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Abstract

Magnetic resonance imaging (MRI) systems and their continuous, failure-free operation is crucial for high-quality diagnos-
tics and seamless workflows. One important hardware component is coils as they detect the magnetic signal. Before every
MRI scan, several image features are captured which represent the used coil’s condition. These image features recorded
over time are used to train machine learning models for classification of coils into normal and broken coils for faster
and easier maintenance. The state-of-the-art techniques for classification of time series involve different kinds of neural
networks. We leveraged sequential data and trained three models, long short-term memory (LSTM), fully convolutional
network (FCN), and the combination of those called LSTMFCN as reported by Karim et al. (IEEE access 6:1662—1669,
2017). We found LSTMFCN to combine the benefits of LSTM and FCN. Thus, we achieved the highest F1-score of 87.45%
and the highest accuracy of 99.35% using LSTMFCN. Furthermore, we tackled the high data imbalance of only 2.1%
data collected from broken coils by training a Gaussian process (GP) regressor and adding predicted sequences as artificial
samples to our broken labelled data. Adding 40 synthetic samples increased the classification results of LSTMFCN to an
F1-score of 92.30% and accuracy of 99.83%. Thus, MRI head/neck coils can be classified normal or broken by training a
LSTMFCN on image features, successfully. Augmenting the data using GP-generated samples can improve the performance
even further.
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Introduction

Even the best hardware can fail. Our goal is to predict fail-
ures as early as possible. The majority of systems nowadays
log measurements during operation. These measurements
and their deviations from the norm contain valuable infor-
mation. This enables us to detect malfunctioning hardware
components. In particular, in medical imaging devices, such
as magnetic resonance imaging (MRI), this is of high inter-
est. In MRI, coils consist of conductive wires and detect
the MR signal. The resulting image highly depends on
the coil’s condition. In this work, we use key performance
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indicators (KPIs) which are measured using head/neck coils
right before the actual medical imaging procedure starts.

The classical supervised learning problem is to predict
the correct class of new objects after training on objects with
given classes [2]. Models like linear probabilistic models,
neural networks, kernel methods, and graphical models can
be applied [3]. Evolving from single instances, a lot of
data is also collected over time, e.g. weather readings. This
enlarges the dimension of input data and requires slightly
different methods.

In literature, time series classification is widely dis-
cussed. Deep learning is found to be very successful [4]. A
recurrent neural network (RNN) can take sequences as input
or output, or even both.

One special setup of recurrent neural network has already
been introduced in 1997 called long short-term memory
(LSTM) [5] and experiences great success in various appli-
cations, e.g. language modelling [6] or human activity recog-
nition [7]. Furthermore, fully convolutional neural networks
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(FCNs) are introduced for the classification of univariate
time series [8]. Taking these concepts even further, FCN is
augmented with LSTM sub-modules and outperforms the
performance of regular FCNs [1].

Independent of the chosen algorithm, a common problem
in machine learning (ML) classification is imbalanced
classes. In order to overcome the disproportionate ratio of
observations in each class, possible options are sampling
techniques, modification of classification methods, or
generating synthetic samples [9]. For example, an infinitely
imbalanced logistic regression is applied to an imbalanced
data set in order to improve mine classification [10]. As
another example, samples are generated with variational
Bayesian specific for image classification [11].

Previous research on MRI failures has rather focussed
on artefact detection and classification [12]. Several ML
algorithms are applied to image features of MRI systems for
hardware failure prediction [13, 14]. However, sequential
data was not used, and thus, the likely interdependence
of features over time was not considered. Other authors
predict the time until hardware components failed [15].
Furthermore, in previous research, we showed that LSTM
outperformed other algorithms like FCN or residual neural
network when applied to time series data, however, struggled
with data imbalance [16]. LSTMs are also applied on clinical
time series data in order to predict the diagnosis [17].

Materials and Methods

We set up a machine learning pipeline in order to identify
suspicious or already broken MRI coils. For that, we leverage

a sequence of input data and desire a label hinting to broken or
normal as output. Therefore, we train and test a LSTM, FCN,
and LSTMFCN on image features recorded by head/neck
coils. First, we describe and present the underlying data.
Furthermore, we explain the needed preprocessing steps.
Afterwards, the applied models are discussed.

Data

We apply our methods onto sequential data acquired by 68
Siemens MRI scanners each using one or several different
20-channel head/neck coils. Before every MRI examination,
coil adjustment measurements are performed which deliver
KPIs representative for image features. We collect four
numerical, one-dimensional features per coil channel. They
depict the channel signal noise level (CNL), channel signal
to noise ratio (CSP), channel signal to signal ratio (SSR),
and the channel signal to noise ratio at isocenter (CSI).
Data is acquired over the period of six months from
57 coils without failures and from 11 coils which break
over the course of our recording. This yields in 361,558
samples which contain 2.1% samples from broken coils.
The features and their record over time do not allow any
reconstruction of medical or patient-specific features. Thus,
we work on fully anonymous, non-clinical data. Figure 1
shows the four features over the course of more than 1
month for one exemplary system. The fifth chart displays
the respective label jumping from normal (represented
by the value 0) to broken (indicated with the value 1).
Please note that the time axis only holds timestamps where
measurements are available; thus, it does not reflect a
continuous time scale.
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Data Preprocessing

First, we normalize the measurements per feature by sub-
tracting the mean and dividing by the standard deviation,
respectively. The time series of measurements exhibit dif-
ferent lengths as the underlying MRI systems were used in
various frequencies. A total of 40 samples represent 1 day of
measurements on average. Thus, we split the individual vec-
tors into chunks of the unified length of 40 measurements.
These chunks are created by applying sliding windows
resulting in 31,834 normalized training sequences. As soon
as a training sequence contains one measurement from a
broken coil, the sequence is labelled broken. In the next step,

@ Springer

we address the problem of high data imbalance, as only 680
(2.1%) normalized sequences were measured from broken
coil elements. In order to increase the number of samples
of broken coils, we applied a Gaussian process (GP) regres-
sor [18] and modelled the relationship between label and
measured KPIs. The Gaussian process is entirely defined
by its mean and covariance function. In the course of this
paper, a radial basis function (RBF) is used as the covari-
ance function. Thus, we fit a Gaussian process to our data
using maximum likelihood estimation of the parameters.
For that, we collect available sequences of breaking coils
and overlay the time stamp of label switch. Then we pre-
dict samples for each feature individually from its learnt
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regressor and estimate new, broken sequences. We visual-
ize the original sequences next to one exemplary artificially
created sequence drawn as thick, dark line in Fig. 2. The vis-
ible spikes are recorded when images denote higher noise
levels than normal. These can be caused by various circum-
stances, e.g. electrical sparks, presence of signal disturbing
equipment, electronic interferences in the receiver circuits,
or hardware failure. We record spikes not being produced
by hardware failure as well as breaking coils without spikes.
Thus, we rely on the change of the signal over time to detect
breakage, reliably.

Machine Learning Model

We use machine learning to classify MRI hardware as
normal or defective. Our models are trained on image
features recorded by MRI coils over time. As the amount
of training data is limited, we apply leave-several-coils-out
cross-validation with fivefolds. One fold contains samples
from 68 coils where of 13 or 14 coils are left out for
testing. The distribution per fold is given in Table 1. Thus,
sequences from distinct coils were used for training and
testing. We aim to detect failing hardware as soon as the
first measurement is performed using one single broken coil
element. This is implemented using sliding windows of the
given sequences. Thus, broken hardware shall be detected
already before the actual patient scan would start.

As we leverage sequential image features collected
during runtime of the MRI systems and consequently of
the used coils to predict the coil’s condition (broken or
normal), we employ time series classification methods. One
state-of-the-art technique to classify time series data are
fully convolutional neural networks (FCNs). In our earlier
research [16], we found LSTM and FCN to outperform
time convolutional neural networks and residual networks.
Thus, we use the combination of both, LSTM and FCN
(LSTMFCN), to leverage the benefits of both and achieve
a most accurate classification as proposed in [1]. In the
following, we present the model details of LSTMFCN
and the two individual models for comparison. We tuned
and determined all hyperparameters per model individually,
using the F1-score as the decisive metric.

Table 1 Distribution of normal and broken samples in test set of each
fold

Fold 0 1 2 3 4 Sum
Normal 4437 7020 6917 5246 7534 31154
Broken 397 14 87 50 132 680
Sum 4834 7034 7004 5296 7666 31834

Every fold contains training samples from 68 coils, leaving 13 or 14
coils out for testing

Long Short-term Memory For comparison, we implemented a
LSTM network according to our previous reseach [16]. The
model contains two convolutional layers without padding
operations. We apply local average pooling and a dropout
operation to prevent overfitting after each convolutional
layer. This is followed by two LSTM layers with 32 units.
Finally, we employ a dense layer with sigmoid activation
function to calculate the result.

Fully Convolutional Network Furthermore, a fully convo-
lutional neural network (FCN) is built using three convo-
lutional blocks as suggested in [8]. Each block contains
one convolution, batch normalization, and ReLu activation
layer. This is followed by global average pooling and a
dense layer using softmax activation. We did not use any
pooling to prevent overfitting nor a regularizer.

Long Short-term Memory Fully Convolutional Network
Finally, a FCN is combined with the benefits of a LSTM.
Therein, the FCN is augmented by LSTM as illustrated in
Fig. 3. The FCN part contains three temporal convolutional
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Fig.3 The LSTMFCN model architecture with respective filter sizes
after hyperparameter tuning. It concatenates a standard FCN (left part)
and LSTM (right part) and finishes with a softmax layer
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Table 2 Average prediction

performance measures for our % Accuracy Precision Recall F1 TN FP FN TP

models applied to data set

without augmentation LSTM 98.19 96.62 56.44 64.50 99.97 0.03 43.56 56.44
FCN 99.27 96.80 77.93 84.51 99.70 0.30 22.07 77.93
LSTMFCN 99.35 98.23 80.70 87.45 99.86 0.14 19.30 80.70

blocks with filter sizes of 512, 64, and 16, respectively.
Each of those blocks is followed by batch normalization
and ReLU activation function. After the third convolution
block, a global average pooling layer is induced. This
is concatenated with the LSTM part which consists of a
dimension shuffle first, followed by the main LSTM block
and a Dropout layer. After concatenation, finally, the result
is calculated using a softmax layer.

Results

First, we compare the models amongst each other on the
original, imbalanced data set. Table 2 shows the resulting
performance measures for LSTM, FCN, and LSTMFCN
next to each other as well as the confusion matrix. Those
numbers present the averages over all fivefolds. TN holds
values for the true negative rate, FP covers false positive
rate, and FN and TP denote false negative and true positive
rates, respectively. Furthermore, we provide the receiver
operating characteristic (ROC) curve and the area under the
ROC curve (AUC) of LSTMFCN for the different folds (see
Fig. 4). In order to compare the different models, Fig. 5
holds ROC curves of LSTMFCN, FCN, and LSTM applied
onto data without augmentation.

Fig.4 ROC curve for

We continued experiments regarding the imbalance of
our data and explored the behaviour of our three models.
Thus, we added synthetic data by predicting sequences
based on the GP regression model. We used different
amounts of artificial data, ranging from 0 to 200 sequences.
The resulting Fl-scores of the three considered models
are provided in Fig. 6. We found the highest Fl-score of
92.3% for LSTMFCN using 40 GP data. The FCN achieved
its highest Fl-score of 88.1% after adding 160 synthetic
sequences. Moreover, we yield an F1-score of 89.5% when
applying LSTM onto our data set containing 80 additional
sequences. The respective ROC curves of the models using
their optimal number of added, artificial data are presented
in Fig. 7.

As we found LSTMFCN reaching the highest F1-score of
92.3% by adding 40 synthetic sequences (equal to 2.3% data
from broken coils), the detailed performance measures are
provided in Table 3. The first row holds performance results
of the LSTMFCN without artificial data for comparison.

Discussion

We performed several experiments to find the best model
for our problem of broken coil classification. We compared
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three different models, LSTM, FCN, and the combination
of both, called LSTMFCN. The performance results support
the strategy of combining the benefits of LSTM and
FCN in LSTMFCN. Thus, Table 2 shows that LSTMFCN
outperforms LSTM and FCN in all presented performance
measures, accuracy, precision, recall, and Fl-score. As we
deal with highly imbalanced data, Fl-score is the most
meaningful measure and reaches 87.45%. However, FCN
results are very close to LSTMFCN. The confusion matrix
gives further insights into LSTM’s classification issues of
missing out a lot of broken coils. Using LSTM, on average

False Positive Rate

almost every second broken coil is classified falsely as
represented by a false negative rate of under 44%. The FCN
achieves better performance than LSTM, however does not
reach LSTMFCN’s average performance, neither. We see
also here only a true positive rate of 77.93% being lower
than 80.70% reached using LSTMFCN. If we have a closer
look at the ROC curves (Fig. 5), FCN and LSTMFCN
curves are very close, whereas LSTM falls behind. We
denote the high ability of classifying correctly using FCN
and LSTMFCN to the nature of the three subsequent
convolution layers. Paying attention to the individual folds
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Fig.7 ROC curves of the three
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and their performance presented in Fig. 4, fold 2 stands out
with the lowest performance. That fold contains the largest
proportion of coils which brake at a late point in time of
our recordings. This makes the amount of sequences from
broken coils smaller than those in the other folds.

Consequently, we generated synthetic samples to
increase the number of broken coil KPIs. As presented
in Fig. 6, adding artificial data using the proposed Gaus-
sian process regressor could improve classification perfor-
mances for all models. However, adding too many GP-
generated, artificial samples leads to stagnation or even
decline of F1-score. This can be explained by the nature of
our artificial data. They represent the general look of broken
sequences very well but do not vary significantly amongst
each other. Thus, adding too many of those very similar
sequences does not add more information and can lead to
even decreasing results. Detailed performance measures for
LSTMFCN in Table 3 emphasize that adding too many syn-
thetic, GP-generated sequences misleads the model. We see
this in decreased accuracy, precision, and Fl-score while
recall increases.

0.2 0.4 0.6 0.8 1.0
False Positive Rate

Conclusions

For seamless workflow in medical operation as well as
cost reduction, early detection of broken or soon to brake
MRI hardware is key. Thus, we employed sequential
image features which carry information about the coil’s
condition. We trained and tested three models, LSTM, FCN,
and LSTMFCN. Furthermore, we generated representative,
synthetic KPIs of broken coils using a Gaussian process
regressor and thus, decreased the dominant data imbalance.
This improved the F1-score of all our models. The overall
best Fl-score was found by adding 40 artificial samples
using the LSTMFCN. We could improve the results
compared to using the original data set without artificial
data from Fl-score of 87.45 to 92.30%. However, adding
synthetic data using the GP regressor did not result in
the expected push of classification performance for all
amounts of added, synthetic data in our experiments. Using
too many artificial sequences would lead to overfitting
towards the synthetic data. For each problem statement, this
sweet spot needs to be found experimentally. We finally

Table 3 Average prediction performance measures for LSTMFCN applied onto the original data set as well as after adding 40 and 200 synthetic

sequences
Broken

samples Accuracy Precision Recall F1 TN FP FN TP
2.1% (0) 99.35 98.23 80.70 87.45 99.86 0.14 19.30 80.70
2.3% (40) 99.83 100.00 85.70 92.30 100.00 0.00 14.30 85.70
2.9% (200) 98.67 92.46 89.53 90.87 99.29 0.71 10.47 89.53
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could prove the power of combining LSTM, FCN, and
data augmentation and solve the classification problem,
successfully.

In practice, our proposed pipeline can be employed for
MRI coil failure detection at the earliest possible state.
Thus, the trained model continuously predicts the state of
coils being normal or broken. If the model is implemented
directly at the imaging device, real-time prediction and
failure detection are possible before a patient was scanned.
If the model is implemented in a different environment, data
transfer times delay the prediction result. This still improves
reaction times and coil exchange times.

In future work, more data should be incorporated for
training and validated by expert knowledge. Furthermore,
our KPIs are measured per coil element, whereas the label
only applies on the entire coil which can contain broken
and normal coil elements at the same time. As not all coil
elements are used in every measurement, data can contain
KPIs hinting to normal condition of the coil even if it is
actually broken. Thus, further consideration should cover
KPIs measured mirroring all coil elements. Moreover, the
generation of synthetic data shall further be investigated.
In this work, we only covered a basic approach of
Gaussian process regressor. In future research, the Gaussian
process regressor concept could be further enhanced by,
e.g. shapelets and applying ideas of Unsupervised Feature
Learning from Time Series (USLM) [19].
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