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Abstract
Introduction Patients participating in randomized controlled trials (RCTs) are susceptible to a wide range of different adverse 
events (AE) during the RCT.  MedDRA® is a hierarchical standardization terminology to structure the AEs reported in an 
RCT. The lowest level in the MedDRA hierarchy is a single medical event, and every higher level is the aggregation of the 
lower levels.
Method We propose a multi-stage Bayesian hierarchical Poisson model for estimating MedDRA-coded AE rate ratios (RRs). 
To deal with rare AEs, we introduce data aggregation at a higher level within the MedDRA structure and based on thresholds 
on incidence and MedDRA structure.
Results With simulations, we showed the effects of this data aggregation process and the method's performance. Furthermore, 
an application to a real example is provided and compared with other methods.
Conclusion We showed the benefit of using the full MedDRA structure and using aggregated data. The proposed model, as 
well as the pre-processing, is implemented in an R-package: BAHAMA.

Key Points 

Introduction of a novel method for detecting safety 
signals for MedDRA-coded adverse events (AEs) in a 
randomized controlled trial.

BAHAMA can use the complete MedDRA structure to 
borrow strength between closely related AEs.

1 Introduction

Randomized controlled trials (RCTs) are primarily designed 
and conducted to provide reliable estimates of the efficacy 
of an intervention. During an RCT, adverse events (AEs) 
are often collected along with the primary outcome. An AE 

is defined as “any untoward medical occurrence that may 
occur during treatment with a pharmaceutical product but 
does not necessarily have a causal relationship with this 
treatment” [1]. It is important to identify/detect AEs with a 
higher incidence in the treatment group compared with the 
control population. In addition, AEs with a lower incidence 
in the treatment group compared with the control population 
are also important.

To structure the AEs, the Medical Dictionary for Regula-
tory Activities® (MedDRA) has been developed. MedDRA 
is a hierarchical standardization terminology reporting AEs 
in four levels [2]. The lowest level, Preferred Terms (PTs), 
is a single type of medical event. PTs are aggregated into 
higher levels (i.e. Higher Level Terms [HLT], Higher Level 
Group Terms [HLGT] and System Organ Classes [SOC]). 
MedDRA has a multiaxial structure where a single lower 
level could be aggregated in multiple higher levels. The 
levels provide a grouping of the AEs based on anatomi-
cal, pathological, physiological, etiological, or functional 
similarities [3]. It is therefore reasonable to assume that AEs 
closely related to each other by this MedDRA structure are 
affected similarly by a treatment or decease [4].

The analysis of AEs is less straightforward than the sin-
gle primary outcome. In general, the power calculations to 
determine the sample size of RCTs are not focused on AEs, 
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and AEs are observed with low incidence rates. As a result, 
there is usually limited statistical power to detect rare AEs, 
leading to a high rate of false negatives. Moreover, testing 
many different AEs independently leads to a multiple test-
ing problem. Corrections for the multiple testing such as the 
Bonferroni correction increases the false-negative rate, but 
this approach can be overly conservative [5].

To deal with the multiple testing problem, Mehrotra and 
Heyse [6] developed the double false discovery rate (Dou-
ble FDR) approach. This approach uses two-step adjusted 
p-values based on the Benjamini and Hochberg FDR. A 
simplified explanation of the Double FDR approach is first 
to adjust the p-values of the SOCs and then to adjust the 
p-values within a SOC.

As an RCT is often not powered to detect AEs, we 
hypothesize that a Bayesian approach is useful. A Bayesian 
approach testing the null hypothesis of no difference between 
the treatment groups is based on the posterior probability of 
the incidence rate being higher than one [4]. Several authors 
have proposed Bayesian methods but currently use only two 
MedDRA levels, the PT level and the primary SOC level, 
and a third prior level. The other MedDRA levels (mainly 
HLT and HLGT) are only used for data visualization, even 
though they may provide a clinically relevant grouping of 
PTs [1, 4, 7–9]. Berry and Berry [10] proposed a three-
stage Bayesian hierarchical model for analyzing AE data in 
clinical trials. They treat AE data as binary since most AEs 
occur so infrequently that a dichotomization per patient is 
reasonable. Next, they model AEs with a hierarchical struc-
ture under the condition that AEs under the same SOC are 
more similar and medically related than those under distinct 
SOCs. Xia et al. [11] extended the Bayesian hierarchical 
model to a Poisson model to account for differences in treat-
ment duration between treatment groups [9].

A drawback of using only the PT and SOC levels in the hier-
archical model is that with an increasing number of PTs, the 
performance of these three-stage Bayesian hierarchical models 
deteriorates [11, 12]. The SOC covers many PTs, and these PTs 
are not necessarily strongly medically related. Another drawback 
of the model proposed by Berry and Berry [10] is that recurring 
AEs within the same patient are excluded. To account for the 
recurring AEs, we propose using a Poisson distribution to model 
the AEs, using the total number of patients within a treatment 
group as an offset in the Poisson model. Furthermore, we pro-
pose using data aggregation for uncommon AEs at a higher level 
within the MedDRA structure. By using aggregated AE counts, 
even AEs with a very low incidence are taken into account. Fur-
thermore, we propose to include the complete hierarchy.

In summary, we propose extending the hierarchy used 
by others to group the AEs to the complete hierarchy of the 

MedDRA. We developed our multi-stage hierarchical model, 
including the complete multiaxial MedDRA structure and 
developed a Bayesian algorithm to estimate posterior prob-
abilities. We illustrated our model with AE data from a large 
RCT, and we compared results with other methods for analyz-
ing AEs.

2  Method

The MedDRA structure has four levels; the PT level, HLT 
level, HLGT level and the SOC level. Now, consider that we 
have count data from N4 AEs at the PT level (4th MedDRA 
level). The numbers of AEs in the control group are given by 
Y (0,4) =

(

y
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… y
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… .y
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 and AEs in the treatment 
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 . We assume that the 
PT-level AE count y(x,4)

i
 , where x ∈ 0, 1 and i = 1…N4 , fol-

lows a Poisson distribution, that is,

 where the intensity parameter �(x,4)
i

 is a function of a treat-
ment-indicator variable x and, if necessary, possible other 
covariates. The log intensity is given by

where the parameter ai describes the log intensity of PT i 
in the control group and ai + bi similarly in the treatment 
group. Note that bi is the log rate ratio (log RR). To adjust 
for an unequal number of subjects within each treatment 
group, an offset log(Nx) is used, where Nx is the number of 
subjects within each group.

The PT-level adverse events are clustered at the HLT level 
(3rd MedDRA level). To use this clustering of AEs, we define 
a random-effects model for parameters ai and bi . We assume 
that the parameters from adverse event i follow a bivariate nor-
mal distribution with mean and covariance matrix depending 
on the HLT level, that is,

where W (3)

ij
 is a (fixed) weight indicating membership of PT 
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For the higher MedDRA levels (HLGT and SOC MedDRA 
levels), we repeat the same procedure:

where W (2)

jk
 is a (fixed) weight indicating membership of HLT 

j in HLGT k ( k = 1…N2) . The parameters �(2)

k
 and Σ(2)

k
 are 

the averages and dispersion of HLTs in the same HLGT cat-
egory and are given by

where W (1)

kl
 is a (fixed) weight indicating membership of 

HLGT k in SOC l ( l = 1…N1) . In addition, �(1)

l
 and Σ(1)

l
 

are the averages and dispersion of HLGTs in the same SOC 
category.

For the SOC-level log intensity of the control group and 
log RR we assume a bivariate normal distribution 
�
(1)

l
∼ N

(

�(0),Σ(0)
)

 . We assume Σ(3)

j
,Σ

(2)

k
 and Σ(1)

l
 to be diag-

onal, and therefore do not model the correlation between 
log intensity parameters and all elements to have weakly 
informative exponential prior distribution (Exp(1)).

We use a Bayesian estimation framework and therefore 
specified prior distributions of the �(0) (N(0, 1) ) and again, 
we assume Σ(0) to be diagonal and all elements to have an 
exponential prior distribution (Exp(1)).

3  Extensions for More Complex Data

We extend the model to include the multiaxiality of the Med-
DRA structure, and to deal with the low incidence of some 
PTs, we introduce data aggregation.

3.1  Multiaxiality of the MedDRA Structure

In section 2 we defined the hierarchical MedDRA struc-
ture with the three matrices W (3),W (2) , and W (1) . When no 
multiaxiality is present, all PTs, HLTs, and HLGTs can only 
belong to a single HLT, HLGT, or SOC, respectively. In 
this case, the three corresponding weight matrices consist 
of binary indicators. The sum of all rows of these matrices 
must be one.

To deal with multiaxiality, we propose to modify the 
matrices W (3),W (2) , and W (1) such that PTs, HLTs, and 
HLGTs can belong to multiple parents. Instead of binary 
indicators, we allow all matrices to contain weights between 
zero and one. The sums of memberships of all PTs, HLTs, 
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and HLGTs must still sum up to one. A simple example of 
a weight matrix is:

In this example, PT 5 belongs to HLT 3 and HLT 4. A 
natural choice of weights is to assign half of the weight to 
HLT 3 and the other half to HLT 4. If necessary, however, 
it is possible to change the weight such that the primary 
parent has more weight compared with the secondary par-
ent. Within the current implementation of BAHAMA in an 
R-package, weights can be specified by the user, as long as 
the sum of the weights of a single PT, HLT, or HLGT is 1.

3.2  Data Aggregation

In cases where the incidence of a PT is very low, estimating 
the log RR might not be possible without the use of strong 
prior knowledge. To increase the accuracy of the estimated 
log RR we propose to aggregate these very low incidence 
PTs to their corresponding HLTs. We set a threshold on the 
incidence of PTs within our proposed model of 5, meaning 
if the PT is recorded 5 times or less in the RCT, combined 
in the control and treatment group, the PTs are aggregated 
into the HLT. Let y(x,3) be vectors of the HLT counts of the 
treatment and control group of these aggregated PTs.

Apart from the low incidence of PTs, the number of sib-
lings is also an essential restriction in our model. A single 
PT does not allow borrowing of information from other PTs, 
as there is no other PT to borrow information from. If a 
PT does not have any siblings, or is below a threshold, the 
counts will also be aggregated to their corresponding HLT.

Even on the HLT level, the incidence can be below the 
threshold, or a HLT can have too few siblings, so aggregat-
ing to the HLGT level might also be needed. The counts of 
the HLT level are summarized in their HLGT level, in y(x,2) 
for the treatment and control group.

An illustration of the filtering process can be seen in 
Fig. 1. In this example, PT 5 and PT 6 are low-incidence 
PTs. They are first aggregated into HLT 4. However, 
even HLT 4 is below the threshold and is aggregated into 
HLGT 2. PT 3 does not have any siblings, and therefore 
is aggregated into HLT 2. PT 4 did have a sibling, PT 
5, but PT 5 was removed based on low incidence, so PT 
4 is also aggregated in HLT 3. HLT 3 also includes the 
counts of PT 5.

HLT 1 HLT 2 HLT 3 HLT 4

PT 1 1 0 0 0

PT 2 1 0 0 0

PT 3 0 1 0 0

PT 4 0 0 1 0

PT 5 0 0 0.5 0.5

PT 6 0 0 0 1
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For the HLTs that are not modeled at the PT level, we 
again assume a Poisson distribution to model the counts. To 
make the scale comparable across the stages, the average 
incidence is adjusted by multiplying by the number of PTs 
of the HLT j.

For the HLGTs that are not included in the PT or HLT level:

4  Data Analysis

4.1  Simulation Study

We simulated AE data for p = 1…Npat patients and N PTs. We 
started by simulating a vector x of length Npat , assigning every 
patient to the simulated control ( x = 0 ) or treatment ( x = 1 ) 
group. A MedDRA structure was randomly sampled from the 
real MedDRA structure of the RCT of the case study. PTs were 
drawn from a Poisson distribution with parameters drawn from 
the distributions of HLT, HLGT and SOC levels according to 
the hierarchical Bayesian model.

y
(x,3)

j
∼ Poisson

(

�
(x,3)

j
× NPT

j

)

log
(

�
(3)

j

)

= �
(0,3)

j
+ �

(1,3)

j
× x + log (Nx)

y
(x,2)

j
∼ Poisson

(

�
(x,2)

k
× NPT

k

)

log
(

�
(2)

k

)

= �
(0,2)

k
+ �

(1,2)

k
× x + log (Nx)

x
[

p
]

∼ Bernoulli(0.5)

�
(0,2)

k
∼ N

(

�
(0,1)

l
, �2

)

We simulated 72 scenarios varying the number of 
patients ( Npat = 1000, 2000 ), the number of PTs 
( N = 1000, 2000, 4000 ), the average incidence PT 
within a SOC ( exp

(

μ
(0,1)

l

)

= 0.01, 1, 5 ), and the effect of 
a treatment by varying the log RR (log(RR) = 0.01, 1, 0.5, 
0.1) and all small variances ( �2 = 0.1). For each scenario 
we simulated 500 datasets.

For all scenarios, we used the default thresholds for 
incidence of 5 and number of siblings of 2. For the sce-
nario of an average incidence of 0.01 and log RR of 1, we 
varied the thresholds for incidence between 1 and 10 and 
for the number of siblings between 2 or 5.

Performance of our model was quantified with (1) the 
mean squared error (MSE) between the true log RR and 
the posterior mean log RR by the various methods, (2) the 
bias between the true log RR and the posterior mean log 
RR, (3 the coverage of the 95% credibility intervals (CI) 
defined as the number of times the true log RR was within 
the 95% CI of the posterior log RR. Simulations with non-
converging posterior samples were excluded from calcula-
tion of the performance measures.
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Fig. 1  Illustration of the data 
aggregation based on two selec-
tions; red: incidence, green: 
structure
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4.2  Case Study

For our case study we compared results of our five-stage 
hierarchical Bayesian model with the existing implementa-
tion of the Double FDR approach proposed by Mehrotra 
and Heyse [6] and an implementation of the three-stage 
hierarchical Bayesian model by Berry and Berry [10]. 
For the model by Berry and Berry [10], PT counts were 
dichotomized as zero or ≥ 1.

4.3  Bayesian Computation

We implemented our model in the Stan probabilistic pro-
gramming language, which estimates the posterior dis-
tributions for the parameters of interest by using Ham-
iltonian Markov Chain Monte Carlo (HMC) [13]. Stan 
was used with the default settings: four chains with 1000 
warm-up iterations, 1000 samples of the posterior distri-
butions per chain to calculate summarizing statistics. No 
alterations on the default values of the maximum allowed 
tree-depth or adapt delta parameters were needed for our 
analyses as they all reached convergence with these set-
tings. Convergence was assessed by visual inspection of 
traceplots as well as the R̂ convergence diagnostic (1.1 in 
case study, 1.4 in simulation study).

We implemented the three-stage hierarchical Bayes-
ian model by Berry and Berry [10] in the programming 
language JAGS [14], with four chains, 10,000 sample 
warm-up iterations, 10,000 samples of the posterior dis-
tributions per chain, with a thinning of 10, to calculate 
summarizing statistics.

5  Results

Figure 2 gives a summary of the results of the simulation 
study of the PT level. Overall, the average bias between the 
true log RRs and the posterior mean of the log RRs of our 
model was around 0. The MSE between the true log RRs and 
the posterior mean log RRs of our model decreased with an 
increasing average incidence of PTs. There was no differ-
ence in the outcome performance with an increasing RR; the 
results per true log RR are in the electronic supplementary 
material (ESM). The coverage of the 95% credibility inter-
vals on the PT level was on average 94%, and this did not 
vary with an increasing average incidence.

We introduced a data aggregation process as a preproc-
essing step with this method. Within this data aggregation 
process, two thresholds were set. The first threshold is on 

Fig. 2  Bias and the mean square error (MSE) between the true log rate ratio (RR) and the posterior mean log RR for different scenarios of the 
simulation study. AE adverse events, PTs Preferred Terms
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the minimal incidence and the second on the number of 
siblings within the MedDRA structure. This preprocess-
ing step is needed because the model runs into conver-
gence issues with the default settings of the HMC. To 
illustrate these issues, Fig. 3 gives the convergency sta-
tistic R̂ , a measure for how well the chains have mixed per 
parameter, for the posterior mean log RRs of our model 
for multiple threshold settings of the data aggregation 
process. The number of parameters without fully mixed 
chains increased with lower thresholds on the number of 
siblings and the incidence. There were fewer not fully 
mixed chains with higher thresholds on the number of 
siblings.

As for the performance measures with a varying thresh-
old, Fig. 4 shows the performance measures given differ-
ent threshold settings. The bias of the posterior mean log 
RRs was close to zero for all thresholds. The MSE of 
the posterior mean log RRs decreased with increasing 
thresholds on the PT level. For the HLT level, the MSE 
was less affected by the threshold settings in the aggrega-
tion process.

5.1  Case Study

An RCT was conducted to examine the use of statins in 
patients undergoing hemodialysis. Details of the RCT can 

Fig. 3  An indication of the convergence issues with varying thresholds on the Preferred Term (PT) level (Rhat <  1.1 indicates fully mixed 
chains)

Fig. 4  The bias and mean square error (MSE) for the posterior mean log rate ratios (RRs) for the same simulation dataset for different thresholds 
(PT-level and HLT-level). HLT Higher Level Terms, PT Preferred Terms
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be found in the original manuscript by Fellström et al. [15]. 
In short, 2776 patients were followed for an average of 3.2 
years. Half of these patients were treated with a statin and 
half received a placebo. In total, 36,821 different AEs were 
recorded in 2658 patients, grouped into 2195 PTs, 724 HLTs, 
244 HLGTs and 24 SOCs. The most common AE being diar-
rhea, reported 1000 times by 616 patients.

After applying the two thresholds on the data, a total 
of 574 PTs ( y(x,4) ), 167 HLTs ( y(x,3) ), 127 HLGTs ( y(x,2) ) 
remained. Of the 574 PTs, 9 had multiple HLTs, 8 out of 
the 327 HLTs were clustered into multiple HLGTs, and 
5 out of the 244 HLGTs clustered into multiple SOCs. 
Convergence was reached using the default settings in 
Stan; the highest R̂ was 1.099.

In Fig. 5, the posterior mean log RRs are shown for the 
four MedDRA levels. A table with the posterior mean and 
standard deviation (SD) of the log RRs is in the ESM. On 
the PT level, the most notable PTs were ‘discomfort’ and 
‘pulmonary oedema’. Both of these PT incidences were 
increased in the treatment group. On the HLT level; the 
HLTs of 'muscle weakness conditions' and 'heart failure 
signs' were both increased in the treatment group.

5.2  Comparison

To illustrate the effect of shrinkage we compared the poste-
rior mean log RRs of the PTs of our model with the observed 
log RRs and log odds ratios in Fig. 6A, B. Some posterior 
mean log RRs were closer to zero than the observed log 

Fig. 5  The posterior probability of an effect between the statin treat-
ment group and placebo group and its magnitude as the posterior 
mean of the log rate ratio (RR) divided by the posterior standard 

deviation per MedDRA levels. HLGT Higher Level Group Terms, 
HLT Higher Level Terms, PT Preferred Terms, SD standard devia-
tion, SOC System Organ Classes
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RRs, thereby decreasing the false discovery rate, whereas 
other posterior mean log RRs were drawn away from zero, 
due to borrowing strength from closely related PTs.

To support the findings of our five-stage hierarchical 
model, we compared the results on the PT level with other 
methods developed for AE analyses. We compared our pos-
terior mean log RRs with the posterior mean log odds ratios 
(OR) given by the model as proposed by Berry and Berry 

[10] (Fig. 6). The PT with the highest log OR is ‘Basal cell 
carcinoma’; this finding was also supported by the five-stage 
model. The log OR of the PT ‘discomfort’, the PT with the 
highest log RR, was close to zero. The occurrence of this 
PT is high, especially in the treatment group, but occurred in 
relatively few patients (29 times in 6 patients in the treatment 
group versus 3 times in 3 patients in the control group); this 

Fig. 6  Comparison between A observed log RR and B log OR of the 
PTs, C, D the posterior mean log ORs as estimated by the model of 
Berry and Berry [10], E the DFDR and the posterior mean log RRs 
(1, Pulmonary oedema; 2, Basal Cell Carcinoma; 3, Discomfort). 

DFDR double false discovery rate, OR odds ratio, PTs Preferred 
Terms, RR rate ratio, SD standard deviation, SOC System Organ 
Classes
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aspect is lost when PTs are dichotomized as is done with 
Berry and Berry’s model.

The PT ‘pulmonary oedema’ is an example of the ben-
efit of using all MedDRA levels (91 times in 61 patients in 
the treatment group vs 43 times in 41 patients in the con-
trol group). This PT is part of HLT ‘pulmonary oedemas’ 
together with the PTs ‘Acute pulmonary oedema’ (39 in 31 
and 24 in 20) and ‘Pulmonary congestion’ (9 in 8 and 12 in 
11). Both the PTs ‘pulmonary oedema’ and ‘acute pulmo-
nary oedema’ were more common in the treatment group, 
but based on the observed individual incidences were not 
signaled out. With the shrinkage that was enforced by a 
Bayesian model only based on the SOC level, the PTs were 
also not signaled out.

Another method especially developed for AE data is the 
double FDR procedure. We compared double FDR p-values 
at the PT level with p-values from the five-stage model, if 
possible (Fig. 6E). The double FDR procedure was per-
formed for 538 of the 574 PTs, and those 538 PTs were 
from 21 SOCs. All PTs with a significant p-value of < 0.05 
according to the double FDR procedure were also found 
by the five-stage model. The five-stage model signaled 12 
additional PTs, in comparison with the double FDR.

6  Discussion

This paper introduces a novel approach using a Bayesian 
hierarchical model for analyzing MedDRA-coded AEs col-
lected during an RCT. The use of a Bayesian hierarchical 
model has some advantages. The first is that by using the 
existing MedDRA structure to borrow strength between 
closely related AEs, more stable estimations of incidence 
parameters are obtained. In comparison with other methods, 
we use the complete MedDRA structure, making it more 
likely that the effect of treatment is comparable between the 
AEs. Second, we propose aggregating the data to a higher 
MedDRA level if not enough data is available. By aggre-
gating the PTs into higher levels, all available data is still 
included in the model, even when the incidence of a spe-
cific PT is too low to estimate the difference between the 
treatment and control group. The 'borrowing' of information 
on the higher levels is more complete by using this form 
of aggregating than by not including this data in the data 
analysis.

A limitation of methods like the one we propose here is 
that they are not used in practice, as there is little to no guid-
ance in using the methods nor is there user-friendly software 
[1, 7]. Therefore, we made this model and the data aggre-
gation into the R package Bayesian Hierarchical Analyses 
of MedDRA-coded Adverse Events (BAHAMA). This R 

package and a tutorial is available on https:// github. com/ 
Alma- Revers/ BAHAMA.

A hierarchical Bayesian approach applies shrinkage to 
the effect of treatment on the incidence of the AEs. The 
direction and the amount of shrinkage is determined by the 
weight matrices and is based on the MedDRA structure. 
This shrinkage is sub-optimal when the interest is in spe-
cific outlying AEs, as the shrinkage smooths the effect of 
the outlier, making it less likely to be detected. We argue 
that this shrinkage is mostly beneficial as it increases the 
probability of detecting a true effect overall. However, the 
proposed model might not be the optimal choice if a speci-
fied AE is of particular interest.

With our multi-level hierarchical Bayesian model, con-
vergence issues may occur. In our case study we did not 
encounter any convergence issues with the thresholds that 
we used for the incidence and the number of MedDRA sib-
lings. Our simulation study had some convergence issues 
that could be avoided by increasing these thresholds and 
by drawing more samples from the posterior distributions. 
Other solutions are changing the settings of the HMC sam-
pling or use an alternative parameterization of the model 
such as models in which the intensity of the treatment group 
is independent of the intensity of the control group.

With a full Bayesian framework, the conclusion might 
change based on the priors. We choose to use weakly 
informative priors instead of relying on medical knowledge. 
In order to evaluate the effect of the prior specifications, we 
carried out a sensitivity analysis in which we used more 
informative and less informative priors. In summary, with 
less informative priors, we had more convergence issues. 
However, the difference in results was small. Therefore, we 
concluded that with the proposed priors, results are robust.

In the models by Berry and Berry (2004) and Xia et al. 
(2011), a zero-point mass was added to the log OR [10, 16]. 
The intuition behind this is that there will be no difference 
between the treatment groups for most AE/PTs. We did this 
for our model as well. However, this did perform worse in 
terms of convergence with our case data. Therefore, we did 
not pursue this approach any further.

7  Conclusion

This paper introduces a new approach to analyzing AE data 
from an RCT, by using the MedDRA structure and by bor-
rowing strength from closely related AEs and data aggrega-
tion. With our case study we showed that this new approach 
could detect more AEs compared with other approaches. We 
implemented the new method in the R package BAHAMA. 
We have currently only implemented this method for RCTs 

https://github.com/Alma-Revers/BAHAMA
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comparing two interventions. In the future this will be 
extended for multi-arm RCTs.
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