for 

larger inclinations of 45º, 60º, 70º stays nearly constant. This means the greater 

bending caused by larger inclination is compromised by matrix spalling.  

The effect of spalled length 

As discussed previously, matrix spalling length is vital while assessing the 

crack-bridging capability of fibres because it will significantly affect the bending 

Figure 20. Numerical pullout load vs. slip displacement curves for inclination angles from 10◦ to 70◦.

5.2.5. The Maximum Pullout Load

To explore the effect of fiber inclination, a spectrum of angles up to 85◦ is simulated by keeping the
fiber, matrix and interface properties constant. It is known that the length of the spalled matrix and the
moment when the matrix spalls both matter in the pullout responses. According to Laranjeira et al. [35],
spalling is considered to take place right after the beginning of fiber debonding, but prior to its full
accomplishment. After some trial runs, this slip displacement is estimated, which is around 0.01 mm.
The spalling length is calculated according to Laranjeira [35], which corresponds well with that of
Leung and Shapiro [26]. Simulations of different fiber yield strengths are carried out, and the obtained
pullout curves are plotted in Figure 21. The fitted function for the maximum pullout load in terms of
fiber inclination angle is given by Equation (11), and the corresponding fitting parameters are listed
in Table 5.

Pmax(θ) = F1 exp

[
−
(

θ − α1

β1

)2
]
+ F2 exp

[
−
(

θ − α2

β2

)2
]

(11)

Table 5. Fitted parameters for the maximum pullout load vs. fiber inclination angle, where θmax is the
angle where the maximum peak load is attained.

Fiber Type F1 F2 α1 α2 β1 β2 θmax
(N) (N) (◦) (◦) (◦) (◦) (◦)

1 15.5 42.0 7.9 26.2 19.7 56.4 12.4
2 18.1 49.4 12.7 26.7 16.2 55.7 15.3
3 20.1 54.2 12.6 27.4 16.0 55.9 15.2
4 33.7 59.0 12.7 33.0 14.6 48.2 15.3



Materials 2016, 9, 800 20 of 24

 

0

20

40

60

80

100

0 20 40 60 80

M
a
x
im

u
m

 p
u

ll
o
u

t 
v
a
lu

e 
 (

N
) 

Inclinations (°)  

 Type 1

 Type 2

 Type 3

 Type 4

Figure 21. Maximum pullout load vs. inclination angle for the four yield strengths given in Table 2
and fitted curves using Equation (11) with parameters given in Table 5.

From Figure 21, when the fiber is inclined at θmax, which is around 15◦, the maximum pullout
load is the largest. After that, the maximum pullout load goes down almost linearly. This differs from
the result of Morton and Groves [30] for a polyester resin matrix. This indicates that the optimum
inclination angle for maximum pullout resistance varies with both fiber and matrix strength, as well as
the interface properties.

5.3. Matrix-Related Parameter: The Tensile Strength

The influence of matrix strength on the fiber pullout responses has been actively studied in the
last three decades [24,38–40]. However, since the change in matrix strength may inevitably lead to
slight [24] or marked [38–40] variation in the interface properties, the experimental observations can
differ significantly. In the current numerical study, we isolate the matrix strength from the rest of
material and geometric parameters to study its effect on the global pullout response. This is carried out
through its direct influence on the matrix spalling length [35]. Taking the fiber with a yield strength of
635 MPa as an example, pullout out responses for three levels of matrix tensile strength (1.5, 3.0 and
6.0 MPa) and fiber inclined at 0◦, 15◦, 30◦ and 60◦ are explored. The corresponding spalling lengths
calculated according to the work of Laranjeira et al. [35] are listed in Table 6. The obtained pullout
curves are plotted in Figure 22. Note that a stronger matrix leads to a shorter spalling length and
results in a higher peak load and a larger amount of absorption energy. However, a small difference is
perceived for slip displacements between 3 mm and 7.5 mm for the fiber inclined at 30◦, whereas more
variations are observed for fibers inclined at 60◦.

Table 6. Spalling length for three levels of matrix tensile strength and fiber at four different
inclination angles.

ft (MPa) 1.5 3.0 6.0

Spalling Length in mm

0◦ 0.00 0.00 0.00
15◦ 0.59 0.41 0.27
30◦ 1.50 1.03 0.71
60◦ 3.31 2.31 1.60
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Figure 22. The influence of matrix tensile strength: pullout curves for matrix tensile strengths of
1.5 MPa, 3.0 MPa and 6.0 MPa; fibers inclined at 0◦, 15◦, 30◦ and 60◦, respectively.

6. Conclusions

We have proposed a numerical model to explicitly reproduce the pullout behavior of a single
fiber embedded within a cement-based matrix. This model takes into consideration the gradual
deterioration of the interface bond, internal and dry friction, as well as matrix spalling. In particular,
a constitutive law, which isolates the contributions of the internal bond, internal friction and dry
friction is formed and validated. Cohesive elements endorsed with mixed-mode fracture capacities are
implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s
friction are placed at the interface to simulate frictional contact. Matrix spalling is modeled through
material erosion to save computational time. The bond-slip behavior is first calibrated through pull-out
curves for fibers aligned with the loading direction, then validated against experimental results carried
out by Leung and Shapiro for steel fibers oriented at 30◦ and 60◦. The influence of fiber yield strength
on the stress distribution within the fiber and the matrix, the effect of the inclination angle, as well as
the matrix spalling length on the pullout response are all explored in detail.

The proposed methodology provides the necessary pull-out curves for a straight fiber oriented
at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials.
The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary
inclination angle. It is equally applicable for hooked or deformed fibers with increased computational
efforts.

In addition, the following specific conclusions can be drawn from the parametric studies:

• Fiber critical length diminishes considerably for larger inclination angles.
• The matrix strength has a dominant influence at the initial stage of pullout, particularly on the

maximum pullout load.
• The inclination angle at which the maximum peak pullout load is obtained differs when fiber,

matrix and interface properties are different.
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Abbreviations

The following abbreviations are used in this manuscript:

A f Fiber cross-section area
d f Fiber diameter
E Elastic modulus
fc Matrix compressive strength
fr Fiber tensile strength
ft Matrix tensile strength
fy Fiber yield strength
H f Modeled fiber height
Lc Critical fiber (embedment) length
Le Fiber embedment length
L f Fiber length
Lsp Matrix spalling length
Pmax Maximum pullout load
Pf Frictional peak load
p(θ) Compressive stress at an inclination angle of θ

s Slip displacement
sbc Critical slip for interfacial bond
Tf Modeled fiber thickness (out-of-plane dimension)
µ Coulomb’s friction coefficient
ν Poisson’s ratio
ρ Material density
θ Fiber inclination angle with respect to the load direction
τ∗ Apparent interfacial shear stress
τ(s, θ) Interfacial shear stress as a function of s and θ

τb(s) Internal bonding as a function of s
τfc Internal frictional resistance
τmax Interfacial shear strength (maximum shear stress)
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