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Social Determinants of Health Factors for
Gene–Environment COVID-19 Research: Challenges and
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The characteristics of a person’s health status are often guided by how they
live, grow, learn, their genetics, as well as their access to health care. Yet, all
too often, studies examining the relationship between social determinants of
health (behavioral, sociocultural, and physical environmental factors), the role
of demographics, and health outcomes poorly represent these relationships,
leading to misinterpretations, limited study reproducibility, and datasets with
limited representativeness and secondary research use capacity. This is a
profound hurdle in what questions can or cannot be rigorously studied about
COVID-19. In practice, gene–environment interactions studies have paved the
way for including these factors into research. Similarly, our understanding of
social determinants of health continues to expand with diverse data collection
modalities as health systems, patients, and community health engagement
aim to fill the knowledge gaps toward promoting health and wellness. Here, a
conceptual framework is proposed, adapted from the population health
framework, socioecological model, and causal modeling in gene–environment
interaction studies to integrate the core constructs from each domain with
practical considerations needed for multidisciplinary science.
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1. Introduction

As the COVID-19 pandemic has ig-
nited public health crises across the
globe, attention has been called to how
unaddressed vulnerabilities and social
needs have exacerbated an already com-
plex problem. Social disparities in health
have deeply impacted COVID-19 mor-
bidity and mortality.[1] These disparities
are apparent when evaluating available
data, which, despite being limited by
underreporting of race and ethnicity,[1,2]

are of utmost importance to understand
why the pandemic has disproportion-
ately affected racial and ethnic minori-
ties and other disadvantaged or discrimi-
nated against populations in the United
States. In particular, high rates of mor-
bidity and mortality have characterized
the African American, Hispanic, Native
American, and Asian Pacific Islander
communities.[3]
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In addition to social factors, there is a need to understand the
contribution of genetic factors to COVID-19-related health out-
comes. Host genetics, such as the ABO blood group and genes re-
lated to inflammatory pathways, have been highlighted as poten-
tial risk loci for severe COVID-19.[4,5] On the other hand, ongo-
ing research in viral genetics is seeking to understand how strain
variations may confer differences in transmissibility, infection
severity, and pathogenicity.[6] However, host and viral genetics
do not occur in a vacuum: they act in concert with socioenviron-
mental factors that may modify individual genetic risks and phe-
notypic outcomes. Gene–environment (GxE) interactions help to
frame genetic risks in the larger socioenvironmental context in
which they occur. When investigating variations in genetic risks
across populations, GxE interactions are useful for generating hy-
potheses and for modeling how disease risk, severity, and out-
comes change depending on the interplay of environmental and
genomic factors.
With focus on the situation in the United States of America

(USA), in this perspective, we aim to provide readers the under-
standing of the independent and joint impacts of social determi-
nants of health (SDoH) features and genetic risk factors, coined
as the GxSDoH encompassing the traditional GxE interactions
at the molecular level, on individuals’ vulnerability and suscepti-
bility to COVID-19 to guide research, health care, and policy re-
lated to COVID-19. However, gaining a better understanding of
the interactions between these macro–micro-level factors is com-
plicated by a series of challenges, which we address in the follow-
ing sections.

1.1. Health Disparities and Social Determinants of Health

Health disparities are defined as the health differences that ad-
versely affect disadvantaged populations based on one or more
health outcomes. Health outcomes considered include: 1) higher
incidence or prevalence, earlier onset or more aggressive pro-
gression of disease; 2) premature or excessive mortality from
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specific conditions; 3) greater global burden of disease, as mea-
sured by population healthmetrics such as disability-adjusted life
years; 4) poorer health behaviors and clinical outcomes related
to the aforementioned; and 5) worse outcomes on validated self-
reported measures that reflect daily functioning or symptoms
from specific conditions.[7]

Health disparities may result from social constructs and be-
havioral factors, from genetically determined biological features,
or from a combination of all. In the context of disadvantaged pop-
ulations the primary driver of health disparities are the social
constructs imposed on these populations. In situations where
discrimination has shaped societal organization, social factors
significantly impact health outcomes, such that it may lead to
stronger inter-individual variations than those associated with bi-
ological and behavioral factors. In these situations, the social fac-
tors should not be overlooked when assessing inter-individual
variations. The United States Department of Health and Hu-
man Services defines SDoH as “the factors in the environment
in which people live, work, learn, and age that affect a wide
range of health conditions, functioning, risks, and quality-of-life
outcomes.”[3] Figure 1 illustrates how an individual’s risks of
health outcomes are influenced by an array of behavioral, socio-
cultural, and physical environmental factors, as well as by clini-
cal events and the health-care systems the individual has access
to[3,7–10] (Figure 1). The list of social determinants of health re-
ported in Figure 1 is nonexhaustive and, for system-level fac-
tors, limited in scope to the health care and biomedical research
fields. Moreover, the categorization of many such determinants
as individual-, community-, or system-level factors is dependent
upon the scale being considered, and thus is hardly univocal.
Several studies have attempted to quantify the impact of SDoH

onhealth. A review byMcGinnis et al. estimated thatmedical care
is responsible for only 10–15%of preventablemortality in theUS,
attributing the rest to other determinants.[11] Mackenbach’s stud-
ies suggest that the true percentage may be even lower.[12,13] Both
authors stress the importance of assessing the impact of social
factors. In ameta-analysis, Galea et al. suggested that the number
of US deaths attributable to a lack of access to quality education,
lack of social support, and racial segregation were comparable to
the deaths attributable to myocardial infarction, cerebrovascular
disease, and lung cancer respectively.[14]

Among the SDoH, Socio-Economic Status (SES) is a construct
closely related to health disparities. SES includes factors such as
income, net worth, and educational attainment.[15] Because the
US inconsistently monitors SES in terms of health outcomes,
it is often challenging to determine the magnitude of its ef-
fect. However, research studies of US and European populations
have shown that health improves proportionally as social posi-
tion rises.[16–20] Marginalized groups with lower SES characteris-
tics often receive less treatment when compared to their white
counterparts, which may contribute further to the disparity.[21]

While the greatest levels of disparities occur at the intersec-
tion of low SES and historically disadvantaged racial and eth-
nic groups,[22] racial and ethnic health disparities persist even in
higher SESminority groups[15,22] and after controlling for socioe-
conomic factors.[18,20] For example, disparities in birth outcomes
between blacks and whites are most pronounced among highly
educated women, with highly educated black women experienc-
ing nearly double the rate of infant mortality.[23] This implies that
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Figure 1. Social determinants of health (SDoH). This nonexclusive list of social determinants of health is categorized into individual-, community-, and
system-level factors, with a representation of how these interact with each other.

health disparities are not attributable to socioeconomic factors
alone. In fact, structural racism and discrimination are aspects
of SDoH that may directly impact health, wealth, and other social
resources, as well as exposure to violence and bodily harm.[24,25]

A variety of general and disease-specific mechanisms have been
identified linking racism to health outcomes in cardiovascular
disease, mental health, birth defects, and other conditions.[26]

Racism has also been shown to damage health through psycho-
biologic pathways by acting as a pervasive stressor,[27] and re-
mains to this day a fundamental cause of persistent health dis-
parities in the United States.[28]

There are dangers associated with reductive approaches and
the naïve inclusion or interpretation of SDoH in analyses. Extra
care must be taken, as SDoH often fall along disadvantaged
ethnic and racial lines: the effects of ethnic and racial discrimi-
nation may be misinterpreted as a mere consequence of genetic
correlations. It is therefore essential to distinguish between the
concepts of genetic ancestry, cultural ancestry, race, and ethnic-
ity, as their use in biomedical literature can differ from their use
in other academic disciplines or from common use (Table 1).
In particular, genetic ancestry refers to the description of the
population(s) from which an individual’s recent biological an-
cestors originated, as reflected in the DNA inherited from those
ancestors.[29] Genetic ancestry can be estimated via comparison
of participants’ genotypes to global reference populations via the
set of genetic variants due to differences in allele frequencies

between populations. Cultural ancestry refers to the set of
shared cultural characteristics within a group of individuals—
characteristics that have little to no underlying causal/biological
link to genetic features. or other characteristics. Race and ethnic-
ity are highly context-dependent, socially driven, and inextricably
linked to many social and power dynamics.[3,32–36] The term race
refers to any one of the groups that human beings are often
divided into based on physical traits or ancestry.[29,30] Ethnicity
is commonly used to refer to large groups of people classed ac-
cording to common racial, national, tribal, religious, linguistic,
or cultural origin or background.[29,31] The term genetic ancestry
is a modern term specifically used to disambiguate the features
(particularly health related ones) arising purely from genetic
variation associated with racial and ethnic groups from the social
factors that drive the largest health disparities amongst histori-
cally discriminated racial and ethnic groups. The terms Race and
Ethnicity more often refer to administrative or demographic clas-
sifications such as those used by the US Office of Management
and Budget for reporting of race and ethnicity for US, federally
funded research according to standards set in 1997. This leads
to heterogeneous recording of race and ethnicity, because of
their context-dependent nature and differing administrative
definitions and uses. Descending from some of such dynamics
are racial and ethnic disparities in health care, which refer to
the unequal services received or differences in measures of
health between populations.[21] As we have seen, such health
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Table 1. Definitions of key concepts discussed in this paper.

Demographics Particular characteristics of individuals or populations. These represent a number of physical, social, economic, and administrative domains.
Examples include age, race, gender, ethnicity, religion, income, education, home ownership, sexual orientation, marital status, family size, and
disability status.[38]

Social determinants
of health (SDoH)

The conditions in which people are born, grow, work, live, and age, that influence health outcomes, and the forces and systems that shape them.
These forces and systems include economic policies and systems, development agendas, social norms, social policies, and political systems.
They are shaped by the distribution of money, power, and resources at global, national, and local levels.[3,32,34]

Race Any one of the groups that human beings are often divided into based on physical traits or ancestry.[30] Race is a culturally and politically charged
term, for which definitions and meaning are context-specific. It is related to individual and/or group identity, and is often linked to stereotypes
of visible physical attributes such as skin and hair pigmentation.[29]

Ethnicity Large groups of people classed according to common racial, national, tribal, religious, linguistic, or cultural origin or background.[31] Ethnicity is
used to describe people as belonging to cultural groups, usually on the basis of shared language, traditions, foods, etc. It is often used
interchangeably with “race,” and is similarly ambiguous.[29]

Genetic ancestry Genetic ancestry refers to the description of the population(s) from which an individual’s recent biological ancestors originated, as reflected in
the DNA inherited from those ancestors. Genetic ancestry can be estimated via comparison of participants’ genotypes to global reference
populations via the set of genetic variants due to differences in allele frequencies between populations. These genetic variants, sometimes
called ancestry informative markers, may or may not have biological consequences related to health outcomes, however biological
consequences are generally related to variants with Mendelian inheritance patterns that have become prevalent in a population due to founder
effects. Different methods of calculating genetic ancestry can yield different results. Genetic ancestry also influences the population
distribution of polygenic risk.[29,39]

Cultural ancestry Cultural ancestry (or cultural heritage in some definitions) refers to the set of shared cultural characteristics within a group of individuals. These
may be religious, political, linguistic, or other cultural traits. Deep cultural ancestry, which is the pattern of shared traits which may persist over
hundreds or thousands of years, can be assessed using factors like shared linguistics.[40]

Racism Racism is “an ideology of racial domination” in which the presumed superiority of one group is used to accrue power and privilege and justify or
prescribe the inferior treatment or social position(s) of others. Racism can be institutional, interpersonal, or internalized.[41]

Discrimination Discrimination refers to the unequal treatment of individuals or groups based on some demographic characteristic, such as race, sex, religion,
etc.[35]

Disparity Disparity refers to unequal outcomes achieved or experienced by different demographic groups (e.g., income, home ownership, education,
health, etc.).[42]

These definitions are representative of the current understanding of these concepts at the time of writing. As the general public and academic understanding of these concepts
evolves over time, it is important to frame research questions accordingly.

disparities are primarily rooted in nonbiological factors, such as
socioeconomic status. However, genetics still plays a role in how
diseases manifest themselves and thus can play a supporting
role in reducing health disparities.[37] With respect to analyzing
and interpreting SDoH data, it is incumbent upon researchers
to ensure that the relative contributions of both biological and
nonbiological factors of disease manifestation are adequately
explored.

1.2. SDoH and COVID-19 Outcomes

COVID-19 acted as a magnifier of pre-existing health dispari-
ties: the pandemic further illuminated how little attention was
directed to understand and address the social factors contribut-
ing to the disparities.[43] The prolonged disruption and lack of
a coordinated pandemic response exacerbated the baseline sit-
uation, escalating the prevalence of vulnerabilities in all seg-
ments of society.[44] It is still unclear how the burden of stres-
sors from these events may have shaped individual health, vac-
cine efficacy, or the very genetics of the affected communities.
Some social risk factors, such as essential worker occupations
or multigenerational living arrangements, may have conferred
risks toward viral infection or may have played a beneficial role
toward incident recovery.[44] Research into COVID-19 dispari-
ties is challenged with disentangling the SDoH, genetic factors,

gene–environmental effects, and their interactions that impacted
COVID-19 outcomes. A few examples of the role played by the
SDoH in the pandemic are provided below.

• Income: Prior to the pandemic, poverty rates in the United
States were 24% for Native Americans, 22% for African Amer-
icans, and 19% for Hispanics, compared to 9% for Whites.[45]

Certain disadvantaged racial and ethnic minority groups,
whose financial capacity already constituted a health burden
due to high health-care costs (the median wealth of African
American households is ten times less than themedian wealth
of white households)[46] were met with prolonged, deteriorat-
ing socioeconomics in the course of the pandemic.[47] If sick,
some jobs do not provide leave benefits, so individuals face un-
employment. As the unemployment rate reached an all-time
high, entire household were at risk of being uninsured due to
loss of job-sponsored health insurance.

• Working Conditions: African Americans and Hispanics com-
prise a disproportionate percentage of essential workers,[48]

who are not granted flexible work arrangements allowing them
to work from home.[49,50] In the United States, of the nearly
200k health-care worker deaths reported by September 21,
2020, a disproportionate number wereminorities (case-fatality
ratios: 2.65 for non-Hispanic Asians, 1.56 for non-Hispanic
Blacks, and 1.14 for Hispanic/Latino).[51] These effects are
compounded by pressure to go into work despite being sick
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(contagious presenteeism) inmany occupations, due to lack of
paid sick leave.[52] Indeed, half of the US workforce does not
have paid sick leave and disproportionately so in service sector
jobs.

• Living Conditions and Food Insecurity: Living conditions such
as housing insecurity and subpar housing, scarcity of potable
water, high crime, and multigenerational households increase
the risk of COVID-19 exposure and/or predispose minorities
to worse health outcomes.[1] African Americans and Hispan-
ics are also overrepresented among jail populations, which
are exposed to crowding and suboptimal living conditions.[53]

Minorities also tend to have less access to healthy and nutri-
tious foods, which may contribute to negatively affecting their
health.[1]

• Access to and Quality of Health Care: Since they are over-
represented in low-wage jobs that do not provide health
benefits,[54,55] minorities are less likely than Whites to have ac-
cess to employer-provided health insurance.[56] Due to struc-
tural racism and physician bias, minorities also receive lower
quality care: they are, for example, less likely to have their pain
appropriately diagnosed and treated and experience longer
waiting times to see a provider.[57,58] Health-care facilities that
serve areas where disadvantaged groups live also tend to be of
lower quality.[59]

• Immigration Status, Health Literacy, and Language Proficiency:
Factors often associated with immigration status (such as ex-
clusion from insurance coverage eligibility, mistrust of medi-
cal institutions, and limited language proficiency or health lit-
eracy) also hinder minorities’ ability to get adequate care.[1]

• Environmental Factors: In the United States, air pollution is
among the environmental disparities that are pervasive among
racial and ethnic minorities and low SES communities[60] by
way of occupation, building ventilation or lack thereof,[61] per-
meability of homes,[61,62] and closer proximity to pollution
sources, such as industrial sites[63] or major roadways.[64] Air
pollution exposure is known to decrease immune function,[65]

increase local and systemic inflammation due to oxidative
stress leading to increased risk of cardiovascular, respiratory,
and metabolic disease,[66,67] as well as increase expression
of proinflammatory genes and decrease expression of anti-
inflammatory genes,[67,68] possibly increasing susceptibility to
COVID-19. Other environmental exposures, such as exposure
to common water perfluoroalkyl and polyfluoroalkyl contam-
inants found in up to 98% of the US population[69] may also
decrease the efficacy of vaccines.[70]

2. Expand GxE to GxSDoH: A Conceptual
Framework

GxE studies occupy a unique place in epidemiology because they
identify individuals and groups whose risk differs from that of
either marginal effects, i.e., those with only the genetic feature
or the environmental risks alone.[71] Key genes perturbed by en-
vironmental stressors resulting in disease outcomes have been
observed for the effects of smoking,[72] air pollution,[73–75] pesti-
cide exposure,[72] lead,[72,76] and physical activity.[77] In terms of
the COVID-19 pandemic, one needs to consider the GxE inter-
actions at different biological scales, beginning with the host ge-
netics all the way to SDoH that may impact outcomes (Figure 2).

Figure 2. The micro to macro scale of GxE interactions. At the micro
level, the host genetics and epigenetics interact to generate the transcrip-
tome and allostatic processes, which manifest at the individual level of
host–virus interaction, reflected by the host immune response. Those
micromolecular level interactions then interact with or are impacted by
the host’s behavioral responses, medical interventions, health-care access
and systems, and other SDoH factors.

GxE studies often require large sample sizes, the availability of
cohorts with both genetic and environmental exposures (broadly
speaking as even behaviors are included here), and proper study
designs. For some exposure effects, a long follow-up time may
be required in order to observe an outcome or identify suscepti-
ble time periods of exposure.[72] Many observed interactions are
either related to absorption or metabolism of a pollutant (e.g.,
GSTM1 and air pollution for cardiovascular disease)[78] or are re-
lated to exacerbation of existing risk (e.g., FTO genotypes and
physical activity for body mass index).[77] Much of the limitations
surrounding gene–environment interactions (sample size, lon-
gitudinal follow-up, outcome assessment) could be solved using
novel resources like electronic health records (EHRs) or digital
health devices. However,most EHR systems do not routinely cap-
ture or integrate patient level detailed genetic information be-
yond targeted testing to explore.[79] With increasing availability
of genomics data (e.g., biobank data, GWAS, exome and whole
genome sequence data) and technologies such as FHIR, more
and more clinicians will be able to access or integrate genomic
data with EHR data to explore genetic-phenotypic associations at
the point of care.
Recently, adaptations have examined genome-wide associa-

tions and epigenetic changes explained by racial identity as black
African American[80] or socioeconomic position.[81,82] However,
these studiesmay reveal the primary limitation in further SDoH–
gene interaction studies, which is that few datasets are available
that have collected both relevant genetic data as well as relevant
SDoH information at the individual or community level. This
may change in the future as the increased usage of area-level
measures for SDoH, e.g., USCensus, AmericanCommunity Sur-
vey (ACS), Social Vulnerability Index, allows cohorts initially con-
ceived to study environmental exposures such as air pollution via
residential location information, to be adapted to study SDoH.
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Figure 3. GxSDoH interactions conceptual framework. SDoH encompass personal behavioral, physical-environmental, social-cultural, clinical, and
health-care systems factors, which are all interacting with each other. In addition to host genomics, the totality of SDoH or each component of the
SDoH interacts with virus genetics, host virus interactions and COVID-19 clinical outcomes. The virus genetics and host genomics contribute to the
host virus interactions. The COVID-19 clinical outcomes are influenced by the impact of SDoH, host virus interaction and host genomics, and vice versa.

Relevant social factors for understanding the impact of SDoH–
gene interactions for COVID-19 also vary in scale from the indi-
vidual (essential worker status) to the national (vaccination pro-
grams). Within each of these scales there will be a variety of po-
tential biological drivers of the ongoing pandemic that may be re-
vealed through gene–environment interactions and may inform
responses to future pandemics. Uncovering these, will require
increased collaboration between researchers in SDoH fields and
those who generally study GxE interactions. However, hurdles
such as mechanistic evaluation in vivo and in vitro models re-
main.
The COVID-19 pandemic accelerated the global effort of col-

lecting patient level genomics, exposure, and SDoH data. There-
fore, the pandemic provided an opportunity to expand the tradi-
tional GxE model to the GxSDoH model. However, SDoH fea-
tures, such as those not necessarily directly mediated through
behavior or chemical contaminants, are not frequently studied
within the GxE interaction domain. The statistical models that
are used to find and describe GxE interactions are perfectly suited
to the study of almost any SDoH if the necessary genetic, expo-
sure, and confounder information could be gathered. In fact, us-
ing conceptual models for gene–environment interactions such
as those developed by Ruth Ottman[71] will allow researchers to
build GxSDoHmodels upon the existing conceptual and statisti-
cal frameworks for gene–environment interactions.While SDoH
do present new considerations in the interpretation of these inter-
actions, the frameworks for considering joint risk from genetic
and nongenetic factors will remain largely the same (Figure 3).
Figure 3 highlights a potential conceptual framework for GxS-
DoH interactions that while somewhat expanded, e.g., to include
both host and virus genetic/genomic factors, is still consistent
with existing GxEmodels for general gene–environment interac-
tions under the context of COVID-19. In this framework, SDoH
factors impact the dynamics of virus genetics, host–virus inter-

action, and COVID-19 clinical outcomes, and vice versa. The in-
creased susceptibility of the host due to genomic factors such as
epigenetics, which are in part driven by SDoH, impacts the host–
virus interactions and the COVID-19 outcomes that interact with
and are influenced by SDoH. The COVID-19 clinical outcomes
are determined by the interplay of SDoH, host–virus interaction
and host genomics. Many mathematics or statistical models can
be drawn from this conceptual framework to study COVID-19
and SDoH.

3. Genetics of COVID-19

SARS-CoV-2 and COVID-19 are still novel, and there are signifi-
cant gaps in our knowledge about virus genetics, how virus-host
interaction may be influenced by host genetics, and how GxE
might impact either or both. Here we highlight some of what
is known on the topic, and how SDoH might play a role in our
understanding and be incorporated into future research.

3.1. Host–Virus Interaction and Social Determinants

The SARS-CoV-2 mRNA virus, with a genome of ≈30k nu-
cleotides, encodes for structural proteins, such as the spike (S),
envelope (E), membrane (M), and nucleocapsid (N) proteins.[83]

The virus’ genetic diversity, pilfered from host cellular in-
gredients, determines its transmissibility, pathogenesis, and
virulence. As the SARS-CoV-2 virus proceeded to evolve,
multiple new strains potentiate concerns of transmissibility and
pathogenicity.[84] In South Africa, the 501Y.V2 strain (later known
as the SARS-CoV-2 “beta variant”) emerged in October 2020
as substantially more transmissible than the original observed
strain. Although hospitalization rates appeared to be similar
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between the 501Y.V2 strain and previous strains, in-hospital
mortality escalated 20% higher with the 501Y.V2 strain.[4] Also
detected around October 2020, the B.1.617 strain, also known
as the SARS-CoV-2 “Delta variant,” has mutated spike proteins
similar to the Alpha and Beta variants but has shown to be more
virulent and pathogenic to the infected hosts. Since then, Delta
has become prolific, adopting genetic variations between infected
hosts, meriting new concepts of classifying the viral lineage as
Delta-plus. On 26 November 2021, WHO designated the variant
B.1.1.529 a variant of concern, named Omicron. The S protein
of the Omicron variant harbors an unusually high number of
mutations, which may contribute to Omicron’s higher ability of
infecting convalescent individuals as compared with previously
circulating variants. Hoffmann et al. also reported the possibility
of the Omicron variant’s ability to evade the neutralization by
antibodies from vaccinated individuals.[85]

COVID-19 gives us an example of how pathogen genetics
may interact with SDoH to alter related health outcomes. Often,
marginalized communities such as foreign-born workers are
more likely to be classified as “essential” workers compared to
the native-born population in the USA.[86] Essential workers
are far more likely to test positive for SARS-CoV-2 than the
general community,[87] which means they are more likely to be
exposed to, contract and, consequently, be hospitalized with new,
more transmissible, and more deadly viral variants.[86] Thus,
understanding COVID-19 morbidity and mortality risks in
these individuals is dependent both on their likelihood of being
exposed and the genetic makeup of the viral variant exposure
which may differ from that in the general population. This
public health risk, which may be best modeled as an SDoH–
pathogen–genetics interaction, is key to effective deployment of
resources to communities more likely to be infected with more
pathogenic versions of the virus. It is important to note that this
SDoH–pathogen–genetics interaction may also extend to the
household in which essential workers frommarginalized groups
live as household members. The emergence, prevalence, and
various transmission rates of SARS-CoV-2 variants among dif-
ferent countries or continents shows another evidence of social,
political, and public healthmeasures impacting the virus’ genetic
evolution.

3.2. COVID-19 Outcomes and Genetic Susceptibility

Host genetic variability plays a role in determining an individual’s
susceptibility to COVID-19 and likelihood to matriculate worse
health outcomes. Substantive research has explored the role of
key genetic markers in the infection of Angiotensin-Converting
Enzyme 2 (ACE2)[88,89] and Transmembrane serine protease 2
(TMPRSS2),[89,90] though these sources of diversity have not ex-
posed notable polymorphic attributes to protect the susceptible.
For example, genetic variability in the immune system across the
3 major histocompatibility complex (MHC) class I genes have
been shown to affect an individual’s susceptibility to and sever-
ity of COVID-19.[91] The potential role of epigenetic modulation
along the renin-apoptosis and pro-inflammatory pathways acti-
vated by SARS-CoV-2[92–94] has also been hypothesized to explain
worse health outcomes in patients with pre-existing comorbidi-
ties, such as Diabetes.[95,96] Diabetes elevates activation of the

renin-apoptosis and pro-inflammatory pathways, which are tar-
geted by SARS-CoV-2,[92] highlighting the hypothetical role of
epigenetic modulation and why some patients may be predis-
posed to develop more severe COVID-19 or experience the se-
quelae at higher rates once infected. Once exposed, SARS-CoV-2
activates its receptor and modulators, the ACE2 and TMPRSS2,
eventually triggering the immune response, potentially multisys-
tem inflammation, apoptosis, and further transmission to other
hosts.[88,90]

3.3. Pandemics and Other Mass Casualties Exacerbated by GxE
Interactions

Epigenetic GxE interactions may have unique influence morbid-
ity and mortality of COVID-19 patients, as “prepandemic” epige-
netic states may result in health-relevant GxE interactions as well
as epigenetic states altered by the stress of the pandemic, which
may exert effects on this generation and beyond. Apart from the
immediate health effects, traumatic loss and widespread disrup-
tion from the pandemic are comparable to historic tragedies and
disasters, where environmental exposures have been associated
with multigenerational health risks transmitted epigenetically
along stress pathways.[97,98] For example, chronic exposure to
racism has been associated with poorer health outcomes among
African Americans and their offspring due to elevated cortisol
during pregnancy, increasing risk of preterm births and low birth
weight, leading to a higher risk of metabolic dysregulation as
the infants become adults.[99] Similarly, exposure to environmen-
tal pollutants can result in epigenetic changes, as seen Hispanic
farm workers exposed to pesticides, which lead to increased risk
ofmetabolic disorders trans-generationally,[100] implying a poten-
tial epigenetic mechanism. During the Dutch famine of 1944–
1945, prolonged nutritional deficits among women who were
pregnant during this period is associated with multiple gener-
ations of offspring with increased neonatal adiposity, increased
adult BMI, and overall poorer health.[97] Thus, in a GxE model
historical (possibly even in previous generations) socially driven
stressors may be both inducers of particular epigenetic states—
some of which are certain to confer higher risks—which may
interact with current experienced environmental social factors,
such as lack of available hospital resources in lower-income areas,
to alter COVID19 outcomes. Thus, we would have historical so-
cial stressors manifesting as a genomic factor, the “G,” and com-
bining with current social environment (“E”) to jointly impact
COVID19 outcomes. However, care must be taken in assessing
transgenerational effects as biases with health-care access may
confound the association. Furthermore, the breadth of longitudi-
nal effects from the COVID-19 pandemic are yet to be studied.

4. Practical Considerations for GxSDoH Research

4.1. Leveraging Traditional GxE Tools and Methods for GxSDoH

Research focusing on GxE interactions has integratedmany tools
and methods borrowed from a variety of fields, from epidemiol-
ogy to molecular genetics. These tools and methods require that
both the susceptible genetic make-up and the environmental ex-
posures are present to garner a response. SDoHs include a wide
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Figure 4. Scale of multicollinearity between social determinants of health and genomics (100–102). The intersection between genomics factors and
SDoH can occur at multiple points in the disease process and influence the exposure and outcomes of interest.

variety of social influences that impact outcomes differently. This
complicates their study. However, there are several clinical and
research targets that may intersect both GxE and SDoH research
(Figure 4).
Some examples of tools used in GxE analysis, that could be

used as a template for SDoH research, include CGEN, the PhenX
Toolkit, and the National Center for Biotechnology Information’s
(NCBI) database of Genotypes and Phenotypes (dbGaP). CGEN
is an R package for GxE analysis and is an open-source codebase
useful for reproducibility in assessing genome-wide and cumula-
tive risk for SNPs in case-control data.[101] The PhenX toolkit is a
repository of protocols to assist in standardizing human genomic
research,[102] and establish methods to assess the GxE interac-
tions, including SDoH and COVID-19.[103] The PhenX toolkit
is searchable and is compatible with dbGaP so researchers can
easily utilize the protocols to suit their needs. These protocols,
which can play an important role in research design as in vitro/in
vivo methods, are hard to adapt for SDoH. The NCBI dbGaP is
a registry system for meta-data about the genotypic and pheno-
typic studies for controlled access data. It is a very rich resource
for the phenotypic and measurement data for genomic studies.
However, the dbGaP contains very limited SDoH data elements,
such as smoking status, education level and maybe income level.
There are criticisms about the subpopulation and conditions rep-
resented by the dbGaP data.[104] To date, there is currently no
database collecting SDoH data and genomics data as comprehen-
sive as dbGaP collecting phenotypes and genotypes data. Newly
created COVID-19 genomics databases, such as the COVID-19
Host Genetics Consortium, may be a venue to start collecting
SDoH and genomics data systematically for SDoH and COVID-
19 research.
Due to the inherent interactions between SDoH, a variety of

statistical and modeling methods will be required to parse out
the meaningful role and directionality contributed from each
interaction.[71,79] Besides the aforementioned tools, definition of
the interaction scale is a critical consideration that guides the
methodology andGxE analysis plan.Within GxE interactions, ad-
ditive and multiplicative interactions have larger magnitudes of

exposure effect that differs between genotypes.[71] Multiplicative
and synergistic interaction provides more useful information in
discerning the impact of an exposure on disease whereas additive
interactions are more useful in identifying disease prevalence.
Existing GxE and epidemiological models provide frameworks to
evaluate additive andmultiplicative interactions; additional mod-
eling methods are needed to account for biases associated with
sampling approach, individual versus community-level findings,
and the complex variability not explainable by singular or paired
interactions alone.

4.2. GxSDoH Informatics: Data Collection, Data Sources, Quality,
Methods, and Standards

GxE studies require large sample sizes to detect an effect and can
be computationally expensive. Additionally, there are multiple
study designs and analyticmodels to consider inGxE analyses.[96]

Chemical environmental exposures are often complex and mul-
tifaceted, requiring knowledge about the chemical(s) and their
bioavailability, dose, route of exposure, metabolism/excretion,
and timing of exposure. SDoH can be more complex, requir-
ing knowledge about the society in which they occur, individual-
level and area-level indicators, and timing of SDoH exposure
with respect to the outcome being observed. In addition, the so-
cial system’s structural level factors such as public health policy
and health systems add to the complexity of SDoH research. Re-
searchers often lack the tools and resources to collect the fine
granular level of the SDoH data over the course of an individ-
ual’s lifetime, and instead often use aggregate data from publicly
available sources.
While genetic and genomic data are on track to make

data FAIR (findable, accessible, interoperable, and reusable,[105]

SDoH data is far from this reality. Basic demographic in-
formation provides a glimpse of a patient’s social determi-
nants (e.g., occupation, postal code, education level). A chal-
lenge unique to SDoH is that these data can be collected at
many levels (e.g., patient, neighborhood, community, county)
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Figure 5. Dimensions of social determinants of health data to consider when selecting data sources and analytic approach, ranging from more to less
specific or granular.

and across subject areas (e.g., education, economic stabil-
ity, housing instability, and discrimination). Historically, bi-
ological samples, clinical findings, epidemiological observa-
tions, environmental exposure, and social-economic knowl-
edge have existed in separate silos, if at all, yet they are
fragment representations of the same subject’s reality. With
broader adoption and advancement of EHRs, the linkages
and data representation of biological samples and clinical find-
ings now yield near-real-time public health use cases, such as
surveillance of COVID-19 cases. Consortia such as the National
COVID Cohort Collaborative (N3C) have expedited the creation
of this kind of research-ready data sets. The movement toward
understanding more macroscale social and environmental fac-
tors with policy implications and more microscale epigenetic
phenomena for medical innovations continue to be functional
works-in-progress (Figure 2). Due to their documented impor-
tance in areas of health, they remain a potential source of unmea-
sured confounders in clinical and genetic COVID-19 research.
Moreover, the quality of SDoH data is often poor and affected
by the differential reporting of the effects of the pandemic upon
racial and ethnic communities.[107,108] Unfortunately, the collec-
tion of individual-level SDoH is often missing from COVID-19
research, with missingness especially affecting race and ethnic-
ity data (47% and 43% of cases, respectively).[106,107] Overall, we
would like to emphasize that while we hope the FAIR principles
are adopted by more data repositories, it is not clear if there ex-
ist many datasets that tightly align with FAIR ideas. However,
there are some efforts that come close to the high-level guide-
lines of FAIR. The N3C COVID patient dataset is one such re-
source with elaborate harmonization of clinical data from over 65

facilities (across the US) into a common data model along with
indexing/retrieving capabilities and reusable pipelines.[108] This
FAIR N3C COVID data is accessible via a secured cloud enclave
environment.
The choice of SDoH data sources and analytic approach can be

complicated by several aspects of the data’s granularity and prove-
nance. Researchersmay havemore controls of some of these vari-
ables when there is primary data collection as opposed to sec-
ondary use of clinical data. Some of the critical factors (Figure 5)
to consider include:

• Socioecological Model: Individuals exist nested within increas-
ingly complex and dynamic systems and communities. Re-
searchers who are exploring the influence/role of SDoH
should be aware at what level and through which mechanisms
a given determinant of health interacts with or impacts an in-
dividual.

• Geospatial Specificity: SDoH data can be collected directly from
individuals, but it can also be imputed using geospatial sys-
tems and contextual data from sources like the ACS. In the
USA, depending on the variable of interest and the data source,
these can be available from census blocks (600–3000 individ-
uals), census tracts (1200–8000 people), zip code or county,
state, and national-level. In other countries, there are simi-
lar geospatial divisions. Researchers should carefully consider
how to interpret and use data that was obtained using geospa-
tial methods, as it is often true at the aggregate level, but not
necessarily at the individual level.[109,110]

• Provenance: How SDoH data were obtained can give insights
into how reliable it is. Data that are self-reported by the
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patient are often considered to be the most reliable. Infor-
mation recorded or reported by a health-care provider in the
record is affected by being filtered through at least one person,
and subject to those individual biases. Other data sources may
be even less reliable than medical records, which at least are
subject to medico-legal requirements of accuracy and veracity.
Imputing data from known facts or geolocation provides an ex-
citing opportunity for novel research approaches but should be
considered in context. Attributing a factor based on member-
ship in a group (e.g., shorter projected lifespan for an African
American individual) is the least reliable method and not
recommended.

• Data Source: Structured, validated instruments like PRAPARE
and Health Leads are specifically designed to capture data
about SDoH. EHRs often capture other elements of SDoH in
other structure fields such as social histories and patient ques-
tionnaires, though these may not have been designed or vali-
dated for SDoH data collection specifically. Free text narratives
such as patient histories or notes from social workers andmen-
tal health professionals may include a significant amount of
information relating to SDoH but requires interpretation and
coding, which can introduce errors. Finally, SDoHmay be cap-
tured in other free text elements of the medical record, but its
value may be offset by the amount of effort required to search
through entire records.

• Temporal Analysis of Exposure to SDoH (not pictured in Figure 5):
Major questions remain about the best way to incorporate time
as a variable with social determinants of health data. Few stan-
dardized SDoH instruments include questions about length
or time of exposure. Many public data resources like the ACS,
EPA, and USDA include the year of collection, but compli-
cated rolling average data releases can make it difficult for re-
searchers to understand which estimates to use for different
“exposure windows” for individual patients. The literature on
Adverse Childhood Experiences (ACEs) further highlights the
importance of when in an individual’s life they had specific
exposures.[111] Researchers will need to work collaboratively
across disciplines to identify spatiotemporal analysis models
that are fit-for-use for SDoH.[112]

4.2.1. Health-Care-Related Sources of SDoH Data

StructuredData Collected under NormalHospital Operations: These
include data collected as part of patient registration and care
delivery, including demographics, insurance type and status,
and preferred language.[113,114] Some clinical notes may con-
tain structured fields related to SDoH, such as employment
and housing; however, these structured fields may not be de-
signed to be easily searchable or extractable. Moreover, stan-
dard diagnostic codes for SDoH and social needs findings ex-
ist in ICD-10, but these codes have rarely been used.[114] In
the USA, the Meaningful Use legislation “American Recovery
and Reinvestment Act of 2009” requires the following demo-
graphic fields: preferred language, sex, race, ethnicity, date of
birth[115] to be captured in an EHR system. The HL7-FHIR Grav-
ity Projects have focused on concept representation efforts such
that this information can be relayed for adoption in Public Health
workflows.[116,117] Since it is kick-off in May 2019, the Gravity

Projects have proposed standardized SDoH data elements to
USDI v2.0 and SDoH terms to ICD-10 covering the critical SDoH
domains described by Food Insecurity, Housing Instability and
Homelessness, Inadequate Housing, Transportation Insecurity, Fi-
nancial Strain, Social Isolation, Stress, Interpersonal Violence, Edu-
cation, Employment, andVeteran Status. This work is rapidly evolv-
ing while the COVID-19 pandemic prolongs. It is worthy to fol-
low the implementation and evaluation of these codes in EHR
systems.
Unstructured Data in Clinical Notes: Free text documentation by

clinicians often contains a wealth of information characterizing
a patient’s living experience that directly addresses the SDoH in
their lives. Unfortunately, to extract high quality data from those
clinical notes requires the advanced natural language processing
(NLP) techniques and manual chart review, both of which are
labor-intensive, expensive and do not scale well.[113] Recent de-
velopments, such as Machine Learning (ML) and Artificial In-
telligence (AI) use in NLP may alleviate the scalability issues,
but their accuracy varies depending on the particular SDoH at-
tributes; hence NLP methods need extra evaluation and valida-
tion before real world use.
Patient-Level SDoH Screening Tools: a number of institutions

have started screening patients for SDoH and social needs using
standardized survey instruments, such as PRAPARE, WeCare,
Health Leads, and others.[118–120] This may be done systemati-
cally for all patients to capture SDoH data at a granular level that
impacts a patient. The major barriers for extracting this data are
how the instruments were built into the EHR, and how uniform
the data collection is across the patient population, and the con-
trolled vocabulary to compare across screening tools. Although
many of these instruments have been validated, few of them have
been mapped to existing ontologies or controlled vocabularies.
Namely, the standardization of those surveys remains challeng-
ing. In addition, while time (when an exposure happened and for
how long) is an important variable to consider, none of the above
data sources address it in a meaningful way.[121] Researchers will
likely need to develop standardized SDoH data collection instru-
ments, like questionnaires, that are built-for-purpose to capture
all relevant dimensions of GxSDoH interactions.
Contextual DataUsingGeocoding: A patient’s home address can

be used to link the patient to a geographic boundary of varying
granularity (neighborhood, census tract, zip code, county, and
state), which can then be used to identify SDoH information
from existing databases, such as the American Community Sur-
vey (ACS).[122] While this approach is particularly useful in pop-
ulation health efforts, geocoded contextual data should be used
and interpreted carefully at the individual patient level.[123]

Mobile Health and SDoH Data: The proliferation and adoption
of digital health tools, includingmobile health apps and wearable
sensors, holds great promise for improving human health.[124]

As of 2019, there are between 400 000 to 500 000 health,
wellness and fitness apps that run on smartphones, watches,
tablets, and other mobile devices, available for download from
platform-specific application stores such as the Apple App Store
(iOS) and Google Play (Android).[125] Prospective SDoH research
could incorporate these digital health innovations for collecting
geospatial-temporal data to understand individual-level physical
activity and behavior, exposure duration and potentially dosage,
and population-scale influences from environmental factors. For
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example, while aiming to establish a long-term patient cohort
to study the postacute sequelae of SARS-CoV-2 (PASC), the
NIH RECOVER program (https://recovercovid.org) supports a
scalable, configurable, and integrated Mobile Health Platform
to provide RECOVER studies with customized mobile apps and
to enable the secure collection of PASC digital health measures.
Other Patient Cohort Data: A silver lining of the current crisis is

an increased awareness of the importance of discovering, collect-
ing, and standardizing SDoH data. Many working groups have
been formed to focus on making SDoH data ready for research
or decision making.[116,126] Some national and international-wide
longitudinal cohort consortia provide patient-level genomics data
and clinical data. This kind of data is promising for SDoH health
research when SDoH data can be integrated with the cohort data.
For example, the (United Kingdom) UK Biobank is a very large,
population-based prospective study with over 500 000 partici-
pants aged 40–69 years (at the time of recruitment in 2006–2010).
The UK Biobank is established to combine extensive and pre-
cise assessment of exposures with comprehensive follow-up and
characterization of many different health-related outcomes.[127]

The Townsend deprivation index at recruitment is calculated
at the zip code area for each participant. The All of Us Re-
search Program is a longitudinal cohort initiative aimed at ad-
vancing precision medicine and improving human health by en-
rolling at least 1 million diverse individuals across the United
States. The program has prioritized the recruitment of partici-
pants from populations that have been historically underrepre-
sented in biomedical research. The All of US program launched
the COVID-19 Participant Experience (COPE) survey May 7,
2020 to incorporate SDoH data.[128] The Million Veteran Pro-
gram is another observational cohort study and mega-biobank,
with 775 000 Veteran partners as of August 2019, in the De-
partment of Veterans Affairs health-care system. In addition,
the International HundredK+ Cohorts Consortium (IHCC) is a
collaboration of 61 large scale cohorts located in 32 countries,
with total current sample sizes across all cohorts of roughly 30
million.[129] Although an increase in awareness of the impor-
tance of SDoH has led to more organizations collecting this type
of data, it still tends to be sparse in most health information
systems.[106]

4.2.2. The Reality of Doing (GxE) Studies during a Global Pandemic

In order to quickly understand and tackle COVID-19, which con-
tinues to have high morbidity and mortality, the normal routes
of conducting research have been expedited so scientists could
share their results and build upon the growing foundation. This
has led to many cross-continental collaborations across disci-
plines and innovative means of conducting research. However, it
comes with logistical and ethical concerns. For example, privacy
concerns[130] or the risk of inadvertently uncovering protected
health information (PHI) through geocoded features, increasing
data dimensionality, or the use of non-EHR data, such as social
media. Informed consent and information sharing practices have
been accelerated, and preprint publications are available long be-
fore peer reviewed journals have accepted them, often leading to
confusion when poor quality or erroneous work is picked up by
mainstream media.[131]

Of concern for SDoHdata is that the quality of that data is often
poor, and may be missing not at random[106] as with missing or
misidentified race and ethnicity data, which are greater for black
or Hispanic patients within EHRs.[107]

5. Limitations and Generalizability

The SDoH information presented here is applicable to research
within the USA. However, observations of negative health out-
comes and disparities affecting historically disadvantaged groups
as well as increased environmental exposures for lower Socio-
Economic Status are a global phenomenon. GxE interactions of-
ten assess genetic variants, which can have higher frequencies
in specific ethnicities.[132] Environmental exposures can occur at
chronic or intermittent low doses in some populations because
some Socio-Economic Status or race and ethnicity groups may
have a higher likelihood of exposure. Not only can both factors
require large study populations and lengthy follow-up times in
order to note an effect, but they can also introduce bias and there-
fore limit the generalizability of the results to populations with
similar genetic variant frequencies and exposure distributions.
Limitations related to data used in GxE interactions research

and SDoH data include the lack of diversity within genomic
data sets.[104] Within two large genomic studies, the dbGaP
and the Genome-Wide Association Study (GWAS) catalog, less
data was available for those who are not of European or Asian
ancestry.[104,133] Missing racial and ethnic data is an issue seen
when COVID-19 data are reported to the CDC as this differ-
ential reporting limits our knowledge about incidence and vac-
cine coverage within racial and ethnic communities.[2,107] The
data processes generating SDoH measures may not always be
transparent, which could lead to data quality issues.[134] The pe-
riodicity of data collection is not consistent across measures
and some measures will be more up to date than others. Ad-
ditionally, definitions of SDoH domains vary, whereby compar-
isons can be challenging due to differences in the information
collected.
There is a long and ongoing history of failure to meet the

Belmont principles of respect for persons, beneficence, and jus-
tice for nonwhite individuals in the United States. These fail-
ures have included, but are certainly not limited to, lack of in-
formed consent, unethical experimentation, and underrepresen-
tation. These failures exist in a society that continues to perpetu-
ate systemic racism and prejudice that relies on and results in sig-
nificant disparities in power and agency. American Indians and
Alaska Natives are under-reported in COVID-19 public health
surveillance data, if at all.[135] The importance of data sovereignty,
ownership, and decolonization has been highlighted especially
by and regarding American Indians and Alaska Natives.[136] Un-
fortunately, it is common for researchers to exclude members of
underrepresented communities rather than address the relevant
concerns, leading to further inequity. This is especially problem-
atic during the COVID-19 pandemic. The Urban Indian Health
Institute states that “current standard data collection practices
by many federal, state, and local entities effectively omit or mis-
classify American Indian and Alaska Native populations, both
urban and rural. This is particularly concerning in the midst
of the COVID-19 pandemic as these current standards of prac-
tice are resulting in a gross undercount of the impact COVID-19
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has on Native people”.[137] Practical approaches for these evolv-
ing and complex issues exist at the intersection of legislation,
ethics, and biomedical research. Therefore, research focusing on
genetics and health outcomes of members of historically disad-
vantaged racial and ethnic groups must be informed by—and
ideally conducted in collaboration with or under the leadership
of—representatives of those groups.
It is promising to see that the NIH is taking actions to specif-

ically support data sharing, data management planning, and re-
search governance for equitable use of tribal data and minority
communities. For example, the NIH’s notice on the Final NIH
Policy for Data Management and Sharing mentioned that NIH is
“developing supplemental information for researchers who wish
to work with AI/AN communities”.[138] The NIH also initiated
the AIM-AHEAD program,[139] which aims to increase the partic-
ipation and representation of researchers and communities cur-
rently underrepresented in the development of AI/ML models
and enhance the capabilities of this emerging technology, begin-
ningwith EHRdata and viameaningful,mutually beneficial part-
nerships.
Another caveat to consider is the risk of data leakage and as-

sociated privacy concerns especially to individuals from vulner-
able segments of the society. Although there are benefits to in-
cluding datasets from minority populations in terms of having
better analyses and models that may eventually help these com-
munities, the risk of disclosure of sensitive personal health in-
formation may be too high. Apart from several state laws, the
United States does not have a singular federal law that covers
the privacy of all types of data. In contrast, the European pri-
vacy law, General Data Protection Regulation (GDPR),[140] re-
quires companies to ask for some permissions to share data
and gives individuals rights to access, delete, or control the use
of that data. The ethical, legal, and societal implications of ge-
nomic data sharing is another area that is also rapidly evolving.
As the landscape of data protection guidance and laws evolve,
the challenge is to ensure that outcomes of such research or
proposed policies remain compliant with Belmont principles,
prevent harm and promote benefit to the communities and en-
hance their vulnerabilities. Meanwhile, we have several strate-
gies to mitigate risk of disclosure and associated harm: 1) the
process of de-identification, by which identifiers are removed
from the health information, mitigates privacy risks to individ-
uals and thereby supports the secondary use of data for com-
parative effectiveness studies, policy assessment, life sciences
research, and other endeavors.[141] 2) An additional strategy to
handle inadvertent disclosure due to small counts is typically
handled by data governance and stewardship committees that
require that patient counts larger than a particular minimum
value (say, 20) be reported in presentations/manuscripts. 3) Risk
due to adversarial players in the context of machine learning
and AI methods can be mitigated through a combination of
federated learning (data visiting), where raw data is never re-
ally shared, and learning with differential privacy guarantees,
where data leakage is statistically minimized to a user specified
threshold.[142,143]

Lastly, the existing gap in health outcomes should not widen
into greater disparity, especially in the age of precision medicine.
This motivates an inclusive approach to genomic, clinical, and
medical research, enabling participation from all racial, ethnic,

Table 2. Summary of Recommendations for future research in GxE inter-
actions and SDoH.

Domain Recommendation

Funding Develop and maintain research and public health
infrastructure to collect relevant data now, and not
wait until the next crisis

Responsive and timely funding mechanisms to support
active inquiry

Methods Establish standardized procedures and protocols for
data collection, linkage, and analysis

Implement data sharing, governance, and legal
frameworks to support research

Address missingness and variation in demographic
and SDoH data sources

Community and
education

Enhanced cross-sector collaboration and promoting
team science approaches

Increase awareness of SDoH and their role in human
health outcomes

Enhance existing genetics resource with relevant SDoH
data

Research topics How to best capture, quantify and understand time of
exposure in SDoH data

Further elucidation of the mechanisms through which
SDoH influence genetics and GxE

and economic strata for the benefits of precision medicine to be
fully realized.

6. Conclusion

SDoH explains how certain needs and risk factors dispropor-
tionately burden the ability to promote well-being and prevent
worsening health outcomes in segments of the community-
at-large.[3,144] In the United States, enduring health disparities
stem from unaddressed social needs, creating clusters of under-
resourced communities and neighborhoods vulnerable to catas-
trophe and at greater risk of mortality and burden of disease.[3] In
essence, the historical lack of investment to address social needs
has created baseline conditions for the virus to spread quickly
where social distancing was challenging or impossible. Areas
with high rates of baseline comorbidities were vulnerable tomore
severe COVID-19 outcomes.[145–147]

In the context of COVID-19 and future pandemics, it is key
to understand the complex interplay between the genetics and
epigenetic variations with SDoH and how intersectional research
data can be designed for reproducible and generalizable research.
First, all biomedical researchers must understand the difference
between demographic concepts, like race and ethnicity, biolog-
ical factors like genetic ancestry, and the societal experiences
with which they are associated. Biological and genetic factors can
elicit behavioral responses observable at the individual level. As
such, behavioral factors respond to but also influence the physical
environmental and sociocultural environmental factors. Clinical
events and health-care systems provide a safety net and support-
ive role to address social needs, though resource limitations and
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barriers to access prevent meaningful intervention and health
promotion.
GxE interactions are a central means by which to understand

how genetic, and more broadly genomic, states of the individual
may be influenced by responses to environmental exposures
in addition to responding to them.[148] Liu et al. found that
heritability estimates can be biased when environmental factors
are not accounted for.[149] Similarly, identifying how much
population genetics contributes to health must not neglect the
SDoH factors.[150] Attempts to incorporate SDoH should not be
taken lightly as there is significant debate regarding the impact
of incorporating genomic research in efforts to reduce health
disparities.[151] Though genomic researchers are beginning
to incorporate SDoH factors,[152,153] failure to properly frame
and analyze SDoH factors could limit the generalizability of
these studies. In this perspective, we expanded the concept
of GxE to the conceptual framework of GxSDoH, which may
serve as a guide for researchers when conducting SDoH and
genomics research. It is imperative to include SDoH factors
in GxE-COVID-19 studies to better assess the role genes and
the environment play by controlling for significant health
determinants, such as behavioral, social and health system
related SDoH. A summary of our recommendations for leaders,
institutions, and researchers can be found in Table 2.
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