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Abstract

limitations in the clinical application.

Alzheimer's disease (AD) has been a devastating public health with the development of global aging. Approaches
for reducing the current AD epidemic are becoming a primary focus of human healthcare due to the lack of
achieved lasting and complete remission strategies to treat AD with the characteristics of heterogeneity and
complexity. Exosomes, which is the new emerging approach to intercellular communication, provide novel
perspective on identified therapeutic strategies of AD. Mesenchymal stem cell-derived exosomes (MSC-exos) are
emerging to be an appealing therapeutic tool for AD, with the donor-derived properties and the characteristics of
minimal immunogenicity, effortless storage, nature delivery vehicles, and low risks of tumor formation based on the
previous researches. In this review, we elaborate the mechanism of MSC-exos in the treatment of AD and discuss
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Introduction

Alzheimer’s disease (AD) is the most common cause of de-
mentia in the elderly, which contributes to 60—80% of total
dementia population [1]. What is worse, the incidence of
AD is rising continually [2]. As a neurodegenerative disease,
AD is associated with high disability rate, resulting in more
severe cognitive impairment than aging, which brings heavy
burden to public administration and caregivers [1, 3].

AD is characterized by increased deposition of p-
amyloid peptides and aggregation of hyperphosphorylated
tau in neurofibrillary tangles (NFT) [4]. However, clinical
symptoms vary with the region of brain injury. Typical
clinical symptoms include progressive decline of episodic
memory and executive functions [5]. In contrast, atypical
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clinical symptoms general occur in non-memory domains,
presenting agnosia, aphasia and disturbed executive func-
tion [6]. From the therapeutic level, the existing medicine
approved by Food and Drug Administration (FDA) for
AD patients include three cholinesterase inhibitors (e.g.,
ChEIs; donepezil, rivastigmine, and galantamine) and an
uncompetitive NMDA receptor 2 modulator (meman-
tine). Unfortunately, the aforementioned medicine merely
aims to improve quality of life and extend lifespan, but fail
to halt disease progression [7]. Seeking novel therapeutic
strategies for AD is urgent.

In recent years, mesenchymal stem cells (MSCs) have
attracted much attention as the potential cell-based thera-
peutic tools due to its ability of migrating and mediating
damage repair. MSCs facilitate neurological recovery and
neo-angiogenesis through the secretion of neurotrophins
and angiogenesis regulatory factors [8—10]. The ability of
immunomodulatory effect, migratory capability, and re-
generative potential of MSCs are confirmed in multiple
disease models, such as atopic dermatitis, myocardial
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infarction, traumatic brain injury, and diabetes nephropa-
thy [11-14]. However, accumulating researches suggest
that the biodistribution of MSCs in the target organs is
rare, and its therapeutic effect appears to be a conse-
quence of the paracrine action [15-17]. The particles in
the secreted proteins of MSCs are identified as exosomes
through electron microscopy and proteomic analysis [18].

Exosomes (also called small extracellular vesicles (EVs))
are considered as a subtype of extracellular microvesicles
with a diameter of 30—100 nm, including lipid bilayer mem-
brane structure, and released by variety of cell types [19,
20]. Investigators primarily proposed the presence of extra-
cellular vesicles in mammalian tissues or body fluids as
early as in 1960s [21, 22], and the exosomes were consid-
ered as the unnecessary proteins for a long time [23, 24]. In
fact, exosomes are able to reflect the state of the parent cell
[25] and mediate intercellular communication through
transporting biologically active cargo (including proteins,
lipids, and nucleic acids) to recipient cells both in physio-
logical and pathological conditions [26, 27]. Given the
powerful biological functions, exosomes have been studied
for applications as vaccines, immunosuppressant, or stimu-
lators of repair and differentiation process [28].

Herein we outline the role of exosomes in AD treatment.
Additionally, we elaborate the therapeutic properties of
MSC-exos in AD and discuss the advantages and chal-
lenges of MSC-exos as a novel cell-free therapeutic agent.

Exosome biogenesis, secretion, and uptake

Enormous efforts were invested to clarify the mechanism of
exosome biogenesis, secretion, and uptake (Fig. 1). Origin-
ally, extracellular constituents and cell surface proteins form
the early sorting endosome (ESEs) through endocytosis
along with plasma membrane budding inward. During the
maturation process of ESEs, intraluminal vesicles (ILVs)
begin to compose through invagination of the limiting
endosomal membrane [29]. The formation of ILVs is con-
trolled by several molecular machineries, mainly regulated
by the machinery complex termed endosomal sorting com-
plex required for transport (ESCRT) [30]. The ESCRT
mechanism is composed of approximately 30 proteins
which assemble into four complexes (ESCRT-0, ESCRT-I,
ESCRT-II, ESCRT-III) and associated proteins (e.g.,Vps4,
Alix, Tsgl01) involved in the formation of ILVs [31, 32].
ESCRT-0 sequesters ubiquitinated cargo proteins, ESCRT-
I/II/III induce membrane deformation, and Vps4 complex
ensure vesicle scission and recycling of the ESCRT-III com-
plex [33]. Another pathway of exosomes biogenesis is gener-
ated independently of ESCRT machinery mechanisms,
involving tetraspanins, ceramides, heat-shock proteins
(HSPs), cholesterol, and phosphatidic acids [19]. Lipid-
mediated RNA loading into exosomes depends on self-
organizing lipid and cargo domains [34]. Subsequently, cyto-
plasmic molecules such as proteins, lipids, and RNAs are
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encapsulated into the lumen and accumulated within the
late endosome, thus forming multivesicular bodies (MVBs)
[35]. The endoplasmic reticulum and Golgi complex are in-
volved in the process. Partial MVBs fuse with the plasma
membrane through cytoskeletal and microtubule network
of the cell, ultimately releasing their vesicles into the extra-
cellular space as exosomes, while others are transported to
lysosomes for degradation through fusing with autophago-
somes or not [36]. Compared with the degradative MVBs,
the secreted MVBs contain more of ceramides [37, 38]. It
has been reported that the different fates of MVBs may be
related to the simultaneous existence of subpopulations in
cells [19]. Since the endosome pathway is involved in exo-
some formation and release, proteins such as tetraspanins
(CD9, CD63, and CD81), flotillin, Alix, and TSG101 are
used as exosomal markers [19]. Additionally, exosomes are
characterized by their high concentration of lipid raft com-
ponents, such as ceramide and sphingomyelin [39, 40].

Although the process of exosome release remains elu-
sive, it is widely accepted that Rab GTPases, soluble N-
ethylmaleimide-sensitive factor attachment protein re-
ceptors (SNAREs), and cytoskeleton are involved in the
regulation process [41]. Rab GTPase proteins are in-
volved in transferring vesicles between intracellular com-
partments and regulation of MVB fusion with plasma
membrane for exosome release [42, 43]. For example,
Rab27 is able to alter MVB morphology and dock to the
plasma membrane. Rab35 is located on the surface of
oligodendroglia cells and regulate the docking of endo-
cytic vesicles and plasma membrane [42, 44]. The cyto-
skeleton exhibit significant polarity distribution inside
the cells, allowing variation in the distribution of MVBs.
Targeting actin polymerization may indirectly promote
exosome secretion [24]. Soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNAREs)
are considered as central catalysts of intracellular mem-
brane fusion [45]. SNARE complex facilitates fusion of
two opposing membranes in a zipper-like manner [46].

It has been reported that endocytosis is the primary
pathway for exosome uptake. In addition, exosomes can
deliver cargo to recipient cells through direct membrane
fusion and receptor-ligand binding [47]. The steps of
exosome uptake mainly include targeting, entry, and de-
livery of content [24]. In particular, exosome uptake may
be affected by crucial factors such as temperature and
size distribution. Low temperature induces proteolytic
cleavage of exosomal proteins thereby inhibiting the re-
lease of exosomes [48]. Smaller exosomes are more eas-
ily taken up by cells. Moreover, tetraspanin membrane
proteins and intercellular adhesion molecule (ICAM-
1) are considered to promote the uptake of exosomes.
Of note, the currently known biogenesis pathways are
not specific for exosomes and not suitable for all cell
types yet [24].
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Fig. 1 The mechanism of exosome biogenesis, secretion, and uptake. Microvesicles are released through plasma membrane budding.
Extracellular constituents and cell surface proteins form the early sorting endosome (ESEs) through endocytosis along with plasma membrane
budding inward. The endoplasmic reticulum (ER), Golgi, and mitochondria are involved in the maturation of ESEs through fusion. ESEs give rise to
late sorting endosome and multivesicular bodies (MVBs) in succession. Partial MVBs release their vesicles into the extracellular space as exosomes.
Others are transported to lysosomes for degradation through fusing with autophagosomes or not. The formation of ILVs is mainly controlled by
endosomal sorting complex required for transport (ESCRT). Rab GTPases, SNAREs, and cytoskeleton are involved in the regulation process of
exosome secretion. Exosomes can deliver cargo to recipient cells by three methods: endocytosis, direct membrane fusion, and
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Role of exosomes in AD

To date, the exact etiology of AD is not particularly clear.
Amyloid cascade hypothesis plays dominant role in explain-
ing the genesis and progression of AD [49]. However, accu-
mulating evidence demonstrate that amyloid cascade
hypothesis fail to explain the pathophysiological mechanism
of AD completely, and tau hypothesis, mitochondrial cas-
cade hypothesis, and neuroinflammation hypothesis are
proposed successively [50, 51]. It is worth noting that exo-
somes are involved in the process of AD [52].

Firstly, brain-derived exosomes in peripheral blood
have shown great potential to be an ideal “liquid biopsy”
for AD (Table 1). Exosomes derived from blood are
characterized by low invasive diagnostic procedures with
high sensitivity and specificity [61]. Clinical diagnosis of

AD depends on symptoms, neuropsychological testing,
lumbar puncture, and neuroimaging [62, 63]. Intriguingly,
brain-derived exosomes can penetrate the blood-brain
barrier into the peripheral blood circulation, but the con-
centration is lower than that of cerebrospinal fluid. To
overcome these limitations, investigators enrich brain-
derived exosomes from plasma through immunoprecipita-
tion methods. In addition, several studies suggest that due
to the overlapping levels of Ap1-42, T-tau, and p-taul8l
in CSF, it cannot effectively distinguish AD patients from
other types of dementia patients [64]. Intriguingly, a mul-
tiple center study confirms the correlation between the
levels of AD-associated protein in CSF and blood [55]. In
the previous researches, lysosomal and synaptic proteins
levels of neuron-derived exosomes (NDEs) are useful for
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Table 1 Exosomes as AD biomarkers in discussed studies
Source  Body Isolation methods Validation Direction of protein change Ref.
fluid techniques
Neuronal Plasma EXOQ + anti-L1TCAM  TEM, NTA ADC and AD: P-T181-tau, P-S396-tau, and AB1-42 1, NRGN, REST | compared to [53]
immunocapture CNC and stable MCI patients
Neurally  Plasma EXOQ + anti-NCAM ~ NTA AD: total Tau, P-T181-tau, P-5396-tau and AB1-42 tcompared to controls [54]
or serum  immunocapture FTD: P-T181-tau and AB1-42 1 compared to controls
Neuronal Plasma EXOQ + anti-NCAM  TEM, WB AD: AB42, T-tau, and P-T181-tau 1 compared to aMCl and control groups [55]
or CSF immunocapture The level of each exosomal biomarker was highly correlated with that in CSF
Neuronal Plasma EXOQ + anti-L1CAM  NTA, TEM, AD and FTD: synaptophysin, synaptopodin, synaptotagmin-2, and neurogranin | [56]
immunocapture WB compared to controls
AD: GAP43, synapsin 1 | synaptotagmin, synaptophysin, and neurogranin were
correlated with MMSE or ADAS-cog
Neurally  Plasma EXOQ + anti-L1TCAM  NTA AD: cathepsin D, LAMP-1, ubiquitinylated proteins 1, and HSP70 | compared to [57]
immunocapture controls and FTD
Neuronal Plasma EXOQ + anti-LTCAM  NTA, TEM,  AD:NPTX2, NRXN2a, AMPA4, NLGN1 | [58]
immunocapture WB Preclinical period: NRXN2a, AMPA4, and NLGN1 | compared to controls
Astrocyte Plasma EXOQ + anti-ACSA-1  NTA, TEM, AD: complement proteins, IL-6, TNF-q, IL-13 1; complement regulatory proteins [59]
immunocapture WB (CD59, CD46, DAF), complement receptor type 1 | compared to controls
Astrocyte Plasma EXOQ + anti-ACSA-1  NTA AD: BACE-1, (s)APPB 1, GDNF | compared to controls [60]
immunocapture FTD: compared to controls n. d.

1 higher; | lower; n. d. no difference compared to control, EXOQ ExoQuick exosome precipitation solution, L71CAM neural adhesion protein, TEM transmission
electron microscope, NTA Nanoparticle Tracking Analysis, MCI mild cognitive impairment, ADC MCI converting to AD, REST repressor element 1-silencing
transcription factor, NRGN neurogranin, ADAS-cog AD assessment scale-cognitive subscale, CNC cognitively normal controls, FTD frontotemporal dementia,
GAP43growth-associated protein 43, MMSE Mini-Mental State Examination, LAMP-1 lysosome-associated membrane protein 1, HSP70 heat-shock protein 70, ACSA-1
antihuman glutamine aspartate transporter, NPTX2 neuronal pentraxin 2, NRXN2a neurexin 20, AMPA4 GluA4-containing glutamate, NLGNT receptor and neuroligin
1, TNF-a tumor necrosis factor-a, DAF decay-accelerating factor, BACE-1 {3-site amyloid precursor protein-cleaving enzyme 1, (s)APP soluble amyloid precursor

protein, GDNF glial-derived neurotrophic factor

the preclinical risk prediction of conversion from mild
cognitive impairment (MCI) to dementia [56, 57]. The re-
ductions in NDE levels of functionally specialized synaptic
proteins may reflect the severity of AD progression [58].
Furthermore, the levels of complement proteins in exo-
somes derived from astrocytes (ADEs) are apparently as-
sociated with stage of the disease [59]. Cargo proteins in
plasma ADEs are significantly higher than those in NDEs,
which may be a potential target for BACE-1 inhibitors
[56]. Moreover, large cohort studies are needed to assess
the diagnosis utility of exosomes, and standardized
process for preparation and biomarker quantification is
still greatly challenging [65].

Secondly, exosomes are considered as a potential vehicle
for drug delivery in AD. As a natural biological agent, exo-
somes possess homing capabilities to transport active mole-
cules between cells with favorable biocompatibility, and
transiently modulate functions of targeted cells [66]. It has
reported that MSC-exos can interact with target cells
through different mechanisms. For example, MSC-exos can
directly bind to membrane receptors to internalize their
contents in target cells. Moreover, MSC-exos are able to
deliver biologically active substances into target cells by fu-
sion with the plasma membrane. What is more, exosomes
are able to cross the blood-brain barrier (BBB) easily to en-
hance intracranial drug concentration [67]. Compared with
conventional approaches of administration, exosome deliv-
ery avoids some complications, including intracranial

infection, nonspecific absorption, and drug toxicity [68].
Lipid bimolecular structure of exosomes contributes to im-
proving transport efficiency and supporting the load of
hydrophobic or hydrophilic drugs [69]. Moreover, exo-
somes are characterized by low immunogenicity and long
circulating half-life, which can prevent “therapeutic cargo”
from rapid degradation [68]. Previous studies indicate that
exosomes can deliver drugs or siRNA to the brain of AD
mice [68, 70]. However, there are evidences which demon-
strate that predominant localization of intravenously ad-
ministered exosomes is in the spleen and liver, with lower
signals in the brain [71]. In order to increase the concentra-
tion of intravenously administered exosomes, the surface of
exosomes can be modified by connecting peptides. For ex-
ample, exosomes from engineered dendritic cells expressing
membrane protein Lamp2b can bind to neuron-specific Ra-
bies virus glycoprotein (RVG) peptide. These results
showed that the cognitive function of AD transgenic mice
injected with engineered MSC-exos was significantly im-
proved [72].

Additionally, exosomes are involved in the process of
pathogenic protein clearance. Beta-amyloid peptide and
tau, two symbolic pathological proteins in AD, have
been suggested to be associated with the neuronal dam-
age and death, leading to gradual decline in memory and
cognitive impairment [73]. Previous studies suggest that
exosomes can reduce the deposition of AP in different
ways. For example, NDEs facilitate the conversion of Ap
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to nontoxic amyloid fibrils via driving conformational
changes [74]. Inhibiting neutral sphingomyelinase 2
(nSMase2) contribute to reducing the conversion of
sphingomyelin to ceramide and ultimately reduce the
deposition of amyloid plaque [75]. Glycosphingolipids
(GSLs) on the surface of exosomes can bind to Ap, ac-
celerating the clearance of amyloid depositions and re-
ducing synaptic toxicity [76]. Notably, the evidence
demonstrate that exosomes are not only involved in ac-
celerating clearance of aggregated proteins, but also con-
tribute to propagation of pathogenic proteins [77]. The
propagation of pathogenic protein in AD is along neu-
roanatomically connected areas of the brain, which is
considered to occur in a prion-like manner [78]. How-
ever, the transmission mechanism of the pathogenic pro-
tein is still controversial and further research is needed.

Finally, exosomes play a role in promoting neurogen-
esis and reducing cognitive impairment. However, the
specific cellular and molecular mechanisms of these pro-
cesses are still unclear. It has been reported that NDEs
are able to regulate the number of AMPA receptors for
glutamate transmission or induce synaptic pruning by
the overexpression complement component 3 of micro-
glia cells, indicating that NDEs are involved in the
process of synaptic plasticity. Additionally, neuronal EVs
are involved in the regulation of miRNA content and
neuronal excitability [79, 80]. Several studies have re-
ported the existence of exosomes of non-neuronal cell
origin. In the state of oxygen and glucose deprivation,
oligodendrocyte-derived EVs contribute to elevate neur-
onal viability via uptake by neurons. Additionally,
oligodendrocyte-derived exosomes are involved in the
regulation of oxidative stress and increment of firing rate
of neurons [81]. Exosomes derived from microglial are
confirmed to regulate synaptic activity and transmit neu-
roprotective substances between cells [82]. Microvesicles
derived from microglial are involved in the process of
upregulating synaptic activity by promoting ceramide
and sphingosine production [83]. Moreover, the surface
of ADEs which expressed a novel glycoprotein (Synap-
sin-1) facilitates neurite outgrowth in the state of oxida-
tive stress [84], which is a benefit for the recovery of
nerve impairment. Interestingly, it was reported that
exosomes can restore nerve function by increasing nerve
density and inhibiting oxidative stress damage, rather
than generating new neurons [85].

MSC-exos isolation, storage, and administration

MSCs are a class of adult multipotent stromal cells with
self-renewal capabilities. They can be isolated from a
variety of sources, including bone marrow (BM-MSCs),
adipose tissue (AD-MSCs), umbilical cord (UC-MSCs),
amniotic fluid, placenta, and peripheral blood [86-91].
The International Society for Cellar Therapy defines that
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MSCs should express the cell surface markers CD73,
CD90, and CD105, but not hematopoietic and endothe-
lial antigens (CD14 or CD11b, CD19 or CD79a, CD34,
CD45, HLA-DR) [92]. As stem cells, MSCs contribute to
differentiating into cell lineages of mesodermal origin
(e.g., osteoblasts, chondrocytes, and adipocytes) through
stimulation in vitro [93]. However, this issue is still con-
troversial. Some studies indicate that MSCs are able to
differentiate into other cell types, such as endothelial
cells, neural cells, glial cells, cardiomyocytes, and hepato-
cytes [94-96]. Differences of cell sources, isolation pro-
tocols, and culture environment can affect the properties
of MSCs (Table 2). In the previous research, autologous
MSCs are different from those of healthy donors, which
will influence the outcomes of treatment [97]. Compared
with other cell types, MSCs are able to produce higher
doses of exosomes. The production of exosomes is re-
lated to the proliferation rate of MSCs. The cell density
and content of secreted growth factors in MSCs cultured
with three-dimensional (3D) spheroid were more than
those with traditional monolayer culture [98]. Unlike cell
transplantation, exosomes do not need to be cultured to
a suitable density before transplantation, which lays the
foundation for the treatment of acute diseases [97].
Given the heterogeneity and complexity of exosomes,
different isolation methods have been discovered
(Table 3). (1) Ultracentrifugation (UC) is to obtain puri-
fied exosomes by repeated differential centrifugation, fil-
tration, and washing, which was considered as the most
widely used method in the current researches. However,
membrane damage of exosomes may occur during cen-
trifugation. Additionally, UC requires long time and ex-
pensive equipment support [120]. For further exosome
purification, an additional density gradient step can be
added on the basis of UC. However, the drawbacks of
this method are low yields [121]. (2) Size-exclusion chro-
matography (SEC) is used to separate exosomes based
on hydrodynamic volume. This process is filtered
through a stationary-phase column of porous beads with
approximately the same size as the particle of interest
[122]. The characteristic of SEC is time-saving, low cost,
and good repeatability, but the recovery rate and purity
of exosomes are reduced. (3) Filtration is a separation
method based on the molecular mass and size of parti-
cles. After the initial filtration, additional ultrafiltration
and repeated washing processes are needed to remove
the impurities. The advantage of filtration is it is simple,
gentle, and time-saving. However, exosomes may cause
morphological changes due to squeezing when passing
through the filter membrane, resulting in a lower recov-
ery rate [123]. (4) Immunoaffinity isolation methods are
based on the specific antigen—antibody interactions to
capture exosomes, such as coated magnetic bead immu-
noaffinity pull-down or filter paper chromatography
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Methods Working principle Advantages Disadvantages Ref.
uc Differential Reduced protein contamination Low vyield, difficult to separate particles of similar [99-
centrifugationbased on High purity size, expensive equipment support 101]
density
Density Based on density High purity Low yield, time-consuming [102]
gradient additional steps after
centrifugation
SEC Based on hydrodynamic Good reproducibility, rapid and mild Low sample recovery [103,
radius Reduced protein contamination 104]
Filtration Based on molecular mass Simple and time-saving Potential to alter structural integrity, low sample  [105,
and size recovery 106]
Immunoaffinity Antibody capture High selectivity and purity, no need for High cost, nonspecific binding [107]
additional equipment support
Commercial Precipitation with chemicals High yield High protein contamination [53,
kits 58]
AF4 Laminar flow Classification of EV subtypes, efficiently Low sample recovery and repeatability [108]
Nano-FCM High-resolution flow High-fidelity sorting Simultaneous detection of multiple EVs, [109]
cytometry expensive equipment support
Microfluidics Based on physical or Low sample volumes, rapid and high Not suitable for large sample processing, [110]
mechanical characteristics purity expensive equipment support
UC ultracentrifugation, SEC size-exclusion chromatography, AF4 asymmetric flow field-flow fractionation, FCM flow cytometry
Table 3 Application of MSC-derived EVs in Alzheimer’s disease
Source  Extraction Administration scheme Results Ref.
method
hucMSC  ExoQuick Male 7 months old ABPP/PST mice 30 ug/100 pl, i.v., every 2 weeks,  Alleviate neuroinflammation and AR [111]
four times deposition
ADSCs  Ultracentrifuge  Co-culture N2a cells with ADSCs in serum-free medium for 2-3days  Carry active NEP [112]
Decrease AB levels
RVG- Ultracentrifuge  7-month-old APP/PST mice; B6C3-Tg 5x 10" /100 pl, iv. monthly for Improve learning and memory capabilities ~ [72]
BM- 4 months Reduce plaque deposition
MSC Normalize inflammatory cytokine levels
BM- Ultracentrifuge  APP/PST mice 100 pg/5 pl, i.cv., once per 2 days for 2 weeks Alleviate INOS expression [113]
MSC Improve cognitive behavior
Reduce synaptic impairment and LTP
PC-BM-  ExoQuick 7-month-old APP/PST mice 150 pug/80 ul, iv, biweekly for 4 months  Improve learming and memory capabilities  [114]
MSC Restore synaptic dysfunction
Regulate inflammatory responses
hMSC Ultracentrifuge  hippocampal cells incubated with HMSC-EVs (6 x 10° particles) for Rescue oxidative stress [115]
22 h, add ABOs (500 nM) for 2 h Block synapse damage
Carry active catalase
BM- Ultracentrifuge  Co-culture MSC-exo with hippocampal neurons in serum-free Protect neurons against ABO-induced oxi- ~ [116]
MSC medium for 24 h, add ABOs (500 nM) for 6 h/24 h dative stress and synapse damage
ADSCs  Ultracentrifuge  Incubate NSCs from TG2576 mice with ADSC-exo (200 pug/mL) for Reduce AR levels and neuronal apoptosis [117]
+ ExoQuick 24/48 h
BM- Ultracentrifuge  5-month-old APP/PS1 mice 22.4 ug/4 uL, icv. Reduce AR burden and the amount of [118]
MSC dystrophic neurites
Carry neprilysin
hUMSCs  Ultracentrifuge  Nine-month-old male APP/PS1 mice 2 mg/ml, i.cv., continuously at  Reduce AB generation, inflammation and [119]

0.25 ul/h for 14 days

oxidative stress

Inhibit microglia activity

Improve spatial learning and memory
function

hucMSC human umbilical cord mesenchymal stem cells, ADSCs human adipose tissue-derived mesenchymal stem cells, CM conditioned medium, hMSC human
Wharton'’s jelly mesenchymal stem cells, BM-MSC bone marrow-derived mesenchymal stem cells, RVG rabies viral glycoprotein, LTP long-term potentiation, i.v.
intravenous injection, i.c.v. intraventricular injection, PC hypoxia-preconditioned, ABOs amyloid beta oligomers, NSCs neuronal stem cells
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[124]. The advantage of this method is specific purifica-
tion. However, the antibodies may have weaknesses,
such as short lifespan, nonspecific binding, and cross-
reactivity. (5) Commercial kits are popular in the current
research, including ExoQuick™, Exo-Flow™, and Total
Exosome Isolation Precipitation. The yield of exosomes
isolated with commercial kits is substantial, but the pro-
tocols are complicated and the purity of exosomes is low
[124, 125]. (6) Nano-flow cytometry (Nano-FCM) has
been proved to be efficient in the isolation and quantifi-
cation of exosomes [126]. Compared with traditional
flow cytometry, Nano-FCM could detect the particles
below the size of 200 nm. The disadvantages of FCM are
the multiple nano-particles detected at the same time,
resulting in high signal and inaccurate measurement
[127, 128]. In addition, several emerging technologies
are gradually being applied, such as microfluidic EV iso-
lation techniques and asymmetric flow field-flow frac-
tionation (AF4) [106]. Taken together, isolation methods
with few separation steps will result in high yield but
low purity of exosomes. To date, the standards for exo-
some isolation have not been unified. Therefore, we can
combine multiple methods to improve the separation ef-
ficiency [129].

Several studies indicate that the storage temperature
and freeze-thaw times are able to affect the therapeutic
utility of exosomes. After comparing, researchers suggest
that storage temperature at — 80 °C is the most suitable
condition for long-term preservation of exosomes [130].
Repeated freezing and thawing may not only cause in-
accurate assessment of the size and quantity of exo-
somes, but also induce the loss of cargo. Therefore, the
minimized freeze-thaw cycles will be beneficial to main-
tain the characteristics and functions of exosomes [131].

To date, the administration route and dosage of MSC-
exos are still inconclusive. Experimental results indicate
that the route or schedule of administration may signifi-
cantly influence the dosage of therapeutic MSC-exos
[132]. In addition, further research is also needed to de-
termine the frequency of administration based on the
duration of exosomes in vivo. Of note, it has been shown
that repetitive or sustained delivery of MSC-exos signifi-
cantly enhances their biovailability and efficacy [133].
Importantly, the optimal therapeutic scheme should be
comprehensively determined according to the clinical
condition [132].

Therapeutic properties of MSC-exos in AD

MSC-derived microvesicles were initially proposed to
promote cell proliferation and enhance anti-apoptotic
ability of tubular epithelial cells in acute tubular injury
model in 2009 [134]. Accumulating evidence demon-
strate that MSC-exos possess the ability of modulating
immunity, promoting AP degradation, and ameliorating
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neurological impairments (Fig. 2). In this context, MSC-
exos are considered to be a potential option for the
treatment of AD (Table 2).

MSC-exos promote AP degradation

In the previous studies, B-amyloid is considered as the
production of proteolytic cleavage of the amyloid pre-
cursor protein (APP) by B- and y-secretases [135]. AP
monomers are relatively nontoxic, while oligomers are
the reverse. Actually, the production and degradation of
AB is balanced in the normal brain, while the abnormal
accumulation results in metabolic imbalance. Once the
clearance capacity of lysosomes or glial cells is over-
loaded, the pathogenic protein will be released into
extracellular space and propagate across different brain
areas through the exosome pathway. Clearance of patho-
genic proteins has been shown to be beneficial in the
treatment of AD [136]. Neprilysin (NEP) and insulin-
degrading enzyme (IDE), zinc metallopeptidase, are re-
lated to AP degradation in the brain [137]. In 2000, re-
searchers injected radiolabeled synthetic Ap 1-42
peptide into rat hippocampus and observed that the
brain-derived NEP was capable of proteolyzing peptide
subsequently [138]. In NEP- or IDE-deficient mice, en-
dogenous A levels were elevated in a gene dose-
dependent manner [139, 140]. In the recent research,
MSC-exos with NEP and IEP activity reduced the depos-
ition of AP plaques of AD transgenic mice through
intravenous injection [111, 112]. Therefore, MSC-exos
play an important role in the degradation of AP, reflect-
ing potential of MSC-exos in the treatment of AD.

Immunomodulatory effects of MSC-exos

It is widely indicated that the pathogenesis of AD is
closely related to the immune system. To our know-
ledge, classical neuroimmune cell-to-cell communication
is interacted with membrane [79]. MSCs play an immu-
nomodulatory role through low levels of class II major
histocompatibility =~ complex (MHC-II) and co-
stimulatory molecules on the cell surface [141]. Of note,
MSC-exos containing the immunologically active mole-
cules can regulate the immune cells. For example, MSC-
exos contribute to inhibiting the proliferation and differ-
entiation of lymphocytes [142]. Moreover, MSC-exos are
involved in inducing lymphocytes to differentiate into an
anti-inflammatory type. To our knowledge, MSC-exos
are able to induce conversion of T helper type 1 (Thl)
cells into T helper type 2 (Th2) cells, reduce potential of
T cells to differentiate into interleukin 17-producing ef-
fector T cells (Th17), and elevate the expression of regu-
latory cells (Tregs) [143, 144]. Additionally, several
studies have demonstrated that inflammatory cytokines
and proteins contained in MSC-exos have immunomod-
ulatory effects.
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Fig. 2 The cargo and therapeutic role of MSC-exos in AD. MSC-exos are a subtype of extracellular microvesicles characterized by a lipid bilayer
membrane structure with a diameter of 30-100 nm. Exosomes generally include active cargos such as proteins, lipids, and nucleic acids. In
particular, MSC-exos carry AR degradation-related enzyme (NEP, IDE). The arrows show the therapeutic role of MSC-exos in AD, including AR
degradation, immunomodulation, neuroprotection, and microenvironment effect

Microenvironment effect

Neuroinflammation is emerging as a central patho-
logical process in AD [145]. Excessive accumulation of AP
in the brain triggered the neuroinflammation process.
MSC-exos contribute to immune regulation and neuroin-
flammation amelioration in pathological abnormal areas,
as well as significantly improve the spatial learning ability
and memory impairments in AD transgenic mice [72,
144]. Moreover, MSC-exos contribute to inducing anti-
inflammatory effects by the inhibition of activated micro-
glia, reactive astrocytes, and the release of cytokine [146].

In addition, MSC-exos are able to suppress inflammatory
response through regulating enzyme activity. Ap induce ni-
tric oxide synthase (NOS) in glial cells and then release
high levels of nitric oxide (NO). NO induces neurotoxicity
via inhibition of mitochondrial respiration, resulting in
neuronal cell death [147]. In this context, MSC-derived
extracellular vesicles (EVs) reduce the expression of iNOS
in vitro and alleviate the deficits of APP/PS1 mice in long-
term potentiation (LTP) to CA1 synaptic [113].

Several previous studies suggested that MSC-exos
affect post-transcriptional gene expression and ensue
protein expression in the target cells via the delivery of
miRNAs. miRNAs, small noncoding RNAs, play a key
role in regulating several biological processes such as
growth, inflammation, and angiogenesis. Exosomes con-
taining miRNAs released by MSCs can inhibit the activ-
ity of immune cells and enable their phenotypic
conversion into anti-inflammatory. For example, micro-
glia plays the role of first innate immune defensive line
in brain. When activated, microglia exhibit two different
polarized phenotypes namely M1/M2 [97, 148]. In vivo
and vitro models, elevating the levels of miR-124-3p in
microglial exosomes, result in the inhibition of neuronal
inflammation by promoting anti-inflammatory M2
polarization and contribute to alleviating neurodegenera-
tion [98, 105]. In a previous study, dysfunctional miR-
NAs are related to AD via the observation of altered
miRNA expression profiles in AD brains [149]. The
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levels of miRNA-21 are significantly reduced in the sta-
tus of chronic inflammation and apoptosis. However,
MSC-exos contains high levels of miRNA-21, which
contributes to reducing inflammation and apoptosis
[150]. Furthermore, exosomes from preconditioned
MSCs not only effectively increased the level of miR-21,
but also inhibited NF-«B activation and STAT3 expres-
sion in APP/PS1 mice. Overexpression of miR-21 con-
tributes to rescue memory deficits and regulate
pathologic process [114]. In addition, it has been con-
firmed that MSC-exos containing miR-142-3p, miR-223-
3p, and miR-126-3p regulate dendritic cell maturation
and promote their anti-inflammatory potential in other
disease models. MSC-exos can inhibit the expression of
TRAF6 and IRAKI1 via delivery of miRNA-146a to mac-
rophages, resulting in the downregulated phosphoryl-
ation of NF-kB and reduction of inflammatory factors.
Moreover, it is well known that some miRNAs contained
in MSC-EVs are obviously related to their therapeutic
properties. For example, miR148a, miR532-5p, and
miR378 participate in angiogenesis, cellular transport,
proteolysis, and apoptosis. miR-21, miR-17-92, and miR-
133b are linked to neural damage, and miR-145 is re-
lated to the processes of cellular differentiation [151].

Neuroprotective effects of MSC-exos

Synapse dysfunction, another pathologic hallmark, gen-
erally appears in the early stage of AD, which is directly
related to cognitive impairment. As suggested by recent
findings, hMSC-EVs protect hippocampal neurons via
blocking oxidative stress and synapse damage exposed to
amyloid beta oligomers (APOs) [115]. Additionally, re-
searchers found that the mechanisms of neuroprotection
by MSC-derived EVs are related to containing the en-
dogenous active antioxidant enzyme, catalase [116]. The
expression levels of synaptic proteins are capable of
reflecting the function of synapses to some extent.
Synapsin 1 and PSD95 are synaptic protein involved in
nerve signal transmission and maintaining synaptic in-
tegrity. The exosomes derived from hypoxia-
preconditioned MSCs significantly enhance the expres-
sion of synaptic proteins (Synapsin 1 and PSD95) [114].
Neurite growth and synaptogenesis are controlled in
terms of neuronal development. ADSC-derived exo-
somes decrease the levels of apoptotic proteins (such as
p53, Bax, pro-caspase-3, and cleaved-caspase-3) and sim-
ultaneously downregulate the expression of anti-
apoptotic proteins in vivo and vitro AD models. More-
over, ADSC-derived exosomes were found to increase
the neurite growth of neuronal stem cells (NSCs) from
the transgenic mice TG2576 by measuring the length
and number of neurites [117]. In addition, MSC-exos
are capable of transferring miR-133b into astrocytes and
neurons and promote the recovery of neural function
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[152]. Taken together, MSC-exos play a potential role in
promoting neurite outgrowth and suggest the possibility
of clinical treatment in AD [118].

MSC-exos are affected by extracellular environment

Given different cell sources, the characters of exosomes
vary according to content of cargos, which are affected by
the physiological situation and extracellular environment
[119]. Hence, it is essential to consider the efficacy of MSC-
exos with environment changes. To our knowledge, MSCs
are capable of strong plasticity as stem cells. Several recent
studies have assessed that pretreated MSCs in vitro affect
the contents and biological activities of secreted exosomes.
It was reported that exosomes obtained from hypoxia-
preconditioned MSCs (PC-MSCs) are able to enhance the
therapeutic effect in AD transgenic mice [114]. The advan-
tages of pretreatment group are mainly reflected in improv-
ing learning and memory capabilities, alleviating AP
accumulation, increasing synaptic protein expression, and
suppressing inflammatory response. In recent research,
MSCs were pretreated with GW627368X (a prostaglandin
E2 receptor 4 antagonist), which induced MSC-EVs con-
taining anti-inflammatory cytokines and neuron-supporting
proteins. The induced MSC-EVs suppress astrogliosis and
microglia infiltration, restore BBB integrity, and elevate
memory and learning ability in the hippocampus damage
model [153]. Intriguingly, the abovementioned therapeutic
effects failed to appear in MSC-EVs under conventional
culture condition. Additionally, it is worth noting that
MSCs likely modify the characteristics of exosomes in
pathological conditions. In turn, there are studies which
show that MSC-EVs contributed to altering cellular meta-
bolic microenvironment through carrying biologically active
components [154]. Therefore, the continuous optimization
of MSC pretreatment methods, at least to some extent,
may enhance the therapeutic potential of MSC-exos in AD.

Clinical trials of MSC-exos in AD

Despite the results of previous experiment are promising,
few on-going or completed clinical studies have explored
the potential role of MSC-exos in clinical trials [96]. After
consulting the database, there is a clinical trial now listed
at www.clinicaltrials.gov utilizing MSC-exos. Researchers
from the Shanghai Jiao Tong University School of Medi-
cine decide to evaluate the safety and effectiveness of
MSC-exos in patients with mild to moderate dementia
(NCT04388982). This clinical trial plans to recruit 9 pa-
tients to participate in the study. Patients will be given
three doses of low, medium, and high (5 pg, 10 pg, 20 pg)
MSC-exos twice a week, respectively, for 12 weeks via
nasal drip as planned. In the primary stage of trails, pa-
tients will be measured for the functions of liver or kidney
and treatment-related adverse events. Cognitive function,
quality of life, and neuroimaging will be evaluated during
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the secondary stage of trails. Although the clinical trials of
MSC-exos in the treatment of AD have not yet been done,
promising results have been confirmed in other diseases
(NCT03562715, NCT04356300, and NCT04134676). It is
encouraging that MSC-exos can ameliorate inflammation
and improve kidney function of grade III-IV chronic kid-
ney disease (CKD) patients in a phase II/III clinical pilot
study. Of note, during the 1 year follow-up, no adverse
events related to the administration of MSC-exos were
found in subjects [155]. In addition, the therapeutic effects
of MSC-exos after stroke have been explored in the clin-
ical trials conducted at Isfahan University of Medical Sci-
ences (NCT03384433). Subjects were given allogenic
MSC-exos transfected by miR-124 via a stereotactic tech-
nique. During the 1-year follow-up, subjects have been
monitored for treatment-related adverse events, such as
brain edema, deteriorating stroke, stroke recurrences, and
hemorrhagic transformation. This study was completed in
December 2019 and the results are unannounced. There-
fore, based on the experience of successful clinical trials in
other diseases, the results of MSC-exos in AD clinical tri-
als are promising.

Advantages and challenges for MSC-exos in the
application of AD therapy

Accumulating evidence suggest that MSC-exos possess
superior safety profile, anti-inflammatory effects, min-
imal immunogenicity, and low risks of tumor formation
[99, 156, 157]. Unlike MSCs, exosomes cannot replicate,
which contribute to avoiding uncontrolled division. This
feature of exosomes greatly reduces the risk of tumor
formation during the process of proliferation [151]. Exo-
somes can also avoid mutations and DNA damage caused
by cell transplantation [158]. Due to nanometric size,
MSC-exos reduce the possibility of vascular obstruction
and cross blood-brain barrier easier [159]. Moreover, the
surface of MSC-exos could be modified and exploited into
engineered exosomes, which can bind the ligands with tar-
get specific cells and escape immune responses [129]. The
low immunogenicity of MSC-exos makes allogeneic appli-
cations possible [160]. In addition, engineered exosomes
can increase the drug concentration of target organs and
achieve personalized treatment effects. From the produc-
tion perspective, mesenchymal stem cells (MSCs) possess
biological characteristics of multi-differentiation potential
and are effortless to proliferate and store. In addition,
MSCs can not only produce high quantities of exosomes,
but also ensure that the composition does not change sig-
nificantly, which are appropriate to large-scale production
[161].

As a therapeutic agent, MSC-exos still face great chal-
lenges. The main reasons may be attributed to the follow-
ing points. (1) The isolation, storage, and purification
protocols of MSC-exos still need continuous majorization
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and standardization to enhance the comparability and re-
producibility. Since the conventional isolated methods
mainly depend on density and size, some substances (lipo-
proteins, virus, etc.) may overlap with their characteristics,
resulting in incomplete removal. Clinical applications de-
pend on time-saving, low-cost, and convenient methods,
but the existing separation methods obviously do not meet
these conditions. In addition, in order to promote the de-
velopment of effective biomarkers for exosomes, sensitive,
accurate, and rapid quantitative methods are essential. (2)
The therapeutic effects of MSC-exos in promoting neurite
growth may vary depending on the source of MSCs [162].
However, due to the significant differences in the route of
administration, dosage, separation protocols, and disease
model, it is difficult to determine the specific source of
MSC-exos with higher therapeutic potential. (3) Some
detrimental cytokines of MSCs are secreted through para-
crine effects, suggesting that it is essential to clarify the
contents of exosomes and eliminate interference from un-
known secretory factors. (4) Several critical technological
issues have not yet been resolved, such as side effect of
drugs, optimal dosage, and route of administration [163].
Due to the complex biological composition of exosomes,
the difference between exosomes and single medication
should be considered in the application process [160].
More experimental works are needed to be carried out be-
fore extensive clinical trials. Determining the specific
therapeutic molecules of MSC-exos is worth noting in fur-
ther research [132]. (5) The value of exosome as delivery
vehicles required to be fully evaluated and directly com-
pared with existing viral vectors and biosynthetic vectors
[160].

Conclusion

Although much effort has been invested in AD, the
achievements seem to be unsatisfactory [164]. The previ-
ous works in AD therapeutics focused on the amyloid
hypothesis. Unfortunately, almost all phase III clinical
trials ended in failure, which suggest that other existing
important pathological mechanisms are involved in the
cause of AD [165]. As a novel cell-free therapeutic agent,
MSC-exos have unparalleled advantages over cell-based
therapy, which are considered to be a promising alterna-
tive in the therapy of AD.
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