
An optimized convolutional neural network
architecture for lung cancer detection

Cite as: APL Bioeng. 8, 026121 (2024); doi: 10.1063/5.0208520
Submitted: 15 March 2024 . Accepted: 31 May 2024 .
Published Online: 11 June 2024

Sameena Pathan,1 Tanweer Ali,2,a) Sudheesh P G,2 Vasanth Kumar P,2 and Divya Rao1,a)

AFFILIATIONS
1Department of Information and Communication Technology, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal 576104, India
2Department of Electronics and Communication Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal 576104, India

a)Authors to whom correspondence should be addressed: tanweer.ali@manipal.edu and divya.r@manipal.edu

ABSTRACT

Lung cancer, the treacherous malignancy affecting the respiratory system of a human body, has a devastating impact on the health and well-
being of an individual. Due to the lack of automated and noninvasive diagnostic tools, healthcare professionals look forward toward biopsy as
a gold standard for diagnosis. However, biopsy could be traumatizing and expensive process. Additionally, the limited availability of dataset
and inaccuracy in diagnosis is a major drawback experienced by researchers. The objective of the proposed research is to develop an auto-
mated diagnostic tool for screening of lung cancer using optimized hyperparameters such that convolutional neural network (CNN) model
generalizes well for universally obtained computerized tomography (CT) slices of lung pathologies. The aforementioned objective is achieved
in the following ways: (i) Initially, a preprocessing methodology specific to lung CT scans is formulated to avoid the loss of information due
to random image smoothing, and (ii) a sine cosine algorithm optimization algorithm (SCA) is integrated in the CNN model, to optimally
select the tuning parameters of CNN. The error rate is used as an objective function, and the SCA algorithm tries to minimize. The proposed
method successfully achieved an average classification accuracy of 99% in classification of lung scans in normal, benign, and malignant clas-
ses. Further, the generalization ability of the proposed model is tested on unseen dataset, thereby achieving promising results. The quantita-
tive results prove the efficacy of the system to be used by radiologists in a clinical scenario.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0208520

I. INTRODUCTION

Lung cancer occurs due to uncontrolled growth of abnormal cells
in the lungs. It is responsible for the highest number of cancer-related
fatalities globally, among both men and women. According to the
GLOBOCON 2020 report, an estimated 2.2� 106 (11.4%) new lung
cancer cases and 1.8 � 106 lung cancer-related deaths occurred in
2020.1 In India, of all the cancers, lung cancer occupies 5.5% and 7.8%
cancer-related deaths.2 Individuals who are diagnosed with lung cancer
in its early stages have a significantly better chance of surviving for at
least five years compared to those diagnosed in later stages. The 5-year
survival of stage 1 lung cancer is about 65%, while patients with stage 4
is around 5%.3,4 Hence, early detection is crucial for the effective treat-
ment of lung cancer. As of now, medical images are visually scanned
by radiologists and doctors to identify any abnormalities in the human
body. As a result, the manual process of diagnosing diseases using
medical images is intricate, complicated, and time consuming. Figure 1
illustrates the view of the lung cancer as observed through CT images.

The regions highlighted in orange indicate areas of cancerous growth;
as it can be seen from Fig. 1, visual examination depicts similar charac-
teristics between affected and non-affected areas, thereby hindering
the accuracy of diagnosis. Biopsy is the only gold standard to confirm
lung cancer. However, biopsy is an invasive, time consuming, and a
traumatizing process for the patient. Over, the recent year computer
aided diagnostic tools have significantly aided radiologists with a sec-
ond opinion to analyze complicated CT scans for diagnosis of various
pathologies. This research is an attempt to develop a computer aided
decision support system for noninvasively detecting lung cancer at an
earlier stage, with the aim to improve the prognosis and life expectancy
of the patients. As far as diagnosis is concerned, experts believe that
pathologically. The diagnosis of lung cancer can be performed accu-
rately using histological image analysis. Histologically, there are four
different forms of lung cancer. However, each one of them may be
benign, or malignant, depending on the level of severity and onset of
the disease. One of the major term, a pathologist describes after the
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lung biopsy is found to be suspicious, is “carcinoma.” The origin of
such cancer occurs in the cells that line the organs of the human body.
With respect to the lungs, the major regions affected are alveoli and
the bronchi. However, if such cells are found on the morphologically
upper layer, they are termed as in situ or benign cases. Most impor-
tantly, the domain specific features that are being looked for in deter-
mining the lung cancer are cell keratinization, bridging between the
cells, and the formation of squamous pearl. The proposed research
also provides an analysis of the major regions that have significantly
affected the classification accuracy in terms of occlusion maps.

This study presents a novel optimized SCA based CNN model,
which learns the values of the hyperparameters from the lung CT scans
to automatically classify lung CT scans into malignant, benign, and
normal classes. Initially, a noise removal mechanism is introduced to
preprocess the CT images and enhance the features, such that informa-
tion regarding the intricate features is preserved. Further, an optimiza-
tion mechanism is employed to determine the values of the
hyperparameters to test a five-layer based CNNmodel developed from
the training set. Furthermore, the SCA learns the values of the hyper-
parameters by minimizing the error rate function between the pre-
dicted and the actual values of the dataset from the training samples to
achieve the minima. The optimization algorithm has significantly
improved the classification performance of the CNN. To exhibit the
performance validation of the SCA-CNN technique, the IQ-OTH/
NCCD dataset is used in this study.

A. Related work and contributions

Over the recent years, few researchers have carried applied image
analysis techniques for prediction of lung cancer. In Ref. 5, histogram of
oriented gradients (HoG), wavelet transform-based features, local binary
pattern (LBP), scale invariant feature transform (SIFT), and Zernike
Moments were used for developing a DL based model. In Ref. 24, Raza
et al employed data augmentation techniques. In evaluations on varia-
tions of EfficientNet B0 to B4, Lung-EffNet achieved high ROC scores
between 0.97 and 0.99 and accuracy of 99.10% on the lung cancer
dataset.

In Ref. 6, Magdaline et al. proposed using a CNN, attention gate
residual U-net model, and KNN classifier for lung cancer detection.
They utilized the AGResU-Net architecture to divide and identify 1097
CT images. Their approach involved first classifying the CT images

with a CNN, then segmenting tumor regions using AGResU-Net, and
finally determining if the tumor is benign or malignant using a KNN
classifier. In their experiments, the CNN classifier achieved accuracy of
97%, 85%, and 82% on different categories. They found the segmented
tumor outputs and labeled dataset to have equal accuracy. Their results
showed the ability to detect benign and malignant tumors with high
probability and accuracy. Yan et al.7 come up with a technique for
automatic detection of lung cancer from CT scans using convolutional
neural networks (CNNs). They first preprocessed the lung CT images
and fed them into a CNN architecture. They developed a modified
snake optimizer to optimize the CNN structure for best performance.
The model was assessed on the IQ-OTH/NCCD Lung Cancer Dataset.
In comparison with other methods, their proposed approach showed
improved results for lung cancer detection.

In Ref. 8, Mohamed et al. proposed a CNN and hybrid metaheur-
istic approach for lung cancer classification. Initially, a CNN architec-
ture was designed, and its solution vector was computed. The Ebola
optimization search algorithm (EOSA) was then used to find optimal
weights and biases for training the CNNmodel. Once fully trained, the
model achieved 0.9321 accuracy on the IQ-OTH/NCCD dataset. In
Ref. 9, Deepa et al. proposed LCC-Deep-ShrimpNet to classify lung
cancer in CT images. They used the IQ-OTH/NCCD Lung Cancer
Dataset as input. The lung CT images were preprocessed by utilizing a
kernel correlation approach. Bayesian fuzzy clustering was applied to
extract lung nodule regions from the preprocessed scans. The extracted
regions were fed into the Deep-ShrimpNet classifier to represent fea-
tures and categorize the CT scans as malignant, normal, or benign.
Compared to existing methods, their proposed LCC-Deep-ShrimpNet
achieved higher accuracy, lower error rates, and faster computation
times on the dataset.

Nitha and Vinod Chandra10 developed an automated lung cancer
detection framework called ExtRanFS using transfer learning. They
used 1mm thick DICOM formatted CT scans from the IQ-OTH/
NCCD dataset, comprising 80–200 slices at different angles. Their
approach involved an extremely randomized tree classifier for feature
selection, pre-trained VGG16 model for feature extraction, and multi-
layer perceptron classifier for final classification as benign, malignant,
or normal. Their framework achieved 99.09% accuracy, 98.33% sensi-
tivity, and 98.33% F1-score on the dataset. Additionally, few research-
ers have employed transfer learning based approaches. Nigudgi and

FIG. 1. Illustration of lung cancer affected CT images.
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Bhyri11 proposed a transfer learning-based method for lung cancer
detection from CT scans. They used a pre-trained hybrid model com-
prising VGG, GoogleNet, and AlexNet to extract features from the
input images. These features were then classified using a multi-class
support vector machine (SVM). For training and evaluation, they used
real-time CT scans like other deep-learning models. The IQ-OTH/
NCCD dataset containing 1190 normal, benign, and malignant images
was utilized. By splitting the data into various ratios during training
and validation, they evaluated the model’s effectiveness. Their
approach achieved 97% accuracy on lung cancer detection.

Sabzalian et al.12 developed a lung cancer diagnosis system using
an enhanced bidirectional recurrent neural network optimized with an
improved Ebola optimization search algorithm. They performed cer-
tain preprocessing steps before applying the main diagnostic system.

The model was evaluated on the IQ-OTH/NCCD Lung Cancer
Dataset. In comparison with previous published methods, their results
demonstrated the superiority of their proposed approach for accurate
lung cancer diagnosis. In Ref. 13, Prakash et al. proposed an approach
called EESNN-FSOA-LCC to classify lung cancer from CT images
using a search optimization algorithm. As preprocessing, they applied
anisotropic diffusion Kuwahara filtering on the input CT images.
Hesitant fuzzy linguistic bi-objective clustering was used to extract
ROI regions from the preprocessed scans. Features from the ROI seg-
mentations were extracted using a gray level co-occurrence matrix
(GLCM) window adaptive method. These features were classified by
an EESNN classifier into normal, benign, or malignant categories.
Since EESNN lacked optimization for ideal parameters, they developed
a flamingo search optimization algorithm to optimize EESNN for
accurate lung cancer classification. Gowda and Jayachandran14 pro-
posed lung tumor detection using a computer vision-based diagnostic
approach enhanced by machine learning techniques. The main goal of
the proposed method is to create an effective segmentation technique
that will improve the accuracy of the classification of lung tumors. To
achieve this, random region segmentation (RSS) is used for image seg-
mentation, SIFT and GLCM algorithms are applied for feature extrac-
tion, and a triple support vector machine (SVM) is implemented for
the classification of data samples into normal, malignant, or benign.

FIG. 2. Confusion matrices for five folds. First row of each matrix belongs to benign class (c1), second row belongs to malignant class (c2), and third row belongs to normal
class (c3).

TABLE I. Performance evaluation parameters.

Parameter Formulae

Accuracy ðTPþ TNÞ =ðTPþ TNþ FPþ FNÞ
Sensitivity TP =ðTPþ FNÞ
Specificity TN=ðTNþ FPÞ
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With 300 epochs of training on the IQ-OTH or NCCD dataset, the
model achieves an accuracy of 96.5% under 200 cluster formations.

A deep learning method for the diagnosis of lung nodules was
suggested by Abid et al.15 forty-one features of the lesion nodules were
studied using size, cross-slice change, etc. Additionally, recurrent neu-
ral networks have been employed for cross slice variance. Shakeel
et al.16 employed profuse clustering technique and deep learning meth-
ods to predict lung cancer. The dataset used was DICOM images from
cancer imaging archive. Clusters were formulated using probability
and cumulative distribution measure to create a weighted mean func-
tion for the pixels. An average classification accuracy of 98.42% was
obtained. To�gaçar17 used histopathological images of lung for detec-
tion of lung cancer using features obtained from the dark net model.
Further, it was used to classify resulting in an overall accuracy of
99.69%. A weighted discriminative machine learning model was pro-
posed by Zhao et al.18 The method mainly assigns a weight to each
sample to minimize the class imbalance problem. Lung nodule identifi-
cation and cancer risk assessment was performed by Wang and
Charkborty.19 3D CNN and regression models were used to improve

the detection accuracy obtaining an AUC of 0.86. Chamberlin et al.20

used two parallel networks to identify the lung nodules using on low
dose CT images, thereby obtaining a sensitivity of 1 and specificity of
0.708.

Shin et al.21 and Rajasekar et al.22 used radiomic markers and
four clinical factors using PET scans for detection of lung pathologies.
Rajshekhar et al.23 used a combination of CT scan images using quasi
convex gradient descent based CNN optimization. Additionally, trans-
fer learning approaches were also been employed. A transfer learning
framework using EfficientNet B1 was proposed by Raza et al.24

Multiple data augmentation was performed to minimize the class
imbalance problem. An average accuracy of 99.10% was reported on
the test set. In a similar study performed in Ref. 25, a deep transfer
learning model is employed on CT images. Transfer learning was per-
formed by changing the last layer of the pre-trained models, thus
highlighting the significant capabilities of the DL models in detection
tasks. Lanjewar et al.,26 added two new layers to the dense net model.
The features were extracted from the dense net classifier and applied
to machine learning models, thereby achieving an accuracy of 95%. A
snake optimization algorithm was proposed and tested on the IQ-
OTH/NCCD dataset in Ref. 27. The snake optimizer architecture was
applied to the CNN model in conjunction with CNN; additionally, the
CT images were subjected to image preprocessing. Valluru and Jeya28

proposed a SVM based gray wolf optimization technique in conjunc-
tion with the genetic algorithm, for feature selection, optimization of
parameters, and classification on a dataset of 50 images, achieving an
accuracy of 93.5% for three class classification. A similar optimization
method was proposed by Sengodan et al.,29 using swarm optimization
modified learner, thereby achieving a classification accuracy of 98.53%.

TABLE II. Effect of preprocessing on classification accuracy.

Method Accuracy Sensitivity Specificity F1-score Precision

Without
preprocessing

95 88 94.7 90.3 91

With
preprocessing

99 92 99.1 92.4 93

FIG. 3. Illustration of training progress in one of the folds.
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An interesting study using patient current and prior obtained CT
images was performed in Ref. 30, and it was further compared with
the radiologists predictions, achieving an average accuracy of 94%.
Nitha and Vinod Chandra31 developed a feature selector termed as
extremely randomized tree classifier, by extracting features from VGG
and feeding it to a multi-layer perceptron, thereby achieving a classifi-
cation accuracy of 99% using 20% of the data for testing.

However, the aforementioned techniques reported in the litera-
ture are based on deep learning and ensemble techniques. The inten-
sity of the pixels between the diseased and non-diseased cases is
difficult to interpret; thus, when the images are subjected to resizing,
rotation, and orientation, it results in misclassification in identifying
malignant and nonmalignant cases. This objective of the proposed
study is to develop a computer assisted decision support system for
classification of lung CT images. The proposed work aims to address
the aforementioned limitations by developing an automated diagnostic
tool for classification of CT images of lung scans into normal, benign,
and malignant cases. Additionally, imbalance in dataset is a major
observed fact pertaining to medical data, and the proposed optimiza-
tion algorithm aims to overcome this drawback, thereby leading to
good classification accuracy.

II. RESULTS

The implementation of the proposed setup was done in
MATLAB 2020a, on 64-bit operating system. The dataset consisted of
120 benign images, 561 malignant, and 416 normal images folds. The
train and test images were randomly partitioned with 80:20 ratio. Five
different iterations were performed by randomly selecting the image
samples from the three classes. The performance metrics to assess the
classification are given in Table I.

Accuracy refers to the rate of accurate cumulative classification
score for all the three classes. Sensitivity refers to the rate of accurately
malignant as malignant, benign as benign, and normal as normal cases.

Similarly, specificity deals with the rate of classifying nonmalignant as
nonmalignant, non-benign as non-benign, and non-normal as non-
normal cases. For each class, the true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) are computed, and
summed up to determine the total TP, TN, FP, and FN obtained for all
the three classes.21 The confusion matrices for the five folds are illus-
trated in Fig. 2. The number of benign images was 120, malignant
images were 561, and normal cases were 416.

To illustrate the effectiveness of preprocessing, the optimized
convolutional network was applied to images after preprocessing and
prior to preprocessing. The proposed image preprocessing method
effectively aids in improving the performance of the optimized CNN.
It can be observed from Table II that a significant change in accuracy,
sensitivity, specificity, F1-score, and precision is obtained.

Furthermore, the training progress of the proposed CNN model
considering 80:20 split ratio for the obtained hyperparameters is illus-
trated in Fig. 3. It was observed that from epoch 4 to epoch 5, consis-
tent value of maximum accuracy was achieved for the test set. Hence,
epoch 5 was found to be the optimum choice in deciding the numbers
of epochs for the proposed design. Similar results are obtained for the
remaining four folds.

The performance of the CNNmodel for each of the folds in terms
of accuracy, sensitivity, and specificity is given in Fig. 4 and Table III.
Since it is a multiclass classification, the performance for each class in
terms of sensitivity, specificity, and accuracy is calculated, and the
average value for each of the performance parameters considering the
three classes is reported in Table III. It can be observed that although a
stratified sampling was performed to split the samples in each of the
five sets, a balanced value in determining the true positive and true
negative samples was observed. This validates the choice of the hyper-
parameters obtained by training the CNN using SCA based approach.
The average value for each of the metrics is included in row stacked
graphs. However, the dataset seemed to be imbalanced with fewer
number of benign images in contrast to malignant and normal cases, a
good balance in sensitivity and specificity is obtained for detection of
each of the class. An average value for each of the performance param-
eter is reported in Table III.

A. Results on model explainability

Various parts of the CT image have impact on the classifica-
tion performance and building the CNN model. The color scale
provides information regarding the parts of the image that have a
strong influence on the classification. As observed from Fig. 5,
the darker color (red) indicates regions having strong influence
in classification as benign, malignant, and normal. The occlusion
sensitivity maps for the three classes of lung CT images are illus-
trated in Fig. 5.

FIG. 4. Illustration of performance for five splits.

TABLE III. Performance of the proposed system for five splits.

Metric Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average

Sensitivity 91.3 95 94.3 93 91 92.9
Specificity 100 100 98.55 98 99 99.11
Accuracy 100 99 100 98 98.3 99
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III. DISCUSSION

The discussion section is comprehensively divided into three
folds: (1) the effect of preprocessing is quantitively studied on the data-
set, (2) generalization ability, and (3) comparative analysis of the pro-
posed method with state of art studies reported on the same dataset.

The benign vs malignant vs normal scans are imbalanced in nature,
which is a major problem observed in medical datasets. The generali-
zation ability of the proposed method was evaluated on the Chest CT
scan dataset available in Kaggle.32 The dataset consists of 1008 CT
scan images for three different categories of lung cancer, namely,

FIG. 5. Illustration of occlusion maps (a)
benign, (b) normal, and (c) malignant.
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adenocarcinoma consisting of 338 CT scans, large cell carcinoma con-
sisting of 187 scans, and squamous cell carcinoma consisting of 206
scans and 223 normal lung scans. Figure 6 provides an overview of the
images obtained from the dataset.

The images were initially subjected to preprocessing, and it
can be observed from the quantitative results that the accuracy of
the proposed model increased by 4% with preprocessing. Further,
the proposed CNN model is applied to the image to perform four
class classification. The training progress is plotted in Fig. 7(a).
An average accuracy of 94%, sensitivity of 92%, specificity of
95%, F1-score of 92%, and precision of 93% were obtained. The
quantitative results for each of the four class classification tasks
are depicted in Fig. 7. Additionally, a fivefold cross validation
was performed by randomly dividing the image data into five
sets. Stratified sampling was performed to ensure each set had
samples from each of the classes. The proposed methodology
turned out to be effective in classifying the images into four dif-
ferent classes. The results obtained are depicted in Fig. 6, in the
form of bar graphs.

The number of samples of each of the classes and the correctly
classified cases for each of the four kinds of lung cancers are given
in Fig. 8. It can be observed that the number of correct samples
classified in contrast to the number of incorrect samples is much
greater, thus proving the generalization ability of the algorithm to
be applied in a multi-class classification scenario. An interesting
point about the generalization study was that the same values of
hyperparameters obtained from dataset 1, which were used to test
the trained CNN architecture on the second dataset. Additionally,
from the model explainability analysis, the regions in the center of
the image have contributed to prediction accuracy in contrast to
the areas at the border of the image, thus preserving the informa-
tion within the region of interest is a major factor that aids in effi-
cient classification.

Class 1–class 4 represented in the x-axis indicates the four differ-
ent types of lung pathologies. The red color for each of the class indi-
cates the number of correctly classified instances for each of the five
folds. The bar colors corresponding to blue, green, and yellow indicate
the number of incorrectly classified samples with respect to each class.
The proposed method is compared with the state of art techniques
reported in the literature as given in Table IV.

IV. CONCLUSIONS

In this study, an optimized CNN is developed to determine the
severity of lung cancer to malignant, benign, and normal classes using
CT images. In developing deep learning models, it is a common prac-
tice to select the value of the hyperparameters using experimental tri-
als. It has been observed that the hyperparameters play an important
role in determining the classification accuracy. Additionally, medical
data are usually prone to imbalance and limited availability of diseased
and non-diseased classes. Thus, developing a decision support system
that is not subjected to changes due to such an imbalance is a chal-
lenge. Therefore, we have developed an SCA optimized CNN model
by automatically tuning the hyperparameters using the information
obtained during the training stage of the neural net, where hyperpara-
meters of CNN play a major role in influencing the accuracy of classifi-
cation; we have used SCA techniques to optimize the parameters of
CNN. The goal of the proposed system is to mitigate issues that occur
in technical analysis of medical images, issues such as inaccuracy in
classification, under fitting, poor classifier learning capability arising
due to limited data, imbalance dataset, etc. A good classification accu-
racy of 99% was obtained for classification of the lung CT scans in
three classes (benign, malignant, and normal). The generalization abil-
ity and the robustness of the proposed method are evaluated on unseen
test data, as can be observed through the occlusion maps. The major
advantages of the proposed methodology are as follows: (i) the pro-
posed method generalizes well on unseen data, (ii) the method is suit-
able in practical medical diagnostic scenarios that are inaccurate in
diagnosis due to poor availability of data, and (iii) irrespective of the
imbalance nature of data, a good balance in sensitivity and specificity
can be achieved. However, a shortcoming of the proposed method,
which we aim to incorporate as a future work, would be to determine
the severity of malignancy to develop a robust lung cancer screen sys-
tem to aid radiologists in the diagnosis of lung pathologies.

V. METHODS

This section briefs out the methodology adopted to develop the
proposed system. Figure 9 illustrates the block diagram of the pro-
posed approach. Initially, the images are preprocessed to removal noise
from the CT images for achieving better classification accuracy. The
proposed noise removal algorithm takes into account the properties of
Gaussian filtering and bilateral filtering. Further, an optimized CNN

FIG. 6. Lung CT scans: (a) adenocarcinoma, (b) large cell carcinoma, (c) squamous cell carcinoma, and (d) normal CT images (https://www.kaggle.com/datasets/mohamedha-
nyyy/chest-ctscan-images, accessed January 5, 2024).32
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model is developed by selecting the values of the hyperparameters
using the sine cosine optimization methodology. The convergence to
optima is based on the loss function calculated between the predicated
and the obtained values. Subsections V A–V E provide the description
about the proposed methodology.

A. Dataset

The lung cancer dataset is an openly available dataset collected
from Iraq Oncology Teaching Hospital termed as IQ-OTH/NCCD
dataset, and the images were collected for a period of three months in
the year 2019.39 The dataset consists of images, obtained from patients
suffering from various stages of lung cancer and also few healthy sub-
jects, such that the dataset is diverse in nature. Radiologists/oncologists

have annotated the dataset. The dataset contains a total of 1190 images
representing CT scan slices of 110 cases. There are a total of 120
benign CT scans, 561 malignant scans, and 416 healthy scans. The
dimension of the images is of varying nature in the dataset ranging
from 512� 512 to 488� 488; hence, image resizing is performed to
488� 488, to provide consistent input image to the CNNmodel.

B. CNN architecture

The CNN model enhances the capabilities of neural network by
incorporating additional convolutional layers, max pooling layers, and
activation functions.40,41 The convolutional layers apply a set of filters
at various orientations to the image, in order to identify patterns that
are not discernible by the human eye. The convolution and the fully

FIG. 7. Lung CT scans: (a) training progress and (b) performance for each of the splits.
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connected layers are composed of biases and weights that are trained
using optimization algorithms such as Adam’s, gradient descent and
stochastic gradient descent. The performance of the CNN is mainly
controlled by the hyperparameters such as initial learning rate,
momentum, L2 regularization, and number of epochs. The choice of
hyperparameters mainly relies on the application. However, each time
tuning the hyperparameters is essential to achieve a balance in sensitiv-
ity and specificity especially in dealing with unbalanced medical data.
Thereby, the proposed CNN model uses sine cosine algorithm that
automatically selects the values of the hyperparameters using the error
rate obtained between the predicated and actual values. The iterations
are repeated unless a minimum value for error rate is obtained. The
threshold set for error rate lies between 0.1 and 0.9. Table V provides
the details of the CNN layers and the filter employed in the proposed
research.

C. Noise removal

The spatial resolution of the image was improved by introducing
bilateral image filtering42 in conjunction with Gaussian smoothing43 to

consequently prevent the loss of information and remove the noise
from the CT image. The proposed noise removal method exploits the
properties of Gaussian filtering and bilateral filtering to obtain efficient
noise removal. A smaller value for sigma in Eq. (1) preserves the edge
information. Hence, the value of sigma is iteratively chosen as 0.01, to
preserve the edge information. Additionally, the CT image is initially
converted from the RGB color space into its corresponding laboratory
color space. The CIElab is a perceptually uniform color space, which
takes into account the perceptual color differences between the pixel
intensities in contrast to the RGB color space. Thereby, this color space
conversion aids in preserving the color information in addition to the
removal of noise from the CT image. The bilateral sliding window
I00 x; yð Þ is given by the following equation:

I00 x; yð Þ ¼
X
i;jð Þ

I x; yð Þe� 1
2r2 : (1)

i and j lie in the range of ðn�1
2

m�1
2 ; nþ1

2
mþ1
2 ), where r is the deviation

of choosen as 0.01. The image after applying the proposed noise
removal technique is illustrated in Fig. 10.

TABLE IV. Comparative analysis of the proposed method with state of art methods.

Reference Accuracy Sensitivity Specificity Precision F1-score

27 96.58 95.38 94.08 84.16 91.53
33 85.25 85.32 83.32 71.09 82.56
34 87.24 87.24 86.65 75.94 84.19
35 89.26 89.16 88.46 78.26 86.37
36 92.46 91.08 90.39 81.39 88.34
37 94.52 93.65 92.46 83.50 89.90
38 97.72 94 … 98 96.33
Proposed 99 92 99.1 93 92.4

FIG. 8. Number of correctly and incorrectly classified instances for five folds.
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D. Sine cosine optimization (SCA)

One of the most popular metaheuristic population-based optimi-
zation algorithms proposed by Miraiali44 is the SCA. The initialization
of the optimization starts with a population group with random solu-
tions. The value of N¼ 30 is chosen as random population size, chosen
iteratively. Since a larger value increases the computational complexity,
a smaller size of N¼ 30 was found to be optimal size. Further, d¼ 4
based on number of hyperparameters. The random population set is
continuously evaluated based on the objective function. The SCA

consists of two phases, namely, the exploration and exploitation phase,
as described in the following equation:

X tþ1ð Þ
i ¼ Xt

i þ r1Sin r2ð Þ r3Pt
i � Xt

i

�� ��: (2)

The exploration phase aids in location of the area. Further, the exploi-
tation phase reduces the miss interruptions that occur by the hazy sol-
utions as given in the following equation:

X tþ1ð Þ
i ¼ Xt

i þ r1Cos r3P
t
i � Xt

i

�� ��: (3)

Here, t indicates the current iteration number, and I indicates the ith
solution at the corresponding X position. Pi indicates the point of des-
tination. The direction of movement between the solution and the des-
tination is guided by the parameter r1 as given in the following
equation:

r1 ¼ 2� t
2
T

� �
: (4)

The movement of the particles toward or away from the destination,
defining the distance movement using random weights, is given by r2
and r3 in the following equations:

r2 ¼ 2pr and valueð Þ; (5)

r3 ¼ 2r and valueð Þ: (6)

Once an optimal solution is reached as defined by the upper and lower
bounds, the exploration and exploitation converge toward the minima.
The convergence and the test function graphical illustration is pro-
vided in Fig. 11.

Table VI provides an overview of the optimized hyperparameters
obtained using the sine cosine optimization algorithm as described in
Algorithm 1.

TABLE V. Description of CNN model.

Layer Type Filter size No. of filters Stride

Image 448� 448� 1
L 1 CoNþBatch NormþRLU 7� 7 8 1� 1

Max pooling layer (MPL) 2� 2 2� 2
L 2 CoNþBatch NormþRLU 3� 3 16 1� 1

Max pooling 2� 2 2� 2
L 3 CoNþBatch NormþRLU 3� 3 32 1� 1

Max pooling 2� 2 2� 2
L 4 CoNþBatch NormþRLU 3� 3 64 1� 1

Max pooling 2� 2 2� 2
L 5 CoNþBatch NormþRLU 3� 3 128 1� 1

Max pooling 2� 2 2� 2
Output Fully connected Size: 3

Softmax for probabilities
Classification layer

FIG. 9. Overview of the proposed methodology.
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E. Model explainability and interpretability

The CNN model has about five convolutional layers, the algo-
rithm that is designed to train and teach the CNNmodel for predicting
the unknown data, and has the effect of decomposing the training
dataset into a hierarchy of new representations. The initial layers form
a simple representation, whereas the final layers form representations
that built on top of the initial representation. One of the major loop-
holes with these CNN models is difficulty in understanding the mean-
ing of such representations. Thereby, the term blackbox is used to
define such systems, since all that the researcher is aware of, is the
input and the output, but not the details happening within the model.
Thus, we have presented the occlusion maps, wherein the input image
is systematically and consistently represented by occluding or blocking
out using a rectangle of same size and color. For each iteration, the
trained model is analyzed with an occluded section, and the confidence
in predicting the output is noted and represented in the form of heat
map. The heat map represents the major parts of the image that the
model considers as a major parameter for decision making. As per the

expert opinion of the radiologists, the T descriptors describe the extent
of spread of the primary tumor; it basically involves tumor size, inva-
sion of adjacent structures, endobronchial location, presence of satellite
nodules, and distance from the carina.

TABLE VI. Optimized hyperparameter values and the bounds.

Hyperparameters Bounds (lower, upper) Value

Initial learning rate 0.001–0.0001 0.0001
Momentum 0.5–1.0 0.9
Max epochs 1–10 5
Validation Frequency 10–35 35

FIG. 11. Test function and the convergence curve for the SCA algorithm.

ALGORITHM 1.

1 For ðIðx; yÞ ¼ 0; Iðx; yÞ < N; Iðx; yÞ þ þ)
Iðx; yÞ ¼ Input Image, Bilateral filt
f Iðx; yÞg¼ I00 x; yð Þ ¼

P
ði;jÞ Iðx; yÞe�

1
2r2

2 I00ðx; yÞ is subjected to I00ðx; yÞ
model 5(fCLþBNLþMax Pooling LayerþReLug)

3 Initialization: Choose N ¼ 30 fRandompopulationg;
d ¼ 4 fbased on number of hyper parametersg; search space
¼ 30� 4;min Xð Þ; Max Xð Þ; ; t ¼ 1; 2;……:Nf g
Lb ¼ 0:0001; 0:1; 5; 0:001f gUb ¼ f0:1; 0:9; 15; 0:1g

4 While t < T !
if r2 � 0:5

Xij t þ 1ð Þ ¼ Xt
i þ r1 sin r2ð Þ r3Pt

i � Xt
i

�� ��
else

Xij t þ 1ð Þ ¼ Xt
i þ r1 cos r3Pt

i � Xt
i

�� ��
if r3 � 0:5

Xij t þ 1ð Þ ¼ Xt
i þ r1 cos r3Pt

i � Xt
i

�� ��
else

Xij t þ 1ð Þ ¼ Xj þ 0:5l sinðU bf g � L bf gÞ
�CosðL bf gÞ

end
5 Create CNN layers ! 5ðCLþ ReLuþMPLÞ
6 Formulate the objective function: classification

error ¼ (FPþFN/Total samples)
7 Hyperparameters ¼ optimal fAdamfM; ILR; Ep;

L2Regularizationg
8 Best Parameters: 0:3ðImage dataÞ // Computed using

30% of the image data//
9 Stopping Criteria:

While t < Tmax

Check x ¼ bestðminðClassification errorð0:2 trainð ÞÞ else
t ¼ t þ 1

end

FIG. 10. Illustration of preprocessing for benign and malignant CT images: (a) and
(c) original image and (b) and (d) smoothed image after noise removal.
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As it can be seen from Fig. 12, morphologically the left lung shows
significant pathological changes with respect to certain nodules as indi-
cated by the arrow in Fig. 12(b). Such changes predominantly aid in the
detection of malignancy. The malignancy diagnosis predicted by the
proposed model is verified by radiologists as well. In addition to this,
since the CNN model applies various filters with different strides at
each convolutional layers, the texture of the lung CT scans is also stud-
ied, which aids in distinguishing the benign and malignant CT scans.
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