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Prediction of PCR amplification 
from primer and template 
sequences using recurrent neural 
network
Kotetsu Kayama1, Miyuki Kanno1, Naoto Chisaki1, Misaki Tanaka1, Reika Yao1, 
Kiwamu Hanazono1, Gerry Amor Camer1,2 & Daiji Endoh1* 

We have developed a novel method to predict the success of PCR amplification for a specific primer 
set and DNA template based on the relationship between the primer sequence and the template. 
To perform the prediction using a recurrent neural network, the usual double-stranded formation 
between the primer and template nucleotide sequences was herein expressed as a five-lettered word. 
The set of words (pseudo-sentences) was placed to indicate the success or failure of PCR targeted to 
learn recurrent neural network (RNN). After learning pseudo-sentences, RNN predicted PCR results 
from pseudo-sentences which were created by primer and template sequences with 70% accuracy. 
These results suggest that PCR results could be predicted using learned RNN and the trained RNN 
could be used as a replacement for preliminary PCR experimentation. This is the first report which 
utilized the application of neural network for primer design and prediction of PCR results.

PCR primers have been traditionally designed by thermodynamic interaction with the desired  templates1,2. 
Primers are designed to increase two respectively significant base sequence specificity and reasonable GC con-
tent indicators. The high specificity can prevent mispriming in regions other than the target region, and the 
GC content of a primer is a major factor in determining the annealing temperature (Tm). Maintaining the Tm 
value optimally affects the amplification efficiency of primers being  used3. The reference scaffold for primers 
with high PCR success has been determined based on the result of trials of up to around 1990 thermodynamic 
 calculations1. Indices such as discontinuity of the same base are also empirically determined. The Tm value, 
which explains the specificity of binding to the template and possibly with the primer dimer, among others, are 
evaluated to determine the appropriate primer pair on each template. With this, some of the proposed software 
has been designed. The most frequently used primer design software include  PrimerSelect4, Primer Express 
(Applied Biosystems Primer Express Software Version 3.0 Getting Started Guide, 2004), Primer Premier (http:// 
www. premi erbio soft. com/ prime rdesi gn/ index. html), OLIGO  75,  Primer36, and  OMP2. Of these primer design 
softwares, Primer3 software provides both a primer design on the Web and a local program (Primer3_core) that 
corresponds to a large amount of primer design, that becomes a standard for PCR primer design. In particu-
lar, Primer3 added some thermodynamic findings in 2007 and  20122,7. Its revision in 2012 provided an added 
knowledge about DNA duplex  stability8 which incorporated an algorithm for designing primers on the  target9. 
This enabled a primer design even in the boundary regions of exons.

Current primer design techniques allow the design of primers that amplify the subject sequence with high 
probability resultant of combining thermodynamic theory alongside the experience of many researchers. How-
ever, it has not been designed to make predictions about a nucleotide sequence that is said to be "not amplifying" 
a known template. In some previous cases where amplification was performed with an unexpected template in a 
PCR experiment, knowledge-feedback was unfortunately not documented. Earlier contributions on PCR primer 
designs have incorporated these into modifications of thermodynamic laws before being compacted to a primer 
design  software2,5. To indicate the presence of a particular DNA or RNA sequence, there is always a need to 
predict that no PCR will occur at sequences that are not of interest or prime importance. In pathogen detection, 
PCR primers are selected based on several preliminary experiments to confirm that PCR can predictably occur 
only with a specifically targeted  pathogen10–13. Since false positives pose a major problem in detecting many 
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pathogens including COVID-19, it is important to develop a method for predicting false positives (https:// www. 
biote chniq ues. com/ covid- 19/ false- negat ives- how- accur ate- are- pcr- tests- for- covid- 19/). Hence, if specificity of 
a primer pair can be predicted from nucleotide sequences of primers and templates, hindrances including false-
positives can be readily corrected resulting to an accelerated research process.

To enable PCR results from the base sequences of primers and templates, it is necessary to comprehensively 
evaluate various relationships between primers and a template. We focused on machine learning as a technique 
for predicting a PCR result from various primer-template relationships. Machine learning has been achieving 
positive remarkable results particularly on data  analysis14,15. In machine learning, the results of input data can 
be predicted based on various factors without assuming a unified theory, through optimizing the coefficients 
of the perceptron network. When a base sequence of a PCR primer and a template is set as a target of machine 
learning, it is expected that a character string anchored on the base sequence may be suitable for a target of learn-
ing. One of the methods for machine learning that has been successful in processing languages used in human 
research is a recurrent neural network (RNN)16–19. As a feature of natural language processing, sentences can 
be classified based on the frequency and arrangement of words. It has been considered that if the relationship 
between the primer and the template related to PCR could be replaced with a word, then, it could be a target of 
natural language processing.

When predicting PCR results, it is necessary to generate learning data for machine learning from the base 
sequences of the primer pair and the template. The PCR results obtained in the experiment can be used as the 
correct answer in supervised learning. Factors influencing PCR by primer pairs and templates consist of different 
relationships and their positions such as dimers, hairpin loops, and partial complementarity. To comprehen-
sively evaluate atypical relationships of these different factors, it was inferred that the Recurrent Neural Network 
(RNN), which predicts the meaning of sentences from the frequency and arrangement of words, is optimal. With 
this, we aimed to build a supervised learning method. We generated a pseudo-sentence from a relationship of a 
primer pair and a template. The PCR results could be learned using  RNN20 that is a supervised learning method 
of a natural language. When this learning method is used, it is expected that new supervised learning can be 
performed even when the results differ due to variable settings of annealing temperature, among others, for the 
combination of a specific primer pair and a template. In this study, we report the prediction of PCR results by 
supervised learning.

Materials and methods
Assumption. To create training data on RNN, the entire PCR reaction was schematically planned. (Fig. 1). 
Primer binding to the template is not limited to its full length and is assumed that only a part of 3′ may bind 
(Fig. 1B). Hairpin structure of the primer and its dimer are assumed to be formed before binding the primer 
to the template (Fig.  1B). Thus, it is assumed that DNA synthesis occurs from some hairpin structures and 
 dimers21,22. As DNA synthesis from partially bound primers proceeds, PCR products that are completely com-
plementary to the primers began to be synthesized (Fig. 1C). Eventually, most PCR products become completely 
complementary to the primers (Fig. 1D).

To express the relationships of these schemas as words, we decided to express the hairpin, primer dimer, 
primer-template bond, and primer-PCR product bond as words. The strength of the primer-template bond on 
the forward and reverse flanks greatly influences the establishment of the PCR reaction. For combinations that 

Figure 1.  PCR process diagram of primers with incomplete homology with the template. Schematic diagram 
of the reaction assumed by PCR from partially matched primers. DNA elongation may start from primers on 
which partially 3′-end matches (B). On the end of second cycle, the 3′-end of the elongated DNA completely 
match with a primer (C). On the end of third cycle, synthesized DNA are completely matched on both ends of 
synthesized DNA (D).

https://www.biotechniques.com/covid-19/false-negatives-how-accurate-are-pcr-tests-for-covid-19/
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are not of the original primer-template, the binding position needs to be determined by PCR from the possible 
binding of multiple primer-templates. With this, we constructed the words for the learning RNN.

Templates for PCR. A part of the 16S rRNA nucleotide sequence (v6-v8) (Supplement 1 Table 1) was syn-
thesized by OE-PCR (Supplement 1 Table 2) for 30 phyla as templates for PCR model experiments. Of the 30 
phyla, 16S rRNA sequences in Firmicutes were synthesized into two genera, the Bacillus and the Calditerricola. 
These sequences were significantly different in v6-v8. Thirty-one double-stranded DNAs with 435 to 481 bases 
were prepared as a template for PCR model experimentation utilized the standard thermodynamic index.

PCR experiment as basic data for primer design using RNN. Design of primer sets for preliminary 
learning of RNN. We designed 72 sets of PCR primers capable of amplifying 31 DNA templates, according to 
the specifics of the primer sequence to the specific template and the amplification size of about 100–150 (Ta-
ble 1). In a preliminary trial when primers were designed using Primer3 primer-design software, all primers 
amplified all 31 templates (data not shown). From its result, we designed 72 sets of PCR primers at this stage 
ignoring some of the conventionally known annealing temperatures and some indicators such as avoiding single 
base repetition. The size of the primers was set to 19–22 bases. The most important index is high homology to 
the target template and low homology to others.

We also designed 54 sets of phylum-specific primers, which were designed based on analysis with prelimi-
nary test primers (Table 2). As a design method, a plurality of primer candidates was firstly extracted from the 
template sequence, and a combination of the extracted primer candidates was used as a primer pair candidate. 
A primer pair for which PCR is expected to occur only in a specific bacterial phylum by RNN was determined 
as a primer set for a test experiment.

PCR amplification experiments. Using the 72-primer sets for learning and validation of RNN and 54-primer 
sets for testing RNN, we tried to amplify all 31 templates. PCR was carried out using 2× GoTaq Green Hot Master 
Mix (Promega) for a total of 3,906 PCRs with 31 templates and 126 (72 plus 54) sets of primers. The PCR solu-
tion contained 0.5 µM primer, 100,000 copies of the template, and was adjusted to 1× GoTaq Green Hot Master 
Mix by adding water and 2× GoTaq Green Hot Master Mix. After adjustment, the PCR solution was subjected 
to denaturation at 95 °C for 2 min and followed by 33 cycles at 95 °C for 30 s, 56 °C for 30 s, 72 °C for 30 s, and 
followed by incubation at 72 °C for 2 min. After cooling to 8 °C, it was stored at 4 °C until processed in agarose 
gel electrophoresis. The PCR products were electrophoresed using 1.5% agarose in 1× TBE buffer at 100 V for 
40 min. The agarose gel was stained in 1 µg/ml Ethidium Bromide solution and photographed under UV.

Symbols for RNN learning. The data for RNN learning consisted from a symbol (Table3) generated from 
the hairpin structure of the primer, the primer dimer, and the homology between the primer and the template, 
and multiple 5-character codes (pentacode) generated from the symbol (Fig. 2). The correct answer data for 
RNN was the PCR result for each primer set and template. Since the RNN is optimized for learning natural 
language sentences, which were composed of words, the generated pentacode is called a pseudo-word, and 
the pentacode listed according to the nucleotide sequence of the template is called a pseudo-sentence. Specific 
design methods are described in the creating pseudo-words and pseudo-sentences section.

Creation of pseudo-words and pseudo-sentences from the relationship between primers and 
templates. For hairpins and dimers, DNA synthesis from the complementary region was predicted and the 
synthesized primers were added to the primer set. For the complementary region between the hairpin, dimer, 
primer-template, and primer-PCR product, characters corresponding to the complementary base pair were set 
for the entire complementary region, and a pseudo-code sequence was generated. The corresponding character 
string was divided into 5 bases in order from the 3′ end, and 5 bases were repeatedly generated according to the 
length of the complementary region between the primer-template and the primer-PCR product (pseudo-word). 
The final pseudo-words were generated in the order of hairpin, dimer, and template forward strand positions.

Hairpin was searched on each primer. Dimers were searched also on possible combinations of primers 
included in the primer set. The hydrogen bond between primer and template was sought for by any combina-
tion of primer-template, primer-primer and 5′-end and 3′-end of a primer.

In probing assumed primer set, the search was performed for both the primer set, and the double-stranded 
template (Fig. 2A). A complementary region with 5 or more bases was assumed to form a hairpin or dimer, and 
the relevant region is searched. If present, a 3′-end terminal of the partial duplex was searched. Assuming that 
complementary strands were synthesized from the partial duplex. When the synthesis of DNA from the partial 
duplex primers, the additional primers were sequentially incorporated into the primer set (Fig. 2B,C).

As a general rule, the homology between the primer sequence divided into 5 to 22 bases and the template 
sequence was confirmed, and when the number of bases in Supplement 2 Table 1 was the same (about 80%), 
a pseudo-code was generated (Fig. 2D). Regarding the homology, area to be generated as a pseudo-code, the 
pseudo-code was determined by referring to Table 3 for the entire homology, and all lower-case pseudo-codes 
were generated (Fig. 2E).

Many primer set-template combinations have multiple complementary regions that require priming positions 
to be determined. Since the complementary region for which such a priming position needs to be determined is 
short enough, the most stable combination of complementary regions is expected to be the priming position. To 
determine the most stable complementary region, the combination of complementary regions with the minimum 
Gibbs energy was set as the priming position (Fig. 2F). The Gibbs energy was calculated according to the formula 
of DG = DH-TDS by sequentially calculating the entropy and enthalpy of the two bases of the primer and the two 
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Primer no. Primer name Sequence

1
aim_1f GTC CAG GGC TTC ACA CAT GCTA 

aim_22r TGT TAC CAA CTT TCA TGA CGTG 

2
aim_71f AGC GCA ACC CTC ACC TTA TGTT 

aim_94r GGG ACC GGA TTT TTG AGA TTAG 

3
aim_122f TTC AGT TGG GCA CTC GTA AGGA 

aim_94r GGG ACC GGA TTT TTG AGA TTAG 

4
aim_94f CTA ATC TCA AAA ATC CGG TCCC 

aim_143r CCT TCA CGA GTT TCA CCT TAGT 

5
aim_94f CTA ATC TCA AAA ATC CGG TCCC 

aim_147r CTT CAC CCC CTT CAC GAG TTTC 

6
aim_161f GAG GTG GAG CGA ATC CCA GAAA 

aim_194r CTT ACC AAG CAT ACC TTA GGCA 

7
aim_263f CAA ATC CCA GAA AGC CGC TCTC 

aim_250r ACC AGC CCT GCC GTC GGC GCCT 

8
aim_348f GTG TTG CCT AGC AAT AGG ATCT 

aim_282r TGC TGC CCT CTG TCT ATG CCAT 

9
aim_386f GCT GAG GAC TCT AAT TGA ACTG 

aim_394r AGA CAG CTT TTA AGG GAT TTCC 

10
aim_386f GCT GAG GAC TCT AAT TGA ACTG 

aim_461r CCG ATC CGG ACT GAG ACA GCTT 

11
aim_394f GGA AAT CCC TTA AAA GCT GTCT 

aim_436r CGA GCG TCT TTG GGT ACT CCTG 

12
aim_468f GGC GGA GGA AAT CCT AAA AACT 

aim_515r CTT CAG ATA CTT CGG GTG CGAC 

13
aim_555f ACG GGA CTG CCC GCG AAA GCGG 

aim_562r GGG CCC ACC TTT TTG CGA TTAG 

14
aim_599f GTG CTA CAA CGG GTA GCG AAAC 

aim_652r CCG CCG AGG CGG AGT TGG GTCA 

15
aim_764f CTT ATC CTT TGT TGC CAG CGGT 

aim_744r CGA CAT ACT TTA TGA GGT CCGC 

16
aim_812f CTG CCA GTG ATA AAC TGG AGGA 

aim_744r CGA CAT ACT TTA TGA GGT CCGC 

17
aim_842f TCT CAT AAA ACC GTT CTC AGTT 

aim_848r TGT TAC AAA CTC TCG TGG TGTG 

18
aim_1016f CTA ATC GGA AAA AGC CGG CCTC 

aim_1036r ATG AAT TAC ACC TTG GGC GGCT 

19
aim_1209f GTG TCG GTA GTT ACA GGT GTCT 

aim_1159r ATT GTC GTG GCC ATT GTA GCGT 

20
aim_1248f CGC CGT GAC CGG CGG AGG AAGG 

aim_1193r CCG CGC CAT GGC TGA TAC GCGG 

21
aim_1175f TCG CCT AAA CGT GGT CTC AGTG 

aim_1264r TCC CAG TCG CGG CCC CTG CCCT 

22
aim_1177f GCC TAA ACG TGG TCT CAG TGCA 

aim_1264r TCC CAG TCG CGG CCC CTG CCCT 

23
aim_1316f CTA GTG GGA CAG CCG GAG TAAT 

aim_1285r TGC AAT CCG AAC TAA GAC AAGG 

24
aim_1332f CCG GAG TAA TCC GGA GGA AGGT 

aim_1276r AGG TTT TTG AGG TTG GCT CACT 

25
aim_1285f CCT TGT CTT AGT TCG GAT TGCA 

aim_1293r GCT TCT GGC AAA ACC GAC TTTC 

26
aim_1401f TGA GGT GTC GGC TTA AGT GCCA 

aim_1368r GCT AGC TGC CTT CTG TAC CCCC 

27
aim_1401f TGA GGT GTC GGC TTA AGT GCCA 

aim_1383r TTT GGG ATT AGC ATA CGG TCAC 

28
aim_1415f GAG GTG TCG GCT TAA GTG CCAT 

aim_1368r GCT AGC TGC CTT CTG TAC CCCC 

Continued



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7493  | https://doi.org/10.1038/s41598-021-86357-1

www.nature.com/scientificreports/

Primer no. Primer name Sequence

29
aim_1447f AGG TCA TGC TGA GGA CTC TGGA 

aim_1368r GCT AGC TGC CTT CTG TAC CCCC 

30
aim_1447f AGG TCA TGC TGA GGA CTC TGGA 

aim_1391r TTC GAT CCG AAC TGA GAG AGGA 

31
aim_1391f TCC TCT CTC AGT TCG GAT CGAA 

aim_1465r CCC TAG GAC GAT CCT TGC GGTT 

32
aim_1549f GGG TAA TGC CGG GTA CTC ACAG 

aim_1504r CAT TGT CCC TGC CAC TGT AGCG 

33
aim_1504f CGC TAC AGT GGC AGG GAC AATG 

aim_1550r TAG CTC GGG GAC TTC CGA TGAA 

34
aim_1758f GCC AAT ACA AAC AGT TGC AAAT 

aim_1775r TAC CAG CTC TCA TAG TTT GACG 

35
aim_1770f CTG TAA AGT TGG TCT CAG TTCG 

aim_1775r TAC CAG CTC TCA TAG TTT GACG 

36
aim_1770f CTG TAA AGT TGG TCT CAG TTCG 

aim_1811r CTA CCC TAG ACA TGC GCT TCCT 

37
aim_1948f CAA AGG GCA GCG ACA TAG TGAT 

aim_1984r ATG AGC CGT AGC TGA TGC CCAT 

38
aim_2085f AGT ACA GAA GGT AGC AAG ATCG 

aim_2138r AAC GTA TTC ACG GCG TTA TGGC 

39
aim_2109f GAT GGA GCA AAT CCT TAA AGCT 

aim_2164r TCA ACG ACT TAA GGT AAA ACCA 

40
aim_2292f GGT TAA GTC CCC TAA CGA GCGA 

aim_2247r ATG ACT TTG CAG CCT AGC AACG 

41
aim_2547f TCG AGT ACA TGA AGT TGG AATC 

aim_2581r TAC GGT TAG GCC TGC TAC TTCA 

42
ai2_1242_f TAC TTT GTC TAA CGA GAC TGCC 

ai2_1242_r CGA ACT GAG ACC AAC TTT ACAG 

43
ai2_100_f ACG AGC CGG AGG AAG GAG G

ai2_100_r ACC CCG GGA ACG TAT TCA CC

44
ai2_1213_f CCT AAA CCC TGT CGT GGT GCAG 

ai2_1213_r TAG CTC GGG GAC TTC CGA TGAA 

45
ai2_1325_f TAA GGG GAC TGC CCC GGA TAAC 

ai2_1325_r GCG CTT TCT GAG ATT CGC TCAG 

46
ai2_6_f CAA GTC GAG CGG AGA AGA TTT 

ai2_6_r GGT ATT ACC CAT CCT TTC GGAT 

47
ai2_1194_f GCG GGT GAC CGT ATG CTA ATCC 

ai2_1194_r CTT GCG GTT ACG TAC TTC AGGT 

48
ai2_1315_f CGT TGC TAG GCT GCA AAG TCAT 

ai2_1315_r GCG GCT CCG GCG ACT TCG GATG 

49
ai2_1147_f CGC CGT GAC CGG CGG AGG AAGG 

ai2_1147_r CAC TGA GAC CAC GTT TAG GCGA 

50
ai2_23_f GAG ACT GCC GGT GAC AAA CC

ai2_23_r AGT TGC AGA CTC CAA TCC GGA 

51
ai2_1244_f GCC AAT ACA AAC AGT TGC AAAT 

ai2_1244_r TAC CAG CTC TCA TAG TTT GACG 

52
ai2_1125_f ACC GCT GCA ACC CCG CGA GGGT 

ai2_1125_r TGG GCG GCT GCT CCC TTG CGGT 

53
ai2_1238_f GGC ACA GGT GGT GCA CGG CCGT 

ai2_1238_r GGC ATA AGG GGC ACG AGT ACCT 

54
ai2_1166_f CCG GAG TAA TCC GGA GGA AGGT 

ai2_1166_r TGC AAT CCG AAC TAA GAC AAGG 

55
ai2_1143_f TGC CGC CGT GAC CGG CGG AGGA 

ai2_1143_r CAC TGA GAC CAC GTT TAG GCGA 

56
ai2_1124_f ACC GCT GCA ACC CCG CGA GGGT 

ai2_1124_r AGC GCA CCG ACT TCT AGT GCAA 

Continued
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bases of the template at the complementary position, assuming an annealing temperature of 56 °C. Therefore, 
after calculating for all combinations of two complementary bases, the total value was minimized, and the com-
plementary positions of forward and reverse, which are separated by 100 bases or more, were set as the priming 
positions. Using reference numerical  values23, complementary dimer set calculations for entropy and enthalpy 
were done where their original and our extrapolated values were used (Supplement 2 Table 4). The pseudo-code 
for the complementary position, which was predicted to be the priming position, was converted to uppercase 
(Fig. 2G). Homologous positions of 6 bases or more were searched for hairpins and dimers, and pseudocodes 
were generated for the corresponding homologous regions (Fig. 2H). For the pseudo-code sequence generated 
between the primer and the template, 5 characters were sequentially extracted from the 3′end of the primer to 
obtain a pentacode. The pseudo-code was generated by repeating a part of the pentacode according to the length 
of the homologous region to express the strength of the binding between the primer and the template (Fig. 2I).

As for the PCR product, the complementary region of the primer is also completely complementary to the 
primer because the synthesis proceeds using the primer as a template in the extension reaction (Fig. 1D). For 
the pseudo-code in this region, a pseudo-code different from the relationship between the template and the 
primer was set, and a pseudo-code was generated in the same manner as in the complementary region of the 
primer-template (Fig. 2J). The pentacodes generated from hairpins, dimers were placed first, followed by the 
primer-templates, and the pentacodes generated from the primer-PCR products in the order of the forward 
strands of the template. The pentacode was generated and placed from a set of primers and a template was used 
as pseudo-sentences of the primer set-template (Fig. 2K). Pseudo-sentences were generated for all primer and 
template combinations and used as learning data during machine learning.

Primer no. Primer name Sequence

57
ai2_1284_f ACG AGA CTG CCT GGG TTA ACCA 

ai2_1284_r AGC TTT AAG GAT TTG CTC CATC 

58
ai2_1288_f CTG CCT GGG TTA ACC AGG AGGA 

ai2_1288_r GAA CTG GGG CCA GCT TTA AGGA 

59
ai2_1090_f AAA GGA GAC TGC CAG TGA TAAA 

ai2_1090_r TCC AAT CCG GAC TAC GAC ATAC 

60
ai2_1142_f GTG TCG GTA GTT ACA GGT GTCT 

ai2_1142_r CAA CTC CGC CTT CAC GGG GGCG 

61
ai2_1195_f GCG GGT GAC CGT ATG CTA ATCC 

ai2_1195_r CCC TAG GAC GAT CCT TGC GGTT 

62
ai2_101_f GTC GTC GTC AGC TCG TGC C

ai2_101_r CTC CTT CCT CCG CCT CGT C

63
ai2_1189_f CGT CGT AAG ATG TGA GGA AGGT 

ai2_1189_r TTC GAT CCG AAC TGA GAG AGGA 

64
ai2_1088_f CTT ATC CTT TGT TGC CAG CGGT 

ai2_1088_r TCC AAT CCG GAC TAC GAC ATAC 

65
ai2_1192_f GGG GGT ACA GAA GGC AGC TAGC 

ai2_1192_r CTT GCG GTT ACG TAC TTC AGGT 

66
ai2_1303_f GCC ATA ACG CCG TGA ATA CGTT 

ai2_1303_r CTT CAT CCT AGT CAT CAG CCTC 

67
ai2_1102_f AAG TTG GGC AGT CTA AGG TGAC 

ai2_1102_r TCT TGC AGC TCT TTG TAC CGTC 

68
ai2_54_f CGG GTG AGT AAC ACG TAT CTAA 

ai2_54_r TCT CAG TTC GGC TAC GTA TCAT 

69
ai2_1275_f TGA TAT GGA GCG AAT CCC CAAA 

ai2_1275_r GTC TGC CTC CTG CAA GCA GGTT 

70
ai2_1327_f CTG AGC GAA TCT CAG AAA GCGC 

ai2_1327_r TTG CCT GGG TTG GGC CAC CGGC 

71
ai2_10_f CTG GCG GCG TGG ATA AGA CA

ai2_10_r ATG GGC TAT TCC CCA CTT CAG 

72
ai2_1071_f AGC GAT GCC ACC CGG CAA CGGG 

ai2_1071_r CCT GCC CGT AGG CTC CCG GCGA 

Table 1.  Primer sets for the main experiment. Primer pair number, primer name and base sequence (5′ → 3′) 
used in the experiments for RNN-training are shown. Primers with the same primer pair number are used as a 
set of primers.
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Primer set no. Primer name Primer sequence

1
1_f_180 AAC GCG CTG CGA GCC TGT GA

1_r_369 CCC ACA AGG GTT AGG CCA CT

2
1_f_180 AAC GCG CTG CGA GCC TGT GA

1_r_397 ATC GCC GAT CCC ACC TTC GA

3
1_f_180 AAC GCG CTG CGA GCC TGT GA

1_r_400 CCA ATC GCC GAT CCC ACC TT

4
1_f_180 AAC GCG CTG CGA GCC TGT GA

1_r_408 ACT TCG TCC CAA TCG CCG AT

5
1_f_186 CTG CGA GCC TGT GAG GGT GA

1_r_369 CCC ACA AGG GTT AGG CCA CT

6
1_f_186 CTG CGA GCC TGT GAG GGT GA

1_r_397 ATC GCC GAT CCC ACC TTC GA

7
1_f_186 CTG CGA GCC TGT GAG GGT GA

1_r_400 CCA ATC GCC GAT CCC ACC TT

8
1_f_186 CTG CGA GCC TGT GAG GGT GA

1_r_408 ACT TCG TCC CAA TCG CCG AT

9
2_f_50 TCA GTT GGG CAC TCG TAA GG

2_r_342 TGG CAA AGA CCA CTT CGG GT

10
4_f_251 CTA AAG CCA CCC CCA GTT CA

4_r_395 CTC TTC GCC TGA CTT CGG GT

11
4_f_251 CTA AAG CCA CCC CCA GTT CA

4_r_403 TCG GCA GGC TCT TCG CCT GA

12
5_f_0 TGC CTG GGA GCC CTA GCA CA

5_r_228 CCC CTT ACG GGT TCG CTT CC

13
5_f_223 CAG AGG GAA GCG AAC CCG TA

5_r_410 TCC GGG GGT TGG GAT AGC GA

14
6_f_66 GCC TAG CAA TAG GAT CTC TC

6_r_211 GGG CAT AGT TTA GGG ATT GG

15
6_f_211 CCA ATC CCT AAA CTA TGC CC

6_r_363 AGA CGA CCT GAG CAC TTC TG

16
6_f_211 CCA ATC CCT AAA CTA TGC CC

6_r_385 TAC TAA TCA CAA CTT AGG GC

17
7_f_205 AAT CCC TTA AAA GCT GTC TC

7_r_347 AGC GTC TTT GGG TAC TCC TG

18
8_f_78 ACT GCC CAG ATC AAC TGG GA

8_r_349 TGG CTT CAG ATA CTT CGG GT

19
8_f_78 ACT GCC CAG ATC AAC TGG GA

8_r_359 TCC TTG CGG TTG GCT TCA GA

20
9_f_87 GAC TGC CCG CGA AAG CGG GA

9_r_181 GTT GCC GGG TGG CAT CGC TT

21
10_f_226 TCC CTA AAA AGC ATC CTC AG

10_r_381 AGG CGG AGT TGG GTC ACT GA

22
12_f_190 GGC ATA TAC AAA GAG AAG CG

12_r_395 TAA GCG CCC TCC CGA AGG TT

23
12_f_216 CGA GAG CAA GCG GAC CTC AT

12_r_395 TAA GCG CCC TCC CGA AGG TT

24
12_f_236 AAA GTA TGT CGT AGT CCG GA

12_r_395 TAA GCG CCC TCC CGA AGG TT

25
13_f_203 GGT ACA AAG AGC TGC AAG AC

13_r_397 CTC CAA AAA GGT TAC CCC AC

26
14_f_64 GCA AGG GGG CCC TCT GGA GA

14_r_341 TAG AGC ACT CCC TTC TCC CA

27
15_f_60 TGG CGA AAC CGC CTC GGA TA

15_r_349 CTC CCT TGC GGT TAG CGC AC

28
18_f_17 TGT CGG TAG TTA CAG GTG TC

18_r_177 GAT CTG CAC TGA GAC CAC GT

Continued
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Primer set no. Primer name Primer sequence

29
18_f_173 CTA AAC GTG GTC TCA GTG CA

18_r_330 TCC CCG ACT GGG GTT AGC AC

30
19_f_83 TAG TGG GAC AGC CGG AGT AA

19_r_177 AGG TCG CAT CCC GTT GTC CT

31
19_f_90 ACA GCC GGA GTA ATC CGG AG

19_r_371 CTA TCC GAA GAT TCG GTC AC

32
19_f_196 TCG CGA GAG TGA GCC AAC CT

19_r_346 TCT GGC AAA ACC GAC TTT CG

33
19_f_196 TCG CGA GAG TGA GCC AAC CT

19_r_371 CTA TCC GAA GAT TCG GTC AC

34
20_f_225 ATC CCA AAA TCC TCT CTC AG

20_r_382 GAC GAT CCT TGC GGT TAC GT

35
21_f_61 GGG TAA TGC CGG GTA CTC AC

21_r_211 ACC ACG ACA GGG TTT AGG GG

36
21_f_61 GGG TAA TGC CGG GTA CTC AC

21_r_217 ATC TGC ACC ACG ACA GGG TT

37
21_f_61 GGG TAA TGC CGG GTA CTC AC

21_r_227 GCA ACC CTC AAT CTG CAC CA

38
21_f_179 AAT GGG CTG CAA CGC CGT AA

21_r_359 GTT AGC TCG GGG ACT TCC GA

39
21_f_216 AAA CCC TGT CGT GGT GCA GA

21_r_348 GAC TTC CGA TGA ACC CGA CT

40
23_f_151 ATG ACG TCA GGT ACT CGT GC

23_r_437 CCC CCC TCA CCA GGT TCT CC

41
24_f_84 CTG CCA ACG TAA GTT GGA GG

24_r_360 CTT GCG GTT AGC AAC ACG GT

42
26_f_74 AGA CTG CCC GTG TTA AGC GG

26_r_169 TCA CTA TGT CGC TGC CCT TT

43
26_f_74 AGA CTG CCC GTG TTA AGC GG

26_r_358 CTG CAA GCA GGT TGG CGC AA

44
28_f_165 AAT GGG GCG GAC AGA GCG TT

28_r_333 CCC CCG CTT TGG TGG CTT GA

45
28_f_165 AAT GGG GCG GAC AGA GCG TT

28_r_397 ACT TAG TCC CCA TCA CGG GT

46
28_f_170 GGC GGA CAG AGC GTT GCT AG

28_r_339 GGA TGC CCC CCG CTT TGG TG

47
28_f_173 GGA CAG AGC GTT GCT AGG CT

28_r_333 CCC CCG CTT TGG TGG CTT GA

48
28_f_192 TGC AAA GTC ATG CTA ATC GC

28_r_333 CCC CCG CTT TGG TGG CTT GA

49
28_f_192 TGC AAA GTC ATG CTA ATC GC

28_r_397 ACT TAG TCC CCA TCA CGG GT

50
28_f_204 CTA ATC GCA AAA ACC GTT CC

28_r_397 ACT TAG TCC CCA TCA CGG GT

51
29_f_237 GCG AAT CTC AGA AAG CGC TC

29_r_437 CCC AGT CGC CAG CCA TAC CA

52
30_f_128 CAA TGC TAC GGA CAA AGG GC

30_r_306 TTC GGG CGT GGC CAA CTT CC

53
30_f_128 CAA TGC TAC GGA CAA AGG GC

30_r_328 CCA CAA GGG TTG GAG TAA CG

54
30_f_128 CAA TGC TAC GGA CAA AGG GC

30_r_342 TTC GGC GTC CTC CTC CAC AA

Table 2.  Primer sets for the test. Primer pair number, primer name and base sequence (5′- > 3′) used in the 
experiments for RNN-test are shown. Primers with the same primer pair number are used as a set of primers.
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Scripts for pseudo-sentence generator. A Ruby and Python scripts were used to generate pseudo-sen-
tences in the order shown in Fig. 2 (Supplement 3, List 1–9). The Ruby script read the structure of the template 
base sequence, primer base sequence, and primer set, and generated pseudo-sentences according to the order 
shown in Fig. 2. SeqKit (https:// bioinf. shenw ei. me/ seqkit/, v0.14.0) was used to search for homology between 
the primer and the template. The pseudo-sentences generated for each template-primer set were first categorized 
by PCR results, and each was categorized into 5 groups. One of the five groups was not used for learning as a 
group to verify RNN learning but was used to predict the prediction accuracy for each epoch.

We noted that a particular primer set produced many positive PCR results and organized the group to disperse 
its effects. Five groups were randomly constructed for each PCR positive and negative results after collecting 
the results for each template. To divide the overall result into 5 groups, the primer-pair template data, which is 
the unit of data, was combined so that the total number was even for each group. When we equalize the ratio of 
PCR positives and negatives, the acquired data is adjusted so that the numbers are even at the stage of collecting 
the results for each template (undersampling).

Axlsx (https:// github. com/ randym/ axlsx, v3.0.0) was used for colorizing spread sheets (Tables 4, 7). Mat-
PlotLib (https:// matpl otlib. org/, v3.3.3) was used for creating line-graphs on epochs-accuracy (Fig. 4). GnuPlot 
(http:// www. gnupl ot. info/, v5.4) was used to create the scatter plot for Gibbs energies (Fig. 5).

Learning results. The PCR results performed with the annealing temperatures set at 56  °C were set as 
pseudo-texts generated from each primer-template set and were trained by RNN. For its learning, the pseudo-
sentence created for the combination of primer and template was used as input data, and the PCR results were 
arranged as a teacher. For the RNN, an RNN-Long short-term memory (LSTM) module of PyTorch (https:// 
pytor ch. org/, v1.7.1) was used. Python scripts for learning pseudo-sentences and extracting prediction results 
were written based on the scripts published in a book (Shinqiao Du, "Can be used in the field! Introduction 
to PyTorch development Creation of deep learning model and implementation in application", Shosuisha; 
2018/9/18 in Japanese). After reading the pseudo-sentences and PCR results of each primer-pair template, RNN 
generated a decision algorithm that matched the output results for all input pseudo-sentences (learned algo-
rithm) (Fig. 3). As the negative control of sentences, randomly selected nucleotide pentamers were aligned as 
nonsense pseudo-sentences.

The prediction accuracy of the generated trained algorithm was confirmed by split verification (cross valida-
tion). The primer pair-template sets were divided into five groups, and the RNN was learned using four groups 
among them and the learning. The remaining one group was not used as learning data but was utilized as veri-
fication data. Verification was made during the learning steps.

When evaluating the prediction by RNN, whether the expected PCR band was found on agarose-gel electro-
phoresis was treated as the true conditions, and the prediction by RNN was treated as the predictive conditions. 
A true positive, false negative, false positive, true negative, sensitivity, specificity, and accuracy were calculated 
accordingly. Significant differences in sensitivity, specificity, and accuracy between conditions were made based 
on Student’s and Welch’s t-test24.

Results
PCR results of the primer sets and templates. PCR amplification with 72-sets of primer pairs on 
31-templates was shown as 0 (no PCR amplification) or 1 (PCR product is visible) (Table 4). On 12 sets of primer 
pairs (Numbers 1, 2, 5, 17, 23, 25, 28–30, 41, 43 and 50), a PCR product was visible with more than 22 templates 
(Numbers 6, 8, 10, 11, 14, 16, 18, 19, 34–40, 48, 57, 58, 61, 63, 65 and 69). On the other hand, on 10 primer pairs 
(Numbers 7, 20, 21, 22, 46, 49, 55, 60, 68 and 71), no PCR product was shown. On the learning of the results, 
pseudo-sentences were created on each primer pair-template set. The pseudo-sentences were firstly classified by 
template and then randomly grouped into 5 groups to suppress the influences of a particular primer pair.

PCR prediction by recurrent neural network (RNN). As can be gleaned from the PCR results, the 
whole combination of primer pair and templates were divided into 5 groups (RNN-learned PCR results of 4 
in 5 groups). Prediction accuracy on a verification group after learning on 4 groups was a plot against epochs 

Table 3.  Base pair characters for sense or antisense direction. A symbol for generating pseudo-words for 
RNN learning. The codes are set in the nucleotide duplex on each base pair at the complementary position. 
Mismatched base pairs such as A-A, T-T and C-A may appear within the partially complementary region. 
Base-pairs are grouped based on influence for stability of partially complementary strands.

Base pair (primer base–template base)

Primer-template

Primer hairpin or dimer

Initial stage Middle stage

Forward Reverse Forward Reverse

A-T, T-A a f p u k

C-G, G-C b g q v l

A-A, A-G, G-A, G-G, C-C c h r w m

T-T, T-C, C-T d i s x n

C-A, A-C, G-T, T-G e j t y o

https://bioinf.shenwei.me/seqkit/
https://github.com/randym/axlsx
https://matplotlib.org/
http://www.gnuplot.info/
https://pytorch.org/
https://pytorch.org/
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(Fig. 4). Alteration of accuracies were plotted with PCR-positive, PCR-negative and all sets on whole primer 
pair-template sets (Fig.  4A) or undersampling sets (Fig.  4B). Since RNN predicted all sets as "negative", the 
prediction accuracy of PCR-negative sets was 1.0 at the start of learning. Conversely, the prediction accuracy of 
PCR-positive sets was 0.0 at the start of learning. After 15 epochs of learning, prediction accuracies became 0.85 
and 0.58 for PCR-negative and positive sets respectively. Prediction accuracies were not much altered after 15 
epochs. The accuracy remained within the standard deviation range after 200 epochs, similar to 25–200 epochs 
(results not shown).

For the undersampling sets, the variance between the validation groups was large from the start to 75 epochs, 
but after that, the variance became small, and after 100 epochs, the accuracy of the PCR-negative group became 
stable to be higher than those of PCR-positive groups (Fig. 4B).

Sensitivity of learned RNN. The RNN used four of the five divided groups for learning and one group as 
validation. Since these validation groups alternate sequentially, when the validations for the five types of learn-
ing are combined, all the data used for the RNN became one cross table (Table 5A). When all the data were used 
for learning, the number of the PCR negative and positive sets were 1678 and 554, respectively. From this cross 
table, sensitivity, specificity, and accuracy were calculated to 0.56, 0.88, and 0.80, respectively. In the same man-
ner, sensitivity, specificity, and accuracy were calculated to 0.71, 0.73, and 0.72, respectively when the number of 
negative and positive samples was adjusted to be the same (Table 5B).

In the division verification, sensitivity, specificity, and accuracy were calculated for the validation data in each 
division group. On the test data, the prediction was performed by learned RNN on each division verification. 
Thus, there were 5 predictions and sensitivity, specificity, and accuracy on test data. As a result, 5 sets of data were 
obtained under each condition, and a significant difference could be detected between those data (Table 6). In 
comparing whole-data and undersampling predictions, the sensitivity was significantly higher with undersam-
pling. Moreover, in the specificity of undersampling, data were lower than those of whole data. Similarly, in the 
test, the sensitivity was significantly higher in the undersampling data, and the specificity was significantly higher 
in the whole data. These results suggest that the prediction rate of PCR-positives decreases when the number of 
PCR negative sets is large in RNN learning. In the test sets, the particularly low sensitivity is seen in prediction 
using whole-data-learned RNN (Table 5C). These results suggest that the current prediction method may depend 
on the base sequence of the primer itself. Thus, the coding method described in this study may not be perfectly 
suitable for predicting PCR-positive results. On the other hand, an increase in the possibility of detecting PCR 
positive through undersampling-data-learned RNN has indicated that prediction also depends on the number 
of negative and positive samples during learning (Table 5D).

Color summarization of prediction and result. To depict how PCR was predicted with individual 
primer-template combinations, we colored and displayed the individual PCR results as shown in Table 3 con-
cerning the PCR-result and predictions in validation-data (Table 7). In this color display, no template strongly 
affected the prediction. On the other hand, several primer pairs suggested affecting PCR prediction (primer set 
numbers 17, 23, 41, and 43) (Table 7A). On the other hand, primer pair numbers 5, 24, 26, 50 and 70 showed 
relatively low accuracies through the templates. For this primer pair, it is suggested that RNN did not use much 
of this primer set information when making a prediction.

Figure 2.  The process of generating pseudo-words and pseudo-sentences is shown. Pseudowords are generated 
in relation to a particular primer pair and template. First, prepare the primer pair and template data in a format 
that can be read by the analysis program (A). Then, the base sequence alternatives which synthesized on the 
primer hairpin (B) and dimer (C) are added to the original primer sequences. The plausible double-strand 
formation which is expected between the primer sets and template is assumed and expressed as letters (D–E). 
First, a part of the complementary primer including a part of the primer and the template and the position of 
the template are listed (D), and their interaction is expressed by a letter for each base-pair (E). The one-character 
code used to express the interaction used at that time is shown in E. In order to do machine learning with RNN, 
it is necessary to predict the primer-binding position on the template, which is the source of the PCR product 
production. On the prediction other primer-binding positions are classified to unrelated binding positions the 
PCR product production. In this study, the free energy of each plausible primer binding position on the template 
was calculated for all possible primer binding positions. Referring to the free energy of binding positions, two 
primer binding positions, which have minimum free energy, were identified as the PCR-amplifiable primer 
binding positions. For these determinations, the free energy was calculated on nested dimers and sum free 
energies on the primer-template binding positions (F). The free energies are calculated from Enthalpy, Entry, 
and absolute temperature of the nested dimers. According to the free energies on the primer-template binding 
positions, we determined two primer-template binding sites, from which PCR is most likely to proceed, and 
capitalize nucleotide-interaction-letters (G). Similar to primer-template interactions, the program searches 
hairpin or dimer formation in a primer and primers. One-letter codes are generated for each base pair in these 
hairpin and dimer (H). Strings of interactions between primers or between primers and templates were broken 
down into 5 letters (five-character codes) as words and duplicated to reflect their importance depending on 
their length and position from the 3’end (I). Similarly, the interaction is predicted for the PCR product and 
primers shown in Fig. 1D, and characters different from the interaction assumed in the middle of the process 
are assigned (J). A pseudo-sentence is generated by arranging all the five-character codes assigned in this way at 
positions based on the array of templates (K).

▸
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Figure 2.  (continued)
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Figure 2.  (continued)
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Table 4.  PCR results with a combination of 72 primer sets and 31 templates. PCR results are expressed by the 
following numerical values based on observation on agarose gels. Number 0: No PCR product, 1: PCR product 
can be confirmed. Results on the primer pairs which have positive results on more than 20 templates are shown 
with pink background. Similarly, primer pairs which have results with single or no positive on 31 templates are 
shown with lime or blue background, respectively.
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In undersampling data, two-thirds of the negatives were excluded from the prediction, so white squares are 
shown (Table 7B). For primer pairs that were PCR positive for many templates in this group, RNNs were often 
predicted to be correctly positive. From this result, it was suggested that RNNs whose degree of positive learning 
was increased by undersampling.

Gibbs scatter plot. When we created the pseudo-word, binding to template at the 3′end of the primer 
sequence was recorded as the binding of the primer that could develop into PCR and used for prediction. At 
that time, the Gibbs energy was calculated for most of the bonds to the template at the 3′end, and the primer 
at the position where the Gibbs energy was low and the PCR product was produced was used as a predictive 
primer-position for PCR prediction. Using this result, a scatter plot was created for forward and reverse with the 
assumed primer binding Gibbs energy on the horizontal and vertical axes (Fig. 5). When the set data with a posi-
tive PCR result is marked with a red triangle and those with a negative PCR result is marked with a blue circle, 
the set with the full length of the primer homologous to the template plot in the lower left. The set with the only 
weak binding plot in the upper right displayed (Fig. 5A). We predicted that PCR would occur only with strong 
interactions in the lower left region and not with weak interactions in the upper right region. While, in our PCR 
experiments, many PCR positives were found in the upper right region.

We also showed the prediction results were superimposed the Gibbs plot on the PCR-results (Fig. 5B,C). The 
primer pair-template sets for which the PCR-positive-RNN-negative result shown in pink were found not only in 
the upper right region but also in the lower left region in a similar ratio. If the prediction is based on the strength 
of hydrogen bonds, the prediction accuracy in the lower left region is expected to be high, but the prediction in 
this study did not show such a tendency. Even for the undersampling data with improved PCR-positive prediction 
accuracy, no improvement in prediction accuracy was observed in the lower left region (Fig. 5C).

Regarding the prediction of PCR-negative, many prediction errors related to PCR negative were observed in 
the peripheral region where the Gibbs energy of sets were slightly lower than those in the most upper right region 
(Fig. 5B). This trend did not change with the undersampling data (Fig. 5C). We expected that the PCR-negative 
prediction would use the same mechanism as the PCR-positive prediction, but in the lower left region of the 
whole sample prediction, the RNN correctly predicted several PCR-negatives in the lower left region (Fig. 5B). 
At the time of undersampling, these sets were not selected on the random selection and did not plotted (Fig. 5C). 
Considering that the prediction accuracy for PCR-positive in this region was not high, it is suggested that the 
PCR-negative prediction in the lower left region uses different criteria from the positive prediction.

Discussion
PCR is one of the basic technologies commonly utilized for genetic as well as pathogen-detection  testing25,26. 
Because of its declining cost, determining the base sequence of DNA or RNA subjected to PCR has now consid-
erably  increased27–29. Furthermore, the development of applied technologies such as real-time and droplet PCRs 
and the application range of PCR has been expanded even  further30–33. When PCR is used to detect pathogens, 
specific detection is required. Moreover, such consideration for specific detection can be affected by some base 
sequence contaminants in processed samples. It is expected that such cases will likely increase if not rectified.

One of the strengths of PCR is that once a DNA is known, a highly sensitive test or  method34 can be developed. 
This can be applied to various test targets over a very short period. It means that a highly sensitive detection 
becomes possible in a shorter time compared with developing an immunological test or technique. The only 
disadvantage of PCR method is, when there is a similar sequence between them, there is always a possibility that 

Figure 3.  Learning and prediction by RNN. Schematic diagram of how to learn pseudo-sentences by RNN. The 
upper row shows the processing during learning, and the lower row shows the processing during testing. The 
learning results are saved in the file specified by PyTorch, read during the test, and used for prediction step.
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non-specific bands may be  generated35. This can happen as in the case of distinguishing bacteria by targeting a 
specific molecule that is contained only in ribosomal RNA. In this instance, it is difficult to design primers that 
enable specific detection because 16s ribosomal RNAs can have similar base sequences with each  other36–39. Thus, 
a test is required in the presence of a similar nucleotide sequence such as when a specific pathogen is found in 
a sample in which many other species are mixed.

Major parts of PCR primer design technologies were almost completed in the  1990s40. The primer design 
technique is based on the stability of the hydrogen bond between the primer and the template based on the 
nucleotide sequence, and the PCR experiments conducted while examining its stability. Its hydrogen bond sta-
bility can be predicted by the free energy calculated from enthalpy, entropy, and absolute  temperature41. Early 
basic  experiments42 have proven that one base at 3′ greatly affects the PCR reaction, and primers are designed 
based on 3′ several bases. Software for verifying the easiness of primer application and for designing primers 
by extracting the susceptible base sequence from the target base sequence was also  developed5,6,43. This primer 
design software, especially the Primer3, has a very large tracking record. Primers designed with Primer3 can 
amplify target DNA with an accuracy of 80% to 90%. However, even if the conventional primer design algorithm 
can design the primer that is most likely to cause PCR in the target template, it does not predict the amplifica-
tion in the template DNA other than the intended one present in the sample. In our preliminary experiment, 
several Primer3-designed primer pairs amplify all 16sRNA templates regardless of the target DNA on the design 
of primers. Therefore, for a design of a primer pair that amplifies only the target template with the existence of 
similar sequences, it is necessary to consider a method different from the previous optimum design.

In the design of PCR primers, it is difficult to compare primer sets relative to each other by the method 
of selecting the optimum set. When selecting the optimum primer with Primer3 etc., 30 or more indexes are 

Figure 4.  Average prediction accuracy on validation groups in cross-validation. Average of prediction accuracy 
was calculated on 5 validation groups in cross-validation. (A) Whole sets in 72-primer-31template sets were 
used for learning or validation. (B) The number of primer pair-template sets in 72-primer-31template was 
controlled to 1:1 by undersampling. Groups are Orange: PCR positive primer pair-template sets, Green: PCR 
negative primer pair-template sets, and Blue: all primer pair-template sets. Standard deviation within validation 
groups was shown as error bars.
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calculated, but a formula that uniformly shows the relationship between those indexes and the actual PCR is 
not  provided7. It is expected that various DNAs in PCR tubes, including templates and primers, and PCR reac-
tion conditions will contribute to the PCR results in different proportions under each condition. For example, 
the 3′end of the primer is known to have a very large effect on PCR with just a few bases. Although DOP-PCR 
and similar arbitrary methods are known to nonspecifically amplify a wide range of DNA by matching several 
 bases44. Experiments in the artificial gene synthesis from oligomers have also suggested that the primers are eas-
ily elongated when they form  dimers21. Not only the binding position of the primer but also the base sequence 
of the PCR target region may have an influence depending on the annealing temperature. Of course, the base 
sequences of the primers and templates themselves also affect the results as factors other than mere stability. 
Thus, to design a primer that performs PCR only on a specific template, not on similar template sequences, it is 
necessary to consider the unknown number of factors without information about any contribution.

In recent years, supervised machine  learning14 has been developed as a method of making predictions without 
determining the number or combination of factors that contribute to the results. In this method, after preparing 
data with correct answers, a large number of perceptrons are connected (perceptron network), and the serial 
adjustment of connection is optimized to form the perceptron network with the highest accuracy  rate14–17. Since 
the substance of the prediction is a set of coefficients of the perceptron and its network, it is not necessary to 
analyze the factors for increasing the accuracy rate. Instead, analyzing learned machine learning often does not 
reveal the factors. Based on the discussion in the previous paragraph, it was expected that supervised machine 
learning would be suitable, as it does not require the number or combination of factors that contribute to the 
results to predict the success or failure of PCR.

In this study, PCR results were predicted from the base sequences of primers and templates using natural lan-
guage processing that examines text trends. The PCR reaction is affected not by the base sequence of the primer or 
the template alone, but by the combination of complementary strands when they form a complementary strand. 
Therefore, we decided to generate the code from a combination of PCR primer pairs and complementary strand 

Table 5.  Cross table of PCR results and predictions. Cross tables on PCR-results and RNN-predictions are 
made on the RNN-predictions on 200-epochs. Set numbers on RNN-prediction of the test data (C, D) were 
shown on each learned group on which prediction algorithm was created by learning. Data from prediction 
on group 1 is shown on C and D, average and standard deviations on prediction from 5 groups are listed in 
Table 6.

Prediction on RNN

PCR-result

Negative Positive

A. Validation of whole data

Negative 1481 242

Positive 197 312

B. Validation of undersampling data

Negative 380 174

Positive 138 416

C. Cross table on the test data predicted by whole data-learned RNN

Negative 1419 73

Positive 176 6

D. Cross table on the test data predicted by whole data-learned RNN

Negative 1051 42

Positive 544 37

Table 6.  Sensitivity, specificity and accuracy in split verification data and test data by learned RNN. Sensitivity, 
specificity and accuracy were calculated for RNN predictions and PCR results from 5 split validation groups 
for the whole data and undersampling sets respectively. For the Test data, the mean value and standard 
deviation were calculated for the results of prediction by the RNN that independently learned with each 
verification group. Numbers on superscript show groups in which no significant difference are detected. On 
the other combinations, significant differences were shown with the Student’s and Welch’s t-tests.

Sensitivity Specificity Accuracy

Validation

Whole data 0.563 ± 0.062 0.882 ± 0.0241 0.803 ± 0.0291

Undersampling 0.751 ± 0.0312 0.686 ± 0.0213 0.718 ± 0.0222

Test

Whole data 0.114 ± 0.092 0.899 ± 0.0221 0.862 ± 0.0201

Undersampling 0.471 ± 0.092 0.661 ± 0.0563 0.652 ± 0.0523
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Table 7.  (continued)
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Table 7.  Color summarization of PCR results and predictions, (A) predictions from whole-data, (B) predictions 
from undersampling data. Color presentations for PCR-result and RNN-prediction. Colors show the following 
results and predictions; red: PCR-positive-prediction-positive, pink: PCR-positive-prediction-negative, blue: 
PCR-negative-prediction-negative, light blue: PCR-negative-prediction-positive, white: primer pair-template 
sets excluded from predictions during undersampling.
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Figure 5.  Scatter plot of PCR-results and predictions. Plot the PCR results and RNN-predictions against the 
Gibbs energy at the hydrogen bond at the forward (horizontal axis) and reverse (vertical axis) priming positions 
determined at the time of pseudo-sentence determination (Fig. 2). Colors and shape show the following results 
and predictions; red triangle: PCR-positive-prediction-positive, pink triangle: PCR-positive-prediction-negative, 
blue circle: PCR-negative-prediction-negative, light blue circle: PCR-negative-prediction-positive. Primer pair-
template sets excluded from predictions during undersampling were not plotted.
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bases formed by the template. The generated code was split into words so that a sentence was formed from a 
set of primers and templates. Since a sentence can be created for each primer set and template, if there is a PCR 
experimental result, the PCR experimental result can be linked as a correct answer to each sentence. In natural 
language processing, a machine-learning network is made to learn a sentence whose evaluation is confirmed, and 
the learned network predicts an unidentified sentence. In RNN, which is a typical natural language processing 
machine learning, RNN is trained in movie criticisms with positive evaluation and negative movie criticism, 
and the evaluation is predicted for unidentified movie  criticism6,45,46. By generating pseudo-sentences using 
the primer set and template proposed in this paper as a unit, it is possible to associate PCR results with each 
pseudo-sentence in the same way as Positive/Negative in film criticism. Since the generation of pseudo-words 
from the complement set alone could not reflect that the complementarity of the 3′end was greater than that of 
the 5′end, it was emphasized as a word iteration. Therefore, for the learning of pseudo-sentences in this study, 
the same RNN as the one learned for the evaluation of film criticism was used. This is the first paper to use a 
neural network application to design primers and predict PCR results. Supervised machine learning was used to 
learn the PCR results. Since we created pseudo-words and pseudo-sentences as input information, we selected 
RNNs to learn the relationship between primer and template sequences and PCR results. RNNs can interpret 
sentences while analyzing the context of words in the sentence. In this study, in a test experiment conducted by 
actually creating a new primer, prediction was made with an accuracy of 70% or more (Table 5). These results 
suggest that the interaction between the primer and the template is also effective when the interpreted data of 
the RNN is returned to the previous layer and used for further interpretation. They also suggest that the effect 
of primer-template interaction on PCR is similar to the effect of natural language word placement in semantic 
interpretation. The LSTM used the word context in the sentence to change the retention of the word’s effect for 
each word and make a comprehensive judgment of its  effectiveness47,48.

We created our pseudo-words for RNN analysis for this study (Fig. 2). All of the letters that make up a word 
were determined based on the primer-template interactions that are important in previous studies (Fig. 2E). 
Natural language processing by RNN uses all the words used in a specific language, so the vocabulary is about 
30 to 100,000 words (RNN literature). In this study, the data was as small as 2,000, so it was necessary to have a 
small vocabulary. Therefore, the original 16 base combinations are summarized in 5 based on the effect of Taq 
polymerase on DNA synthesis. However, considering that the primers face each other in the opposite direction 
during PCR, the direction of homology was reflected in the letters. Besides, different character sets were prepared 
for dimers and hairpins. Also, uppercase and lowercase letters were set for the evaluation target as the starting 
point of PCR and other parts. As a result, the vocabulary of the 5-letter pseudoword (pentacode) code was 5 to 
the 5th power × 5 × 2 = 31,250. In RNN, the characteristics of each sentence are expressed by the amount of words 
used (word vector) with the vocabulary as the number of dimensions. If the vocabulary is large, the frequency 
of occurrence of words is low, so the word vector becomes a sparse vector and may not sufficiently show the 
characteristics of the sentence. On the other hand, when the size of the vocabulary is small, detailed features 
may not be expressed, which suggests that the prediction accuracy is limited. In the method of this study, the 
number of characters in a word was shortened to 5 as another method to reduce the size of the vocabulary. It is 
suggested that extending this to 6 or 7 bases will increase the vocabulary and enable more accurate predictions. 
In the future, it is thought that this code setting method can be improved by accumulating more data.

In this study, pseudo-words were created based on primer hairpins, dimers, primer-template homology, and 
primer-PCR product homology. Predicting the priming position is expected to be particularly important among 
pseudo-words. This is because PCR is established based on the elongation of DNA from the priming position 
(Fig. 1). When designing the optimum primer as in the conventional case, the binding position of the primer has 
a long complementary region and high stability as compared with other positions. However, when comparing 
the complementarity between the template and the primer sequence, which was not originally designed, it is 
necessary to determine the priming position from a large number of candidates having similar length and stabil-
ity of the complementary strand. Also, the effect of priming position was conveyed by expressing the priming 
position in capital letters. The accuracy of this pumping position affects the accuracy of the overall prediction, 
whereas, in addition to the complementarity with the base sequence and template of the primer, it becomes 
an amplified sequence or set (reverse for forward, forward for reverse). Thus, its relationship with the priming 
position is also affected. Therefore, it is ideally desirable to learn and predict this priming position by artificial 
intelligence. However, since the basic data is not available in this study, the stability of the complementary strand 
is predicted by the nearest neighbor method. The priming position that maximizes stability was predicted with 
the set of priming positions. For the prediction of free energy by the nearest neighbor method, in addition to 
the values reported so far, values extrapolated from those values were set and used. Since some of these num-
bers are simple extrapolations from the reported numbers, their accuracy is not yet guaranteed, hence, future 
improvements are still needed.

Improvement in prediction accuracy in RNN is enhanced in the process of repeating epochs (Fig. 4). When 
all the data were used, the prediction was stable at about 25 epochs, and no significant change occurred. After 
which, when the number of PCR positive and negative data was matched by undersampling, the error was up to 
75 epochs larger. Later transition period of up to 100 epochs made the prediction accuracy become stable. This 
indicates that the structure of data affects the learning steps of RNN. When the number of data or composition 
is changed in the future, we proposed to first investigate the changes in epoch and prediction accuracy.

The PCR results used in this study include those that were greatly influenced by primer pairs (Table 4). In 12 of 
72 primer pairs, PCR was observed in 20 or more of 31 templates. In 22 primer pairs, PCR was observed in only 1 
template. No PCR was observed for 10 primer pairs. Perspectively, these primer pair-template data combinations 
showed that the predictions were relatively correct when only one of the templates was amplified or when PCR 
was not applied to any of the templates (Table 7A). This suggests that PCR was successful to primers with high 
specificity, and conversely, RNNs made highly accurate predictions for primer sets with low PCR characteristics. 
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On the other hand, in the primer pairs in which PCR was observed in a large number of templates, the prediction 
was relatively wrong, suggesting that it was difficult to predict the RNN for such primers in where false positives 
frequently appear. The relationship between primer binding to the template and prediction is shown in a scat-
ter plot made with Gibbs energy at the optimal binding position of the primer (Fig. 5). In this scatter plot, the 
primer and template set specifically designed for lower left area are shown, and the results for the primer pair and 
template set that do not assume PCR are shown in the upper right region (Fig. 5A). Surprisingly, the prediction 
did not always hit lower left region, but to the same extent in the upper right (Fig. 5B,C). This tendency was the 
same for undersampling, suggesting that improvement in prediction accuracy for PCR positive was influenced 
by improvement in the accuracy rate in the upper right region. For PCR-negative predictions, it is noteworthy 
that the RNN hit the predictions for multiple PCR-negative sets in the lower left region of the scatter plot created 
from the predictions of all the data. These results show that the RNN described in this study does not have high 
accuracy at present, but it is expected that the prediction accuracy will be improved by improving the number 
of data and reviewing pseudo-words in the future.

It is challenging for RNNs to simplify which of the pseudo-words and their repetitions can have a great influ-
ence on the characteristics of supervised machine learning. The correctness of the prediction does not guarantee 
the correctness of the setting like the pseudo-word. Moreover, through this paper, researchers may now find it 
useful to reconstruct the prediction method. Pseudo-word generation and pseudo-sentence prediction do not 
provide the theoretical justification of algorithms based on unified theory, but databased reproducibility can be 
provided to the user.

In conclusion, it is indicated that PCR design by natural language processing system using RNN be utilized 
in enabling a primer design to detect a specific template in the presence of multiple templates. Method accuracy 
is improved by learning the base sequence of the primer pair, the template, and the PCR result. Design can be 
upgraded by using discarded negative data.
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