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Abstract: Alcohol-associated liver disease (ALD) is a spectrum of diseases, the onset and progression
of which are due to chronic alcohol use. ALD ranges, by increasing severity, from hepatic steatosis
to alcoholic hepatitis (AH) and alcohol-associated cirrhosis (AC), and in some cases, can lead to the
development of hepatocellular carcinoma (HCC). ALD continues to be a significant health burden
and is now the main cause of liver transplantations in the United States. ALD leads to biological,
microbial, physical, metabolic, and inflammatory changes in patients that vary depending on disease
severity. ALD deaths have been increasing in recent years and are projected to continue to increase.
Current treatment centers focus on abstinence and symptom management, with little in the way
of resolving disease progression. Due to the metabolic disruption and gut dysbiosis in ALD, bile
acid (BA) signaling and metabolism are also notably affected and play a prominent role in disease
progression in ALD, as well as other liver disease states, such as non-alcoholic fatty liver disease
(NAFLD). In this review, we summarize the recent advances in the understanding of the mechanisms
by which alcohol consumption induces hepatic injury and the role of BA-mediated signaling in the
pathogenesis of ALD.

Keywords: alcohol-associated liver disease; bile acids; ethanol; steatosis; steatohepatitis; cirrhosis

1. Introduction

The use of alcohol is estimated to date back to 8000 BC, with the earliest proof in the
form of chemical analysis dating back to 7000 to 6600 BC [1]. Alcohol has been used as
a medicine, ointment, and cleaning agent and has been indulged in over the centuries.
Alcohol-associated liver disease (ALD), also previously known as alcoholic liver disease,
is a clinical illness caused by excessive and/or chronic alcohol use that has significant
health and economic impacts. ALD is associated with a marked increase in lipid droplets
in hepatocytes. It becomes classified as alcoholic fatty liver or steatosis once greater than
5% of hepatocytes develop this fatty phenotype [2]. These lipid droplet accumulations can
be classified as macrovesicular, large lipid droplets that displace the nucleus and organelles
or microvesicular, smaller lipid droplets that do not displace the nucleus, which tend
to be more common in ALD [2]. The amount of fat in the liver can be measured by a
specialized ultrasound device called a FirboScan [3]. However, alcoholic steatosis is rarely
diagnosed, as it is largely asymptomatic. The lack of early detection often allows for further
progression along the ALD spectrum that encompasses simple steatosis, alcoholic hepatitis
(AH), alcoholic liver fibrosis, and alcoholic cirrhosis (AC) and can ultimately develop into
hepatocellular carcinoma (HCC) (Figure 1). The current standard treatment for ALD is (and
has been for decades) abstinence, as well as dietary and lifestyle changes prior to cirrhosis
and liver transplantation for end-stage treatment [4–6]. ALD is closely associated with
metabolic, physiologic, and inflammatory changes; gut dysbiosis; and altered bile acid (BA)
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synthesis, recycling, and signaling [6–11]. Lipid and lipoprotein profiles have been shown
to be significantly different in patients with AH vs. heavy drinkers and could be used in
prognosis [12]. AH patients have worse liver function compared to never-decompensated
ALD, with AH being associated with bilirubinostatsis, severe fibrosis, ductular reaction,
and aberrant gene expression [13]. Gut dysbiosis leads to increased inflammation, as well
as altered BA signaling, due to changes in intestinal microbial modifications of BAs and has
been associated with ALD, non-alcoholic fatty liver disease (NAFLD), and autoimmune
liver disease [14]. More recently, not only has bacterially associated gut dysbiosis been
important, but fungal changes in the intestinal microbiome have shown associations with
ALD as well [15]. BAs are not only important in absorption of cholesterol and lipids
but also act as critical signaling molecules that regulate lipid and glucose metabolism,
as well as immune response. Impaired BA homeostasis has been linked with ALD and
cirrhosis [16–20].

Figure 1. Alcohol-associated liver disease (ALD) spectrum. ALD spectrum showing the progression of
pathology and contributing factors that initiate disease onset and promote disease progression. ALD
is characterized by chronic and/or excessive alcohol intake, which leads to steatosis, inflammation,
and fibrosis, culminating in cirrhosis and potential development of hepatocellular carcinoma. ALD is
irreversible once the liver becomes cirrhotic.

2. Alcohol-Associated Liver Disease (ALD)
2.1. Prevalence and Burden

ALD results from chronic and excessive alcohol consumption, with onset risk in doses
as little as 10 g of pure ethanol per day [21]. Previous reports have shown that ALD is a
major cause of liver disease worldwide and has become the leading cause of liver transplan-
tation in the United States, surpassing the hepatitis C virus due to treatment advances [22].
ALD accounts for 30% of all HCC cases and HCC-specific deaths worldwide [23,24]. A
recent predictive modeling study published in the Lancet Public Health estimates that
age-standardized deaths due to ALD are expected to increase from 8.23 per 100,000 person-
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years in 2019 to 15.20 per 100,000 person-years in 2040 and that 1,128,400 people will die
between 2019 and 2040 [25]. ALD is the leading chronic cause of alcohol-attributable deaths,
accounting for 18,164 deaths annually in the United States [26].

2.2. Alcohol Metabolism

Many of the toxic effects of ethanol are associated with and tied to its site of metabolism.
Ethanol is readily absorbed in the gastrointestinal tract, with only 2 to 10% of the absorbed
amount being eliminated through the lungs, urine, and sweat, whereas the remaining
amount is oxidized, primarily in the liver [27]. Ethanol metabolism is performed by
several enzymes. Ethanol is primarily oxidized by alcohol dehydrogenase (ADH) in
hepatocytes to acetaldehyde. Acetaldehyde loses a hydrogen by aldehyde dehydrogenase
(ALDH) and NAD+ to form acetate and NADH [1]. A lysine substitution for glutamate
at position 504 of ALDH2 leads to a near completely inactive form called ALDH2*2 [1].
ALDH2*2 leads to an alcohol flush reaction and is relatively common in people of Chinese,
Japanese, and Korean descent but essentially absent from people of European or African
ancestry [1]. Acetate can then be converted to acetyl-CoA, which can be oxidized in the
tricarboxylic acid cycle. ADH and ALDH each require coenzyme nicotinamide adenine
dinucleotide (NAD+) for the transfer of oxygen, reducing it to NADH [28–31]. There are
multiple forms of ADH and ALDH, which are encoded by different genes. The genetic
variants of ADH and ALDH can affect ethanol metabolism [28,31]. Previous research has
focused on identifying which genes may be more strongly associated with alcoholism, with
Edenberg summarizing that ALDH2*2 may be protective against alcohol dependence [28].
Although ADH is the major enzyme in ethanol metabolism, there are two other well-
known enzymes: cytochrome P450 2E1 (CYP2E1), part of the microsomal ethanol oxidizing
system (MEOS); and catalase [27,31,32]. CYP2E1 participates in the metabolism of acetone
and fatty acids and is typically found in microsomes or vesicles within the endoplasmic
reticulum [29,31–33]. Although CYP2E1 is generally found in the liver, it can be found in
multiple organs, and its expression is inducible [29,31–33]. Catalase, found in all major
organs, is an antioxidant enzyme that is typically known for its role in converting hydrogen
peroxide into water and molecular oxygen [27,31,32]. It has recently been shown that
peroxisome proliferator-activated receptor α (PPARα) activation completely shifts ethanol
metabolism from the reactive oxygen species (ROS)-generating CYP2E1 pathway to the
ROS-scavenging catalase pathway and accelerated alcohol clearance [34]. Ethanol also
induces cytochrome P450 2A5 (CYP2A5), and this induction is regulated by nuclear factor-
erythroid 2-related factor 2 (NRF2) [35]. Whereas the primary site for alcohol metabolism
is the liver, some metabolism may occur elsewhere and lead to some tissue damage in
other sites.

2.3. Alcohol Toxicity and ALD Pathology

Excessive alcohol use is the leading preventable cause of death in the United States,
and chronic alcohol conditions account for 51,078 deaths per year [26]. Ethanol is a toxic
compound in excessive and chronic amounts and leads to the development of ALD. Ethanol
toxicity is primarily due to its metabolism, which explains why most damage is associated
with the liver, the primary site of metabolism. However, ethanol itself can interact with
membrane phospholipids, stimulate Kupffer cells, and increase oxidative stress [36]. When
ethanol is ingested, it undergoes first-pass metabolism once encountering the gut wall
and transits to liver hepatocytes via the hepatic portal vein system. At the hepatocytes,
depending on the duration and amount of ethanol exposure, an increasing amount of
hepatotoxicity results due to the production of acetaldehyde from ethanol by ADH, as
well as decrease in the NAD+/NADH ratio and mitochondrial damage [37]. Acetaldehyde
covalently binds to microtubules, leading to hepatocyte swelling, as it blocks the excretion
of proteins [38]. Acetaldehyde can lead to a number of DNA-altering and -degrading effects,
such as DNA adducts, point mutations, DNA crosslinking, and single- and double-strand
breaks [39]. The increasing level of hepatotoxicity can acutely lead to AH or, in chronic
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cases, an increase in fatty hepatocytes and alcoholic steatosis (AS). The accumulation
of fatty acids in hepatocytes seen in AS is due to alcohol’s effects on lipid metabolism
through altered lipid uptake and export, de novo synthesis, fatty acid oxidation, droplet
formation, and catabolism [40]. Alcohol increases adipocyte lipolysis, largely through
insulin resistance, increasing circulating non-essential fatty acids, which leads to an increase
in fatty acid uptake by hepatocytes [40,41]. Alcohol-associated hepatocyte fatty acid
accumulation is also due to an increase in hepatic fatty acid transporters. CD36, also
called fatty acid translocase, is a fatty acid transport protein that uptakes circulating fatty
acids and is normally minimally expressed in hepatocytes; however, previous studies have
shown that CD36 is highly inducible by alcohol, contributing to hepatic steatosis, and that
CD36 ablation alleviates ethanol-induced hepatocyte lipid accumulation [42,43]. Alcohol
has also been shown to alter several lipid regulatory factors, such as sterol regulatory
element binding protein-1c (SREBP-1c), carbohydrate response element-binding protein
(ChREBP), and PPARα [40]. The most significant cause of ALD hepatocellular fatty acid
accumulation is ethanol inhibition of mitochondrial β-oxidation [40,44]. This inhibition
results from a reduction in AMP-activated protein kinase (AMPK) activity, increasing
acetyl-CoA carboxylase activity and increasing malonyl-CoA levels [45]. This leads to the
inhibition of carnitine palmitoyltransferase 1, which is needed for fatty acid translocation
for mitochondrial β-oxidation. As hepatocytes are continually exposed to ethanol, these
toxic effects compound, causing chronic liver damage. This chronic liver damage leads
to fibrosis by hepatic stellate cells (HSCs) switching from a quiescent state to an active
state [46]. Once in an active state, HSCs begin depositing collagen in liver tissue [46].
Continued fibrosis leads to the accumulation of scar tissue on most of the liver, becoming
AC. AC can ultimately result in HCC due to accumulated cellular and DNA damage.

Liver toxicity from ethanol can be impacted by several factors, such as diet, exercise,
environment, and genetics. Recently, genetic analyses identified that genetic variants in
phospholipase domain-containing protein 3 (PNPLA3) and haptoglobin increase the risk
for AH risk based on increased total bilirubin and a model for end-stage liver disease
score, which were used as surrogates for AH severity [47]. CYP2A5 expression has also
been shown to be induced by ethanol, and CYP2A5−/− mice develop more severe alco-
holic fatty liver than wild-type mice, revealing a protective effect of CYP2A5 [35]. The
same study also investigated CYP2A5’s protection and identified a relationship with the
PPARα-fibroblast growth factor 21 (FGF21) axis [35]. Although the liver is the primary
site of alcohol metabolism, its metabolically associated damage can also occur in other
tissues, such as the brain, intestines, and cardiovascular system [19,29,48]. The reduction of
ethanol to acetaldehyde and then acetate has been associated with the production of reactive
oxygen species; the bioreactive aldehydes produced lead to neurotoxicity and neurodegener-
ation [29,49]. Excessive alcohol consumption can lead to alcoholic cardiomyopathy through
a not yet fully elucidated mechanism that is believed to revolve around the alteration of the
mitochondria, oxidative stress, and inducing apoptosis in cardiomyocytes [50–53]. Chronic
intake of ethanol and its metabolites can also lead to gut dysbiosis. Continued alcohol
use in cirrhotic patients results in significant duodenal, ileal, and colonic dysbiosis; higher
endotoxemia; and higher systemic and ileal inflammatory expression [54]. However, at high
levels of ethanol, extrahepatic metabolism of ethanol to acetaldehyde occurs by CYP2E1 and
catalase. In the brain, BAs have been shown in previous studies to increase in patients with
alcoholic steatohepatitis and in cirrhosis [55,56]. Cirrhosis is often associated with hepatic
encephalopathy (HE). Comparing cirrhotic patients with HE to cirrhotic patients without
HE revealed that HE patients had significantly worse systemic inflammation, gut dysbiosis,
and hyperammonemia compared to controls and non-HE cirrhotic patients [57]. Liver
cirrhosis also affects the bone marrow, with advanced cirrhotic patients having significantly
reduced hematopoietic stem cells, mesenchymal stem cells, Schwann cells, neural fibers,
and endothelial cells, as analyzed by immunohistochemistry [58].
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3. Bile Acids
3.1. Bile Acid Enterohepatic Circulation

BAs are amphipathic steroid molecules derived from a multistep enzymatic pathway.
De novo BA synthesis begins with cholesterol in the liver. After BAs are formed in the
hepatocytes of the liver, they are transported into the bile canaliculi by the efflux transporter
bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). Once in
the bile canaliculi, BAs then flow to and are stored in the gallbladder. Upon ingestion of fats
and proteins, cholecystokinin (CCK) is released from endocrine cells in the small intestine.
CCK then signals the smooth muscle cells of the muscularis layer of the gallbladder to
contract and the sphincter of Oddi to relax, releasing bile into the cystic duct. Bile enters
the common bile duct from the cystic duct and flows into the ampulla of Vater before
entering the duodenum. Most of the BAs are reabsorbed in the intestines via the hepatic
portal vein to end up in the liver again and start the cycle anew. This cycle is referred to as
enterohepatic circulation. A proportion of 95% of BAs are absorbed in the intestines, with
the majority being absorbed in the terminal ileum by active transport via the apical sodium-
dependent bile transporter. The BAs are then transported across the enterocyte into the
sinusoidal membrane, where epithelial cells’ organic sulfate transporter-α and -β (OST-α
and -β) transport the BAs into portal blood. Once BAs in the portal vein reach the liver,
hepatocytes uptake the BAs via Na+-taurocholate cotransporting polypeptides (NTCPs)
and organic anion transporting polypeptides (OATPs) on the basolateral membrane [59–61].
OATP1B1 and OATP1B3 have been shown to preferentially transport conjugated BAs over
unconjugated BAs [62]. The BAs left in the intestinal lumen are altered by gut bacteria.
Bacterial modifications include deconjugation, 7-dehydroxylation, amidation, oxidation-
reduction, esterification, and desulfation [63–65]. Humans have a total bile production
of ~600 mL and a BA pool size of 4 to 6 g, releasing approximately 12 to 30 g into the
intestines daily; these BAs recirculate an average of three to five times [66–69]. BAs can be
categorized as primary bile acids or secondary bile acids, each of which can be conjugated
or unconjugated. In humans, the liver produces two primary bile acids—cholic acid (CA)
and chenodeoxycholic acid (CDCA)—whereas rodents produce CA, CDCA, and α- and
β-muricholic acids (α- and β-MCA). Human secondary bile acids consist of deoxycholic
acid (DCA) and lithocholic acid (LCA), whereas mouse secondary bile acids consist of
murideoxycholic acid (MDCA), hyodeoxycholic acid (HDCA), and ω-Muricholic acid
(ω-MCA) [69]. Both humans and mice can have ursodeoxycholic acid (UDCA). BAs can be
conjugated by the addition of taurine or glycine. Murine BAs are mostly taurine-conjugated,
whereas human BAs are mainly glycine-conjugated [70]. Another distinguishing difference
is that the murine BA pool is more hydrophilic than the human BA pool [71].

3.2. Bile Acid Metabolism

The primary bile acids are produced from cholesterol via two well-characterized path-
ways: the classical (neutral) pathway and the alternative (acidic) pathway [72]. The classical
pathway accounts for ~90% of BA formation, with the alternative pathway making up the
final 10% (Figure 2). This catabolic process requires more than a dozen enzymes to modify
the cholesterol steroid core. Human BAs have 24 carbon atoms, with a steroid core that con-
sists of three six-member rings and a five-member ring. The rate-limiting steps for both the
classical and alternative pathways are the initial enzymes for each of them: cholesterol 7α-
hydroxylase (CYP7A1) and cholesterol 27α-hydroxylase (CYP27A1), respectively. CYP7A1
hydroxylates at the C7 position of cholesterol to form 7α-hydroxycholesterol, whereas
CYP27A1 hydroxylates cholesterol at C27 to form 27-hydroxycholesterol. In the classical
pathway, 7α-hydroxycholesterol is then converted to 7α-hydroxy-4-cholesten-3-one (C4) by
3β-hydroxy-∆5-C27-steroid oxidoreductase (HSD3B7) [73]. A multi-enzymatic process that
results in a double-bond reduction, further hydroxylation, and side-chain cleavage converts
C4 to CDCA via aldo-keto reductase 1D1 (AKR1D1), 3α-hydroxysteroid dehydrogenase
(3αHSD), and CYP27A1 [73]. Microsomal sterol 12α-hydroxylase (CYP8B1) interacts with
C4 to form 7α,12α-hydroxy-4-cholesten-3-one and regulates the CA-to-CDCA ratio [74].
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7α,12α-hydroxy-4-cholesten-3-one is then altered by other subsequent enzymes to form
CA. In the alternative pathway, CYP27A1, located in the inner mitochondrial membrane, is
the first step of the enzymatic process, followed by oxysterol 7α-hydroxylase (CYP7B1). A
recent study showed that CYP7B1 is responsible for controlling the levels of intracellular
regulatory oxysterols produced by the alternative pathway [75]. The alternative pathway is
believed to mainly produce CDCA. Following further subsequent enzymatic alterations
by AKR1D1 and 3αHSD, as well as others, CDCA is formed [73]. Bile acid–CoA synthase
(BACS) and bile acid–CoA: amino acid N-acetyltransferase (BAAT) then add glycine or
taurine to CA and CDCA to produce the conjugated bile acids glycocholic acid (GCA),
taurocholic acid (TCA), glycochenodeoxycholic acid, and taurochenodeoxycholic acid
(TCDCA). In mice, CDCA and UDCA are converted to α-MCA and β-MCA by cytochrome
p450 2C70 (CYP2C70) and are then conjugated with taurine or glycine [71,76].

The bile acids then undergo enterohepatic circulation as previously described. In
the intestine, BAs can be further modified by a variety of bacteria to form secondary
BAs. One of the major bacterial alterations of BAs is the deconjugation of conjugated
BAs by bile salt hydrolase (BSH) enzymes. BSH protein sequences have been identified
in 591 intestinal bacteria strains within 117 genera of human microbiota and reclassified
into 8 phylotypes [77]. Lactobacillus BSH has been shown to have the highest enzyme
activity, whereas BSH phylotypes BSH-T5 and -T6 are mainly from Bacteroides, with a
high percentage of paralogs that exhibit different enzyme activity [77]. Another important
microbial modification is 7α-dehydroxylation, which converts CA and CDCA to DCA and
LCA, respectively, as well as 7β-dehydroxylation, which converts UDCA to LCA [64]. BAs
can also be modified by dehydrogenation, oxidation, epimerization; more recently, gut
microbiota have been shown to conjugate amino acids to bile acids, termed microbially
conjugated bile acids [78,79]. BA synthesis, reabsorption, metabolism, and the effects
that BAs mediate are heavily regulated by and carried out through their interactions
with receptors.

Figure 2. Bile acid metabolism and enterohepatic circulation. The human liver produces 0.5 g of
bile per day via de novo synthesis. Only 5% of the secreted daily amount of bile acids is lost as
waste each day. Bile acid synthesis can occur via the classical (neutral) pathway or the alternative
(acidic) pathway. The classical pathway is regulated by cholesterol 7α-hydroxylase (CYP7A1), the first
enzyme and rate-limiting step in the pathway, which converts cholesterol to 7α-hydroxycholesterol.
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CYP7A1 is located in the endoplasmic reticulum of hepatocytes. The alternative pathway’s first
enzyme is sterol 27-hydroxylase (CYP27A1), present in macrophages and other cells, which converts
cholesterol to 27-hydroxycholesterol and is the rate-limiting step of the alternative pathway. The
classical pathway accounts for 90% of synthesized bile acids through a multi-enzymatic step. In
the classical pathway, 7α-hydroxycholesterol is converted to 7α-hydroxy-4-cholesten-3-one (C4) by
3β-hydroxy-∆5-C27-steroid oxidoreductase (HSD3B7). The classical pathway then converts C4 to
cholic acid (CA) or chenodeoxycholic acid (CDCA) by a multi-enzymatic step that includes micro-
somal sterol 12α-hydroxylase (CYP8B1), aldo-keto reductase 1D1 (AKR1D1), 3α-hydroxysteroid
dehydrogenase (3αHSD), and CYP27A1. The alternative pathway mainly produces CDCA in a
multi-step enzymatic process that includes CYP27A1, oxysterol 7α-hydroxylase (CYP7B1), AKR1D1,
and 3αHSD, among others. CA and CDCA are conjugated with glycine or taurine by bile acid–CoA
synthase (BACS) and bile acid–CoA: amino acid N-acetyltransferase (BAAT) to produce the conju-
gated bile acids glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid, and
taurochenodeoxycholic acid (TCDCA). Mice also convert CDCA and ursodeoxycholic acid (UDCA)
to α-muricholic acid (α-MCA) and β-muricholic acid (β-MCA) by cytochrome p450 2C70 (CYP2C70),
which can then be conjugated with glycine and taurine. In the intestines, bile acids are deconjugated
by bacterial bile salt hydrolases (BSHs). CA and CDCA undergo 7α-dehydroxylation to form (deoxy-
cholic acid) DCA and lithocholic acid (LCA), respectively. 7β-dehydroxylation converts UDCA to
LCA. The murine-specific bile acids created are murideoxycholic acid (MDCA),ω-muricholic acid
(ω-MCA), hyocholic acid (HCA), and hyodeoxycholic acid (HDCA). Bile acids are further modified
by dehydrogenation, dehydroxylation, oxidation, and epimerization; more recently, gut microbiota
have been shown to conjugate amino acids to bile acids, termed microbially conjugated bile acids [78].

3.3. Bile Acid Signaling

Maintaining BA homeostasis is an important physiological process that focuses on
regulating synthesis, absorption, and excretion. This regulation is controlled by several
specific nuclear and surface receptors, transporters, and their subsequent signaling cas-
cades and secondary signaling molecules. BAs can interact with several receptors, leading
to the activation of a plethora of secondary signaling molecules that lead to a variety of
metabolic and homeostatic changes. BA nuclear receptors include the farnesoid X receptor
(FXR) [80], the pregnane x receptor (PXR) [81,82], and the vitamin D receptor (VDR) [83].
The FXR has two members in mammals: FXRα and FXRβ [84]. FXRα has four isoforms,
FXRα1-α4, whereas FXRβ encodes functional receptors in other species but is a pseudo-
gene in humans and primates [85–87]. The FXRα isoforms exhibit locational differences in
expression, with FXRα1 and FXRα2 being moderately expressed in the ileum and adrenal
glands and FXRα3 and FXRα4 being highly expressed in the ileum and moderately ex-
pressed in the kidneys [87]. FXR binds to CDCA, LCA, DCA, and CA [80,88,89]. The
FXR has been shown to regulate the metabolism of and is the major coordinator of bile
acids, carbohydrates, lipids, and absorption of dietary fats and vitamins and plays an
important role in the anti-inflammatory response and inhibition of hepatocarcinogene-
sis [84,90]. Upon activation, FXR forms a heterodimer with retinoid X receptor α (RXRα),
the allosteric signal transduction of which was recently investigated, showing changes
in affinity and conformational changes in helix 11 of the FXR (Figure 3) [91]. Activation
and heterodimerization lead to the expression of small heterodimer partner (SHP), BACS,
and BAAT and lead to transcriptional repression of CYP7A1 and liver homolog 1 [92–94].
SHP leads to repression of NTCP, reducing BA uptake of hepatocytes and CYP7A1, re-
ducing BA synthesis [92,95]. FXR also leads to the expression of bile salt export pump
(BSEP), OST-α and -β, multidrug resistance protein 2 (MRP2), and multidrug resistance
protein 3 (MDR3) [96–99]. SHP mediates liver X receptor (LXR) anti-inflammatory effects by
SUMOylation of LXR, with knockdown of SHP abrogating LXR SUMOylation, preventing
its anti-inflammatory effects [100]. BSEP, MRP2, and MDR3 all transport their targets into
the bile canaliculus and are critical in the healthy production and composition of bile.
PXR is activated by 3-keto-LCA and LCA [82,89]. PXR activation is also associated with
RXRα heterodimerization and leads to increased drug metabolism, drug transport, and
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lipogenesis while decreasing gluconeogenesis, glycogenolysis, β-oxidation/ketogenesis,
and BA synthesis [89,101]. PXR has been shown to regulate liver size in mice by treatment
of PXR-selective activators, leading to liver enlargement and induction of regenerative
hybrid hepatocyte reprogramming via a Yes-associated protein mechanism [102]. VDR
is activated by secondary bile acids, such as LCA and LCA derivatives, including LCA
acetate and LCA propionate [83,103,104]. Like other BA nuclear receptors, upon activation,
VDR is associated with RXR and then binds to specific DNA elements to affect various
proteins at the transcriptional level [83]. VDR is highly regulated in the intestinal tract and
is also expressed in the kidney [89]. VDR as a BA receptor may play a protective role. In
intestinal cells, VDR induces expression of CYP3A, which metabolizes toxic LCA and can
help prevent degradation of the intestinal barrier and entrance of LCA into enterohepatic
circulation, leading to LCA hepatoxicity [83,105]. BA G protein-coupled receptors include
Takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2),
and muscarinic acetylcholine receptor M3 (M3R). TGR5, also called the G protein-coupled
bile receptor 1 (GPBAR1), which was the first BA non-nuclear receptor discovered, was
also found to mediate a range of physiological functions, such as maintenance of metabolic
homeostasis and insulin sensitivity [106,107]. TGR5 is mainly activated by unconjugated
and secondary BAs [106]. TGR5 can associate with either stimulatory or inhibitory G alpha
proteins (Gαs or Gαi), depending on the cell type (Figure 3) [89]. In most cells, TGR5
couples with Gαs and BA binding and leads to receptor internalization, activation of extra-
cellular signal-related kinase, mitogen-activated protein kinase, and activation of adenylate
cyclase, as well as an increase in cyclic AMP [108]. In cholangiocytes, TGR5 can couple with
either Gαs or Gαi, depending on subcellular localization [109]. In the primary cilium, TGR5
inhibits cell proliferation by coupling with Gαi; conversely, in the apical plasma membrane,
TGR5 promotes cell proliferation by coupling with Gαs [109]. In a Barrett’s esophageal
adenocarcinoma cell line, TGR5 was observed to be coupled with Gαq and Gαi3, but only
Gαq exhibited signal transduction after ligand binding [110]. SP1R2 is coupled with Gαi,
Gαq, and Gα12/13 (Figure 3) [17,111]. Gαi activates the phospholipase C(PLC)/IP3/DAG
pathway, PI3K-Akt signaling pathway, and the MAPK pathways [112–114]. Gαq solely
activates the PLC/IP3/DAG pathway [112–114]. Gα12/13 activates the Rho/ROCK NF-κB
and PTEN pathways, which lead to inflammation and stress fiber formation [112–114]. BA-
induced activation of S1PR2 is mainly mediated by conjugated primary BAs and coupled
with Gαi [69].

Figure 3. Bile acid signaling, surface-localized and nuclear-localized. (a) Graphical representation of
cell membrane receptors for bile acids, highlighting signaling through the Takeda G protein-coupled
receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and G protein-coupled receptors. TGR5
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can be associated with either the αs or αi subunit, whereas S1PR2 can associate with αi, αq, or
α12/13. Activation of these receptors by binding of bile acids leads to several downstream effects.
(b) Visualization of the farnesoid X receptor (FXR), a bile acid nuclear receptor. Activation of FXR
by bile acid binding leads to heterodimerization with retinoid X receptor alpha (RXRα) and the
transcriptional changes.

3.4. Bile Acids in Disease

BA accumulation has been associated with liver injury, chronic liver disease, inflam-
mation, and tumorigenesis (Figure 4) [20,115,116]. High levels of secondary bile acids in
feces and blood have been associated with cholesterol gallstones and colon cancer [117].
An observational study revealed that BAs are significantly increased in liver cirrhosis,
with the authors suggesting using total and individual BAs, especially primary CBAs,
as non-invasive markers for diagnosis of liver cirrhosis, with potential for use as indica-
tors for HCC [56]. In a recent study looking at BAs and cancer cachexia, mouse total BA
levels significantly increased, but BA synthesis enzyme expressions were inhibited [118].
Changes in BA metabolism and an increase in BA conjugation in clinical patients were
also observed [118]. CBA TCA has been shown to significantly promote cell prolifera-
tion, migration, invasion, transformation, and cancer stem cell expansion in esophageal
adenocarcinoma cells via S1PR2 [119]. DCA dietary supplementation in a preclinical
non-alcoholic steatohepatitis mouse model restored BA concentrations in portal blood;
increased TGR5 and FXR signaling; ameliorated metabolic dysbiosis; and protected against
steatosis, ballooning, and macrophage infiltration [120]. However, an abnormally high level
of microbially modified DCA has been associated with gut dysbiosis, disruption of mucosal
physical and functional barriers, and intestinal carcinogenesis [121,122]. Downregulation
of FXR, the major BA nuclear receptor, alters the gut microbiome by facilitating Bacteroides
fragilis colonization, which leads to the promotion of colorectal tumorigenesis [123]. In-
hibition of FXR and BA metabolism modulation by trimethylamine N-oxide exacerbates
steatosis in non-alcoholic fatty liver disease [124]. The FXR has also been investigated as
a therapeutic target for cardiometabolic diseases [125]. Conjugated BAs can interact with
S1PR2 and promote neuroinflammation during hepatic encephalopathy in mice, suggesting
that reduction in BAs or S1PR2 signaling is a potential therapeutic strategy for hepatic
encephalopathy [126]. BA activation of M3R has been shown to induce proliferation in
human colon cancer cell lines via epidermal growth factor receptors, and M3R activation
stimulates colon cancer cell invasion through MAPK-ERK1/2 and induction of matrix
metalloproteinase-1 expression [127,128].

Figure 4. Bile acids in disease. Visual representation of the clinical significance of bile acids by
showing their connection to different disease states and processes.
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4. Bile Acids in ALD

Alcohol alters many metabolic pathways, including BA and cholesterol metabolism,
and causes inflammation and injury to multiple organ systems. Conversely, maintaining
metabolic homeostasis is protective against the deleterious effects of alcohol. The authors of
one murine study observed that ethanol increased BA levels, BA synthesis genes (CYP7A1,
CYP27A1, CYP8B1, and BAAT), and BA transporters but downregulation in BA transporter
NTCP in the liver and nuclear receptor FXR in the ileum [129]. However, in humans, re-
searchers observed that total and conjugated BAs are significantly increased in patients with
AH, but de novo synthesis is suppressed based on a decrease in CYP7A1 gene expression
and C4 serum levels [130]. This same study found that fibroblast growth factor 19 (FGF19)
correlated with total and conjugated Bas, and FGF19 has significant associations with
bilirubin and gamma-glutamyl transferase [130]. Plasma TCDCA and tauroursodeoxy-
cholic acid levels have been observed to be directly related to disease severity in ALD,
whereas fecal ursodeoxycholic acid was inversely related [116]. CYP7A1-deficient mice
(the rate-limiting step in BA synthesis) have greater hepatic inflammation and injury from
alcohol than wild-type mice, and hepatic injury is ameliorated in CYP7A1 transgenic mice,
suggesting CYP7A1 and BA synthesis play a protective role in ALD [131]. An altered BA
glycine-to-taurine ratio has been associated with stage-specific liver disease patterns and
may be used as new biomarkers for monitoring disease progression [132]. PPARα has been
found to be significantly reduced in the liver of severely alcoholic hepatitis patients [34].
The modulation of fatty acid and bile acid metabolism by PPARα showed protective effects
against ALD via investigation of comparative gene expression of wild-type and PPARα-
null mice [133]. As mentioned previously, PPARα also showed protective effects against
ethanol metabolism toxicity by shunting it from the ROS-generating CYP2E1 pathway
to the ROS-scavenging catalase pathway [34]. PPARα-null mice exhibited an increase in
alcohol-associated accumulation of triglycerides, hepatic cholic acid and derivatives, and
induction of fibrogenesis genes compared to wild-type mice [133]. The observed disparities
contributed to PPARα’s mitochondrially protective effects via modulation of three mito-
chondrial metabolic pathways [133]. In preclinical studies, a PPARα agonist, seladelpar,
was shown to reduce ethanol-induced liver disease through gut barrier restoration and bile
acid homeostasis [134]. Coupling the preclinical protective effects of PPARα and previously
observed results indicating that bile acids induce human PPARα via FXR activation [135]
suggests that BAs play an important role in the management of ALD progression. PPARα
has also been shown to regulate fibrate-mediated suppression of bile acid synthesis through
downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase [136]. Mice defi-
cient in BA receptor TGR5 had worse alcohol-associated injury than wild-type mice, with
an increase in liver macrophage recruitment, altered bile acid profile, and gut microbiota
dysbiosis that, when transplanted to WT mice, led to exacerbation of alcohol-induced
inflammation [10]. Alcohol consumption induces a change in the gut microbiota, which
leads to an increase in bacteria with choloylglycine hydrolase, a BSH, and was coupled with
a lower secretion of fibroblast growth factor 15 [137]. Although deficiency or inhibition
of FXR has been shown to alleviate obesity in NAFLD mice [138,139], in ALD, it has been
shown to cause more damage, and FXR agonists improve ALD [140,141]. In mice who
were either binge-fed or chronically given ethanol, treatment with a TGR5 or FXR agonist
ameliorated liver inflammation, steatosis, and injury, which was associated with a reduction
in the IL-1β pro-inflammatory cytokine [142]. This supports previous research suggesting
that TGR5 activation in Kupffer cells leads to a decrease in the pro-inflammatory cytokines
IL-1β and tumor necrosis factor-α [143]. Another beneficial effect of TGR5 and FXR ago-
nism is the regulation of NLRP3 inflammasome through protein kinase A activation and
ubiquitination of NLRP3 [142].

5. Conclusions

ALD is now the leading indication for liver transplantation in the United States of
America [22]. Liver transplantation is still the gold-standard end-state treatment for ALD,
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with few changes in treatment options over the decades. Front-line treatment for ALD
prior to fibrosis still consists of abstinence, as well as dietary and lifestyle modifications,
with little in the way of pharmacotherapeutics. Recently, development and testing of
therapeutic agents targeting various BA receptors and regulators have shown promise in
pre-clinical and clinical testing, but most focus on other disease states, such as NAFLD
or diabetes and not ALD. A number of bile acid-based therapies, including FXR agonists,
TGR5 agonists, bile acid transporter inhibitors, and others, have been developed and
show promise for the treatment of non-alcoholic steatohepatitis [144]. Currently, there
are four pharmacotherapeutics in either phase 2 or 3 clinical trials for the treatment of
alcohol-associated liver disease, with most specifically targeting AH. Larsucosterol (a DNA
methyltransferase inhibitor) is recruiting for a phase 2b study, Canakinumab (an anti-IL-1β
monoclonal antibody) is in phase 2 trials, Filgrastim (a granulocyte colony-stimulating
factor) is recruiting for phase 3 trials, and Anakinra (an anti-IL1 receptor monoclonal
antibody) plus zinc is recruiting for phase 2 trials. ALD prevalence is predicted to continue
to increase and to result in more than one million deaths from 2019 to 2040 [25]. ALD has
shown a significant association with changes in BA metabolism and homeostasis, with
increased BA serum and hepatic levels in clinical patients. Overexpression of FGF19 and
both systemic and intestinal-specific activation of FXR have been shown to ameliorate
hepatic steatosis and inflammation in ethanol-fed mice [144]. ALD also causes a change
in the gut microbiome composition, which can further impact BA metabolism and BA-
mediated toxic effects via microbially conjugated BAs [78]. BAs are not only important in
nutrient absorption but have been shown to be important signaling hormones, regulating
lipid and glucose metabolism, cell proliferation, and inflammation [17,133,145,146]. There
are currently several clinical trials pertaining to BAs and their role in disease modulation
or as biomarkers for detection. In terms of trials targeting BAs or their receptors, there
is currently a recruiting phase 3 clinical trial (ClinicalTrials.gov Identifier: NCT04956328)
investigating obeticholic acid, a farnesoid X receptor agonist, and its effects on liver function
in patients with primary biliary cirrhosis. Additionally, a phase 2 clinical trial using
obeticholic acid showed a significant improvement in primary bile acid diarrhea but
not in secondary bile acid diarrhea [147]. An actively recruiting phase 1/2 clinical trial
(ClinicalTrials.gov Identifier: NCT03423121) aims to identify the safety and tolerability of
bile acid supplementation in patients with progressive multiple sclerosis. Another actively
recruiting clinical trial (ClinicalTrials.gov Identifier: NCT01200082) aims to evaluate the
efficacy of monitoring sulfation of bile acids as a biomarker for hepatobiliary diseases. BAs
play a pivotal role in the development of ALD and are ideal targets for the development of
targeted therapeutics to combat ALD. Further research into their relationship is warranted
to elucidate their interactions and identify pharmacological treatments for ALD.
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Abbreviations

AC alcohol-associated cirrhosis
ADH alcohol dehydrogenase
AH alcoholic hepatitis
ALD alcohol-associated liver disease
BA bile acid
HCC hepatocellular carcinoma
NAFLD non-alcoholic fatty liver disease
ALDH aldehyde dehydrogenase
NAD+ nicotinamide adenine dinucleotide
NADH nicotinamide adenine dinucleotide + hydrogen
CYP2E1 cytochrome P450 2E1
MEOS microsomal ethanol oxidizing system
PPARα peroxisome proliferator-activated receptor α
ROS reactive oxygen species
CYP2A5 Cytochrome P450 2A5
NRF2 nuclear factor-erythroid 2-related factor 2
AS alcoholic steatosis
AMPK AMP-activated protein kinase
HSCs hepatic stellate cells
PNPLA3 phospholipase domain-containing protein 3
FGF21 Fibroblast growth factor 21
HE hepatic encephalopathy
CCK cholecystokinin
OST-α organic sulfate transporter-α
OST-β organic sulfate transporter-β
NTCP Na+-taurocholate cotransporting polypeptide
OATPs organic anion transporting polypeptides
CA cholic acid
CDCA chenodeoxycholic acid
α-MCA α-muricholic acid
β-MCA β-muricholic acid
DCA deoxycholic acid
LCA lithocholic acid
MDCA murideoxycholic acid
HDCA hyodeoxycholic acid
ω-MCA ω-Muricholic acid
UDCA ursodeoxycholic acid
CYP7A1 cholesterol 7α-hydroxylase
CYP27A1 cholesterol 27α-hydroxylase
C4 7α-hydroxy-4-cholesten-3-one
HSD3B7 3β-hydroxy-∆5-C27-steroid oxidoreductase
AKR1D1 aldo-keto reductase 1D1
3αHSD 3α-hydroxysteroid dehydrogenase
CYP8B1 Microsomal sterol 12α-hydroxylase
CYP7B1 oxysterol 7α-hydroxylase
BACS Bile acid–CoA synthase
BAAT bile acid–CoA:amino acid N-acetyltransferase
GCA glycocholic acid
TCA taurocholic acid
TCDCA taurochenodeoxycholic acid
CYP2C70 cytochrome p450 2C70
BSH bile salt hydrolase
FXR farnesoid X receptor
PXR pregnane x receptor
VDR vitamin D receptor
RXRα retinoid X receptor α
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SHP small heterodimer partner
BSEP bile salt export pump
MRP2 multidrug resistance protein 2
MDR3 multidrug resistance protein 3
LXR liver X receptor
TGR5 Takeda G protein-coupled receptor 5
S1PR2 sphingosine-1-phosphate receptor 2
M3R muscarinic acetylcholine receptor M3
FGF19 fibroblast growth factor 19
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