
Pharmacotherapy of Painful Diabetic Neuropathy: 
A Clinical Update

The current global prevalence of diabetes mellitus (DM) 
among adults (aged 20–70 years) is 537 million (one in 

every ten adults) that is expected to raise to 643 million 
by the year 2030, and 783 million by the year 2045.[1] The 
increasing prevalence of DM has led to a rise in chronic 
diabetic complications. Diabetic peripheral neuropathies 
(DPNs) are the most common chronic complications of dia-
betes.[2] Among these, the distal symmetric polyneuropa-

thy (DSPN) is the most prevalent form which may affect up 
to 50% of patients with type 2 DM (T2DM) after 10 years of 
the disease, and at least 20% with type 1 DM (T1DM) after 
20 years of the disease.[3] Furthermore, nearly 10–15% of 
newly diagnosed T2DM may have DSPN.

Although a vast majority of patients with DPN may remain 
pain-free, painful DPN (PDPN) is estimated to affect 6–34% 
of all patients with DM.[4] The disease burden from PDPN 
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is directly proportional to the severity of neuropathic pain, 
which is associated with reduced health-related-quality-of-
life (HRQoL) because of the effect of pain on the day-to-day 
functioning, quality/quantity of sleep, and anxiety/depres-
sion levels. It is also associated with impaired work produc-
tivity, increased healthcare expenditure and substantial 
economic burden. In the United States (U.S.), among T1DM 
and T2DM patients, nearly 27% of the total annual costs on 
diabetes care and nearly 9% of overall healthcare costs in-
curred are attributable to DPN and its complications.[5]

The diabetic microvascular complications including dia-
betic retinopathy and nephropathy can be diagnosed rela-
tively early, and both these diseases have reasonably effec-
tive disease-modifying therapies. On the other hand, with 
the currently used crude diagnostic tests, the diabetic neu-
ropathy is often diagnosed quite late in the disease course 
after the sensory loss has already established, with severe 
irreversible nerve damage.[3] The early stages of DPN with 
predominantly small fiber neuropathy can be reversed 
or at least prevented from progression, whereas the late 
stages of DPN with loss of protective sensation in the feet 
cannot be reversed.[6] Hence, early diagnosis and timely in-
tervention are the keys to prevent the development and 
progression of DPN. Due to the limited understanding of 
the pathogenic mechanisms leading to the development 
of PDPN, highly effective disease-modifying therapies have 
not yet been developed.[7] Apart from modification of mul-
tiple cardiovascular risk factors including raised triglycer-
ides, body mass index, hypertension, and smoking that are 
associated with incident DPN, symptomatic treatment of 
PDPN, and diabetic autonomic neuropathy (DAN) remains 
the mainstays in the management.[8]

The U.S. Food and Drug Administration (FDA) has approved 
Pregabalin and Duloxetine nearly 25 years ago and Tapen-
tadol nearly 6 years ago for the management of pain in 
patients with PDPN. However, these agents are often in-
adequate for symptom relief in PDPN patients, given their 
relatively modest effects on pain control with common 
troublesome side effects.[7] A novel agent with superior ef-
ficacy and safety profile (mirogabalin) has recently received 
approval in Japan for the management of PDPN, and is 
undergoing further clinical trials.[9] It is recently proposed 
that using certain patient related characteristics includ-
ing the clinical profile, quantitative sensory testing, genet-
ics, and cerebral imaging, PDPN patients can be stratified 
and assigned targeted therapies to produce better pain 
outcomes.[10] In this review article, we discuss the various 
pathogenetic mechanisms of DPN with special reference to 
the mechanisms leading to PDPN, and the various pharma-
cological and non-pharmacological therapies available in 
its management.

Classification of Diabetic Neuropathy
The classification of diabetic neuropathies based on Ameri-
can Diabetes Association (ADA) is given in Table 1.

Clinical Features of Diabetic Neuropathy
Patients with PDPN present with neuropathic pain that has 
distinct presentations as burning, sharp, aching, electric 
shock like, and evoked pains.[3] The pain can be mild or in-
tractable; sporadic or constant; transient (disappear com-
pletely after some time) or chronic. Regardless of the pres-
ence of pain, these patients may also develop numbness, 
tingling, and pins and needle sensations. The DPN symp-

Table 1. Classification of diabetic neuropathies based on American Diabetes Association.[3]

Diabetic Neuropathies

A Diffuse neuropathy 
 DSPN (Distal Symmetric Polyneuropathy) Predominantly small-fiber
  Predominantly large-fiber
  Mixed small and large fiber
 Autonomic Cardiovascular, gastrointestinal, urogenital, sudomotor, hypoglycemia unawareness,  
  or abnormal pupillary function
B Mononeuropathy 
 Isolated cranial/peripheral nerve 3rd cranial, ulnar, median, femoral, peroneal
 Mononeuritis multiplex If confluent may resemble polyneuropathy
C Radiculopathy 
 Radiculoplexus neuropathy Asymmetric proximal motor neuropathy
 Thoracic radiculopathy 
Nondiabetic neuropathies common in diabetes
 Chronic inflammatory demyelinating polyneuropathy, radiculoplexus neuropathy, acute painful small-fiber neuropathy (treatment  
 induced), and pressure palsy
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toms begin with asymmetrical involvement of distal lower 
limbs, and progress to involve proximal lower limbs, before 
finally involving the upper limbs. Physical signs in early 
DPN include impairment of light touch, pinprick, and tem-
perature sensation. The signs in advanced DPN include loss 
of vibration, proprioception, 10-g monofilament sensation, 
ankle reflexes, and motor involvement (muscle weakness, 
muscle wasting, and clawed toes).[11]

Although the presenting symptoms between painful and 
painless DPN patients are markedly different, the physi-
cal signs are usually indistinct between the two subtypes. 
Thus, most of the PDPN patients exhibits sensory loss on 
physical examination. But a minority of PDPN patients (ir-
ritable nociceptor phenotype) show evidence of “gain of 
function” or “positive sensory” signs including allodynia, 
where a normally non-noxious stimulus evokes pain, and 

hyperalgesia.[12] Moreover, some patients with PDPN may 
have a pure small fiber neuropathy characterized by loss of 
small fiber function (pinprick and temperature) with intact 
large fiber function (vibration and proprioception).[13]

Pathogenesis of DPN
The Schwann cells provide energy substrates and cytoskel-
etal support to the axons of nerves. These cells are essential 
for preserving the structure, function, and survival of ax-
ons, by sheathing the unmyelinated axons, myelinating the 
myelinated axons, and secreting the neurotrophic factors.
[14] Uncontrolled hyperglycemia and dyslipidemia contrib-
ute to the pathogenesis of DPN (Fig. 1). While hyperglyce-
mia is the main driver of DPN in T1DM, dyslipidemia is the 
main driver of DPN in T2DM.[15] DM is associated with high 
substrate load to Schwann cells (glucose and free fatty ac-

Figure 1. The pathophysiological mechanisms of PDPN and agents acting on the corresponding mechanisms. TRPV1: Transient receptor potential 
vanilloid 1, TRPM8: Transient receptor potential melastatin 8, P2X3: Purinoceptor 3, α2 A-R: α2-AdrenoReceptor, 5HT3-R: 5-Hydroxytryptamine 
receptor, SERT: Serotonin transporter, NET: Norepinephrine transporter, CGRP-R: Calcitonin gene-related peptide receptor, NK1-R: Neurokinin 1 
receptor (NK1-R acts as receptor for substance P), NMDA-R: N-methyl-D-aspartate receptor, AMPA-R: α-Amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid receptor (NAMDA-R and AMPA-R acts as receptor for glutamate), GABA A-R: Gamma aminobutyric acid A receptor, Glycine-R: Gly-
cine receptor, TNF: Tumor necrosis factor, IL1-β: Interleukin 1 beta, Cytokine-R: Cytokine receptor (acts as receptor for TNF and IL1-β).
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ids). In hyperglycemic states, glucose enters the Schwann 
cells through glucose transporter 3 in surplus amounts, 
and undergoes glycolysis. Thus, the amount of pyruvate ex-
ceeds the metabolic handling capacity of the tricarboxylic 
acid (TCA) cycle, resulting in a shift to anaerobic metabo-
lism and lactate accumulation. The lactate is subsequently 
shuttled from Schwann cells into axons, resulting in mito-
chondrial dysfunction and axonal degeneration.[16]

Hyperglycemia-driven excessive activation of the electron 
transport chain leads to mitochondrial dysfunction, reac-
tive oxygen species (ROS) generation, oxidative stress, 
deoxyribonucleic acid damage, and activation of poly-
adenosine diphosphate-ribose polymerase (PARP). PARP 
activation inhibits the enzyme glyceraldehyde-3-phos-
phate dehydrogenase resulting in accumulation of gly-
colytic metabolites, upregulation of polyol, hexosamine, 
diacylglycerol and protein kinase C pathways, as well as 
generation of Advanced Glycation End-products (AGEs).[17-

23] The AGE-receptors for AGE (RAGE) interactions, oxidative 
stress, endoplasmic reticulum (ER) stress and upregulated 
non-glycolytic pathways result in endothelial dysfunction 
and microvascular damage. The microvascular damage de-
creases the neuronal blood flow resulting in hypoxia, de-
myelination, axonal loss, decreased myelinated fiber den-
sity, and reduced nerve conduction velocity.[23]

The mechanisms leading to excessive ROS generation and 
oxidative stress in patients with hyperglycemia include 
excessive activation of the electron transport chain, AGE-
RAGE interaction, pro-inflammatory cytokines, upregulat-
ed non-glycolytic pathways, and high protein folding load.
[17,22] The AGE accumulation and hexosamine/polyol path-
way upregulation are associated with a rise in misfolded 
or unfolded proteins and, therefore, ER stress. The oxida-
tive stress would increase the misfolding of proteins with 
worsening ER stress. Similarly, misfolded proteins result 
in adenosine triphosphate (ATP) depletion, increasing the 
oxidative stress.[17,22] Therefore, there exists a crosstalk be-
tween oxidative and ER stress.[17]

Dyslipidemia-driven increased substrate load of long 
chain saturated fatty acids (LCSFAs; palmitate and stea-
rate) is associated with increased β-oxidation to form 
acetyl CoA. When the β-oxidation capacity of the TCA 
cycle is exceeded, toxic acylcarnitine accumulates inside 
Schwann cells, which is then shuttled into axons, resulting 
in mitochondrial dysfunction and axonal degeneration.[15] 
Additionally, oxidation of cholesterol into oxysterols in 
neuronal cells results in neuronal injury and apoptosis.
[24,25] Moreover, neurotoxic deoxysphingolipids generated 
by altered sphingolipid metabolism results in neuronal 
cell damage.[26,27]

Pathogenesis of PDPN
Several theories have been proposed for the pathogene-
sis of neuropathic pain related to the diabetic neuropathy, 
as outlined in Table 2 and Figure 1. The pharmacological 
agents acting on the corresponding mechanisms are also 
depicted in the figure. Some individuals with DSPN devel-
op severe neuropathic pain, whereas others with similar 
extent of neuropathy remain entirely asymptomatic. Al-
though it was hypothesized that the PDPN might be as-
sociated with increasing severity of DSPN, experimental 
studies do not support this hypothesis. PDPN is a heterog-
enous condition caused by a complex interaction of vari-
ous environmental factors (female gender, cultural, and 
psycho-social), genetic predisposition (gain of function 
mutation of Nav1.7 gene is associated with severe PDPN), 
metabolic disturbances (hyperglycemia, hyperlipidemia, 
and metabolic syndrome), and vascular dysfunction lead-
ing on to downstream alterations in the peripheral and 
central nervous system.[30]

Management of PDPN

Currently Available Pharmacological Management
GABA analogs (Gabapentinoids) including pregabalin and 
gabapentin are considered as the first line pharmacologi-
cal agents in the management of PDPN by various inter-
national agencies. The National Institute for Health and 
Care Excellence (NICE, 2013) guidelines consider gabapen-
tin, pregabalin, amitriptyline, or duloxetine as the first line 
drugs and tramadol as the second line drug.[45] The guide-
line recommends capsaicin for localized neuropathic pain, 
and for those who cannot tolerate, has contraindications, 
or wish to avoid oral pharmacological agents.

The French recommendations for the management of 
neuropathic pain (2020) recommends duloxetine 60–120 
mg/day, venlafaxine 150–225 mg/day, gabapentin 1200–
3600 mg/day, or tricyclic antidepressants (TCAs) 10–150 
mg/day as the first line for the central or non-focal pe-
ripheral neuropathic pain.[46] The second line agents for 
the group include pregabalin 150–600 mg/day, trama-
dol 100–400 mg/day, or antidepressants-gabapentinoids 
combination. For the focal peripheral neuropathic pain, 
the guideline recommends lidocaine plasters (1–3 plas-
ters, 12 h/day) or transcutaneous electrical neural stimu-
lation (TENS) (≥30 min/day) as the first line; and capsaicin 
8% patch (1–4 patches every 3 months) or Botulinum tox-
in A (BTX-A) (50–300 units every 3 months) as the second 
line. The third line agents for either group include repeti-
tive transcranial magnetic stimulation, spinal cord stimu-
lation, or strong opioids.
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The (ADA, 2017) considers pregabalin and duloxetine as 
the first line; gabapentin and amitriptyline as the second 
line; and opioids such as tramadol and tapentadol as the 
third line.[3] The American Academy of Neurology (AAN, 
2011) guidelines consider pregabalin as the first line, and 
the drugs including gabapentin, sodium valproate, ami-
triptyline, duloxetine, venlafaxine, opioids, capsaicin patch, 
lidocaine patch, and isosorbide dinitrate spray as the sec-
ond line.[47] They suggests not to consider the following 
drugs in the management of PDPN: anticonvulsant drugs 
such as oxcarbazepine, lamotrigine, and lacosamide; anti-
depressant drugs such as imipramine, desipramine, fluox-
etine, nortriptyline and fluphenazine; miscellaneous drugs 
such as clonidine, pentoxifylline, and mexiletine.[47]

Various pharmacological agents and their effectiveness in 
the management of PDPN with emphasis on the number 
needed to treat (when data are available) for an additional 
harmful outcome number needed to harm (NNTH) and 
the number needed to treat for an additional beneficial 
outcome number needed to treat benefit (NNTB) are men-
tioned in the Table 3.

A meta-analysis of 229 double-blind randomized controlled 
trials (RCTs) on oral and topical agents for the neuropathic 
pain calculated the NNTBs for 50% neuropathic pain relief.
[68] The study observed that NNTBs were 3.6 (95% CI: 3.0–4.4) 
for the TCAs, 6.4 (95% CI: 5.2–8.4) for the serotonin-norepi-
nephrine reuptake inhibitors (SNRIs) - duloxetine-venlafaxine 
combined, 7.7 (95% CI: 6.5–9.4) for pregabalin, 6.3 (95% CI: 
5.0–8.3) for gabapentin immediate release or IR, 8.3 (95% CI: 
6.2–13) for gabapentin extended release or ER, 7.2 (95% CI: 
5.9–9.2) for gabapentin combined, 4.73 (95% CI: 3.6–6.7) for 
tramadol, 4.26 (95% CI: 3.4–5.8) for strong opioids, 10.64 (95% 
CI: 7.4–19) for capsaicin, and 1.85 (95% CI: 1.5–2.4) for BTX-A.

The study also observed that the NNTHs were 13.4 (95% 
CI: 9.3–24.4) for the TCAs, 11.8 (95% CI: 9.5–15.2) for com-
bined duloxetine and venlafaxine, 13.9 (95% CI: 11.6–17.4) 
for pregabalin, 25.6 (95% CI: 15.3–78.6) for gabapentin 
IR, 31.9 (95% CI: 17.1–230) for gabapentin ER, 12.6 (95% 
CI: 8.4–25.3) for tramadol, and 11.7 (95% CI: 8.4–19.3) for 
strong opioids.[68] Based on this, the Neuropathic Pain 
Special Interest Group of the International Association for 
the Study of Pain (NeuPSIG-IASP, 2015) recommended the 

Table 2. Pathophysiological mechanisms of painful diabetic peripheral neuropathy

Peripheral mechanisms

Small fiber neuropathy involving thinly myelinated Aδ and unmyelinated C fibers[28]

Autonomic neuropathy → microvascular dysfunction → hypoxic nerve injury[29]

Nerve injury → neuronal inflammation → neuronal hyperexcitability[30]

Nerve injury → altered expression and function of noxious transducers including TRPV1, TRPA1, TRPM8 and P2X3 → neuronal 
hyperexcitability[31,32]

Gain of function of ion channels (“channels sprouting”) → neuronal hyperexcitability
 • Enhanced expression of sodium channels (NaV1.7, NaV1.8 and NaV1.9)[33-36]

 • Reduced expression of shaker-type potassium channels (KV1.4, and KV4.x)[37]

 • Enhanced expression of T-type calcium channels (CaV3.2)[38]

Nerve injury → persistent nociceptive input → enhanced pre-synaptic neurotransmitter release (glutamate and substance P) and 
enhanced post-synaptic signaling to spinal cord (via AMPA and NMDA receptor activation)[39]

Nerve injury→ microglial activation→ synthesis of cytokines, chemokines, and cytotoxic substances (BDNF, nitric oxide, and free radicals) 
→ pro-inflammatory milieu in DRG[40]

Central mechanisms (altered central nervous system pain processing)
Enhanced glutamate release from primary afferents in spinal cord and enhanced spinal NMDA expression, and reduced expression of 
GABAB receptors → hyperexcitability of spinal neurons (central sensitization)[41]

Enhanced spontaneous neuronal activity associated with enhanced blood flow of ventral posterolateral neurons of the thalamus → 
generation and amplification of pain response[42]

Individuals with painful DPN have preserved thalamic N-acetyl aspartate (NAA) and GABA levels, whereas those with painless DPN have 
reduced NAA and GABA levels, indicating that these neurotransmitters are essential for transmission and amplification of pain[42]

Disruption of connectivity between thalamus and somatosensory cortical areas involved in behavioral/cognitive/emotional pain 
processing (anterior cingulate and insular cortex) → reduced thalamic feedback → aberrant pain processing and mood/sleep 
disturbances[43]

Impaired descending inhibition through periaqueductal gray and rostroventromedial medulla (PAG and RVM) → reduced pain inhibition 
and enhanced pain amplification[44]

Enhanced descending facilitation and enhanced ascending pain messages[44]

DRG: Dorsal root ganglia, TRPV1: Transient receptor potential vanilloid 1, TRPA1: Transient receptor potential ankyrin 1, TRPM8: Transient receptor potential 
melastatin 8, P2X3: Purinoceptor 3, AMPA: Α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, NMDA: N-methyl-D-aspartate, BDNF: Brain derived 
neurotrophic factor, GABA: Gamma aminobutyric acid, NAA: N-acetyl aspartate, PAG: Periaqueductal gray, RVM: Rostroventromedial medulla, PDPN: Painful 
diabetic peripheral neuropathy
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TCAs, the SNRIs, pregabalin, and gabapentin as the first 
line (strong recommendation); lidocaine patches, capsaicin 
high-strength patches, and tramadol as the second line 
(weak recommendation); and strong opioids and BTX-A as 
the third line (weak recommendation) therapeutic agents 
in the management of neuropathic pain.

Pregabalin and Gabapentin
Gabapentinoids are anticonvulsant drugs that blocks the 
presynaptic alpha-2-delta (α2-δ) voltage-gated calcium 
channels (VGCC) in the dorsal root ganglia. These agents 
have high affinity for the α2δ-1 and α2δ-2 subunits of the 
VGCC. Pregabalin and Gabapentin are non-selective ligands 
of α2δ-1 and α2δ-2, wherein the drug inhibits the cellular 
calcium influx; reduces the number of synaptic vesicles fus-
ing with the presynaptic membrane; decreases the release 
of various neurotransmitters including γ-aminobutyric 
acid (GABA), glutamate, norepinephrine, substance P, and 
calcitonin gene-related peptide (CGRP) into the synapse; 
and suppresses the activity of excitatory primary afferent 
fibers that carry nociceptive impulses to the dorsal horn.[69] 
In comparison to gabapentin, pregabalin has a predictable 
linear pharmacokinetics, exhibiting a dose-proportional 
absorption and response.

A superior therapeutic response was noted with prega-
balin 300 mg compared to pregabalin 600 mg. In com-
parison to gabapentin, pregabalin exhibits a rapid onset 
of action, requires lesser dose titration, and has conve-
nience of twice daily administration.[70] The lower doses 
of gabapentinoids (pregabalin <300 mg and gabapen-
tin <1200 mg) are less likely to be beneficial for PDPN.
[68] The maximal approved doses for PDPN include 600 
mg/day for pregabalin and 3600 mg/day for gabapentin. 
Compared to placebo, both drugs can be associated with 
adverse effects in nearly 3%, including drowsiness, dizzi-
ness, edema, gait disturbances, and ataxia.[68] When taken 
at therapeutic doses, pregabalin is associated with lower 
healthcare and non-healthcare costs than gabapentin in 
patients with PDPN.[71] Pregabalin has got FDA approval 
for the management of neuropathic pain, whereas gaba-
pentin has not.

A systematic review of 83 RCTs have observed that ami-
triptyline, duloxetine, gabapentin, pregabalin and venla-
faxine have the best available evidence as monotherapy, 
and oxycodone has the best available evidence as add-on 
therapy for the management of PDPN.[72] Tramadol is effec-
tive when used as monotherapy as well as add-on therapy. 
A network meta-analysis that assessed the efficacy and 

Table 3. Pharmacological agents available in the management of PDPN and their effectiveness (NNTB and NNTH)[48-68]

Name of the Mechanism of Starting Maximum  NNTB (95%   NNTH (95% 
drug action dose/day dose/day  confidence interval)   confidence interval)

    NNTB 30% NNTB 50% NNTB PGIC  Adverse events (AEs) 
        and AE-withdrawals

Pregabalin[48] α2δ Ligand 150 mg     Somnolence Dizziness  Withdrawal 
   300 mg 22 (12–200) 14 (9.7–26) 4.9 (3.8–6.9) 13 (11–17) 10 (8.6–13) 35 (22–82)
   600 mg 9.6 (5.5–41) 6.1 (4.7–8.8) 3.7 (2.8–5.3) 9.6 (7.5–13) 5.6 (4.8–6.7) 12 (9.2–19)
Gabapentin[49] α2δ Ligand 900 mg 3600 mg    Any AEs Serious AEs Withdrawal
    6.6 (4.9–9.9) 6.6 (5.0–9.7) 4.9 (3.6–7.6) 7.5 (6.1–9.6) No data 30 (20–66)
Duloxetine[50,51] SNRI 30–60 mg 60–120 mg 5.0 (3.0–8.0) 5.0 (4.0–7.0) No data No data No data 17 (12–50)
Venlafaxine[52,53] SNRI 37.5–75 mg 150–225 mg 5.2 (2.7–5.9) No data No data 9.6 (3.5–13) No data 16.2 (8–436)
Amitriptyline TCA[53-55] 10–25 mg 150 mg No data 4.6 (3.6–6.6) No data 5.2 (3.6–9.1) No data 28 (17.6–69)
Nortriptyline[56] TCA 10–25 mg 150 mg No data No data No data No data No data No data
Imipramine[57] TCA 10–25 mg 75 mg No data No data No data No data No data No data
Desipramine[58] TCA 10–25 mg 150 mg No data No data No data No data No data No data
Tramadol[59] μ agonist 50 mg bd 400 mg No data 4.4 (2.9–8.8) No data 4.2 (2.8–8.3) No data 8.2 (5.8–14)
Tapentadol[60-62] μ agonist  50 mg bd 500 mg No data No data No data No data No data No data
Oxycodone[63] μ agonist 10 mg bd 60–120 mg 5.7 (4.0–9.9) No data No data 4.3 (3.1–7.0) No data No data
Morphine[64] μ agonist Adjust dose 120 mg 3.7 (2.6–6.5) No data No data No data No data No data
Lidocaine[65-67] NaV blocker 5% Topical 1–3 patches No data No data No data No data No data No data
Capsaicin[68] TRPV ligand 8% Topical 1–4 patches 10.6 (7.4–19) No data No data No data No data No data
BTX-A SC[68] Botulinum 50–200 units Q 3 months 1.9 (1.5–2.4) No data No data No data No data No data

NNTB: Number needed to treat benefit, NNTH: Number needed to harm, PDPN: Painful diabetic peripheral neuropathy, TCA: Tricarboxylic acid, BTX-A: Botulinum 
toxin-A, SNRI: Serotonin-norepinephrine reuptake inhibitors.
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safety of six drugs used in the management of PDPN in-
cluding amitriptyline, duloxetine, gabapentin, pregabalin, 
valproate, and venlafaxine, observed that gabapentin has 
the highest efficacy and amitriptyline has the lowest safety.
[73] They concluded that gabapentin exhibited the most fa-
vorable balance between efficacy and safety.

A recently published meta-analysis of 43 RCTs observed 
that, on a pairwise meta-analysis gabapentin exhibited 
superiority over placebo in achieving 50% pain reduction 
in comparison to desvenlafaxine, lacosamide, lamotrigine, 
oxcarbazepine, and tapentadol.[74] The study also observed 
that carbamazepine and venlafaxine exhibited inferiority 
in comparison to pregabalin in achieving 50% pain reduc-
tion, whereas mirogabalin, duloxetine, and duloxetine-
gabapentin combination exhibited non-inferiority (statisti-
cally non-significant superiority) compared to pregabalin 
in achieving 50% pain reduction.

There is contrasting evidence regarding efficacy of gaba-
pentin in some meta-analyses. A network meta-analysis 
of 57 RCTs observed that SNRIs, capsaicin, TCAs, prega-
balin, and oxcarbazepine were better than placebo for 
short-term pain control. However, this study observed 
that gabapentin was not superior to placebo in the man-
agement of PDPN.[75] A similar observation was made in 
yet another systematic review of 106 RCTs that observed 
that SNRIs (duloxetine and venlafaxine), pregabalin (but 
not gabapentin), oxcarbazepine, TCAs, atypical opioids, 
and BTX are superior to placebo in the management of 
PDPN.[76] In comparison to other anticonvulsant drugs, the 
gabapentinoids do not have significant drug-drug inter-
actions as they lack hepatic metabolism and cytochrome 
P450 induction.

Mirogabalin is a new α2-δ ligand that has received approv-
al in Japan (2019) for the treatment of neuropathic pain. 
While pregabalin and gabapentin are non-selective ligands 
of α2-δ1 and α2-δ2 subunit of the VGCC, mirogabalin is 
selective ligand of α2-δ1 and α2-δ2. The binding of miro-
gabalin with α2-δ1 subunit is more potent.[77] Mirogabalin 
binds to α2-δ1 and α2-δ2 subunits for a longer time (longer 
dissociation half-life) in comparison to pregabalin, espe-
cially longer dissociation half from α2-δ1 subunit. This fea-
ture confers improved efficacy and safety to this molecule 
in comparison to pregabalin and gabapentin. In the phase 
3 trial, mirogabalin 30 mg/day is found to be superior to 
placebo.[78] Although the adverse events (AEs) are like that 
of other α2-δ ligands (somnolence, dizziness, peripheral 
edema, and weight gain), they are only mild or moderate 
in severity.[79] In patients with PDPN, switching from prega-
balin to mirogabalin improves the pain intensity and is well 
tolerated.[80]

SNRIS
SNRIs including duloxetine and venlafaxine amplify the 
activity of noradrenergic and serotonergic neurons in the 
descending inhibitory pathways of the dorsal horn, sup-
pressing the excessive nociceptive impulses from reach-
ing the brain.[81] SNRIs also exerts an effect on neuropathic 
pain through inhibition of neuroimmune mechanisms 
accompanying nerve injury.[82] Duloxetine has received 
FDA approval for the management of neuropathic pain, 
whereas venlafaxine has not. Duloxetine is effective in the 
management of PDPN at doses of 60–120 mg/day,[83] but 
is ineffective at doses <60 mg/day.[51] Furthermore, an in-
crease in duloxetine dose from 60 mg/day to 120 mg/day 
did not achieve any significant extra pain reduction.[84] The 
recommendation is to start with duloxetine 30 mg/day in 
the morning and increase the dose to 60 mg or up to 120 
mg as a single morning dose after 7–14 days.[85]

Apart from PDPN, duloxetine is approved as a first-line 
agent in major depressive disorder (MDD), generalized 
anxiety disorder (GAD), fibromyalgia syndrome, and stress 
urinary incontinence. A recent systematic review of 85 
studies that analyzed the efficacy, safety, and tolerability of 
duloxetine in these indications observed that the drug is 
effective in over 80% of cases.[86] The common treatment 
emergent AEs (TEAEs) were dry mouth, somnolence, nau-
sea, constipation, or hyperhidrosis. These TEAEs tend to 
decrease over time and disappear with continuation of du-
loxetine therapy. Among the observed cardiovascular AEs, 
such as hypertension, increase in heart rate, and myocar-
dial ischemia, only the tachycardia was statistically signifi-
cant, although not clinically relevant. Overall, duloxetine is 
a safe and well-tolerated agent even in elderly patients and 
those with cardiovascular disease.[86]

Duloxetine monotherapy is associated with <20% treat-
ment discontinuation due to TEAEs.[87] Although the dis-
continuation rate due to TEAEs is higher in older popu-
lation, duloxetine monotherapy is well tolerated and 
efficacious regardless of the age.[88] Although an increase 
in glucose, glycosylated hemoglobin (HbA1c), total choles-
terol, and bodyweight is noted on long-term monotherapy 
with duloxetine, none of these were clinically relevant.[89] A 
randomized controlled trial that compared the efficacy of 
pregabalin, amitriptyline, and duloxetine, and their effect 
on sleep, daytime functioning, and quality of life in patients 
with PDPN observed no significant difference in analgesic 
efficacy between these agents when used as monotherapy.
[90] However, in regard to the sleep-wake cycle, pregabalin 
improved the sleep duration (p<0.001), whereas dulox-
etine increased the wake duration and reduced the total 
sleep duration (p<0.01 and <0.001). Duloxetine mono-
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therapy was associated with enhanced performance of 
sensory-motor task, whereas pregabalin was associated 
with higher AEs.

Another randomized controlled trial compared the efficacy 
and safety of duloxetine monotherapy, pregabalin mono-
therapy, or duloxetine-gabapentin combination therapy in 
the management of PDPN in those with inadequate treat-
ment response to gabapentin ≥900 mg/day.[91] The study 
observed that duloxetine is noninferior to pregabalin for 
the treatment of PDPN. However, there was difference in 
the AEs. Nausea, insomnia, hyperhidrosis, and loss of appe-
tite were higher with duloxetine compared to pregabalin. 
On the other hand, peripheral edema was more frequent 
with pregabalin compared to duloxetine. Insomnia is less 
frequent with duloxetine-gabapentin combination thera-
py compared to duloxetine monotherapy, whereas nausea, 
vomiting, hyperhidrosis, and loss of appetite are more fre-
quent with duloxetine-gabapentin combination therapy 
compared to pregabalin.

Venlafaxine extended-release formulation has received 
FDA approval for MDD, GAD, social anxiety disorder, and 
panic disorder.[92] It is effective in the management of PDPN 
at doses of 150–225 mg/day.[93,94] Its efficacy is equal or su-
perior to carbamazepine, equal to that of imipramine, but 
inferior to that of pregabalin.[95-97] A comparative effective-
ness network meta-analysis observed that venlafaxine is 
marginally superior over duloxetine in the management of 
PDPN.[75] However, there is lack of support for this observa-
tion from larger comprehensive trials. Mechanism of action 
of venlafaxine in the management of PDPN include activa-
tion of descending inhibitory pathways, reduction in spinal 
hyperexcitability through inhibition of the central 5-HT1A 
serotoninergic receptors, and a reduction in tumor necrosis 
factor α production through α2-adrenoreceptor mediated 
as well as β2-adrenoreceptor (within the dorsal root gan-
glia) mediated mechanisms.[98] The common AEs include 
nausea, somnolence, and ECG changes. Venlafaxine should 
be weaned off slowly to reduce the adverse effects. Des-
venlafaxine at doses of 200 and 400 mg/day was tried in 
the management of PDPD and was found to be effective in 
pain reduction and well tolerated.[99]

TCAS
Antidepressants achieved pain relief in patients with or 
without depression, and the analgesic effect occurred at 
much lower doses than that is required to improve depres-
sion.[100] Moreover, the analgesic effect of antidepressants 
occurred within few days to 1 week, whereas the antide-
pressant effect occurred only in 2–4 weeks.[101] TCAs inhibit 
the presynaptic reuptake of serotonin and norepinephrine, 

which activate the descending inhibitory pathways of the 
dorsal horn, suppressing the excessive nociceptive im-
pulses from reaching the brain. Apart from this, the TCAs 
block the sodium channels, calcium channels, histamine 
(H1) receptors, α1-adrenergic receptors, and N-methyl-D-
aspartate (NMDA) receptors. Moreover, the TCAs activate 
the potassium channels, opioid receptors, and GABA-B re-
ceptors. All these mechanisms are associated with reduc-
tion in neuropathic pain.[102]

Based on the pharmacological structure, the TCAs are sub-
divided into tertiary amines and secondary amines.[103] 
Tertiary amines are amitriptyline, imipramine, and clomip-
ramine, whereas secondary amines are nortriptyline, de-
sipramine, and desmethylclomipramine.[104] The secondary 
amines are the metabolites of the tertiary amines formed 
by demethylation of tertiary amines.[105] The secondary 
amines selectively block the reuptake of norepinephrine. 
On the other hand, the tertiary amines block the reuptake 
of both serotonin as well as norepinephrine; the reuptake 
of serotonin is blocked by the tertiary amine itself, where-
as the reuptake of norepinephrine is blocked by the me-
tabolite. In view of the above, the tertiary amines are also 
known as dual-type TCAs. The NNTB for 50% neuropathic 
pain relief for TCAs in general is approximately 2–3, for ter-
tiary amines is 2.1, and for secondary amines is 2.5.[68]

The common AEs associated with TCA therapy include dry 
mouth, blurred vision, postural hypotension, QTc prolon-
gation, cardiac arrhythmias, myocardial ischemia, drowsi-
ness, cognitive impairment, excessive sleepiness, exces-
sive weight gain, constipation, and urinary retention. With 
regard to safety, the secondary amines are better toler-
ated compared to tertiary amines, as the latter are asso-
ciated with increased rates of drowsiness (resulting from 
increased histaminergic and α1-adrenergic blocking), an-
ticholinergic side-effects, and cardiac side-effects includ-
ing hypotension (resulting from increased α1-adrenergic 
blocking). Hence, ADA suggests that secondary amines are 
preferred over tertiary amines in those who are prone for 
these side effects and in elderly.[3] Overall, the TCAs should 
be used with caution in PDPN patients with known or sus-
pected cardiovascular disease.

With regard to efficacy, the tertiary amine - amitriptyline - is 
considered as the most efficient agent among all TCAs by 
AAN.[47] It is as effective as gabapentin[106] and duloxetine.
[105-107] Its secondary amine counterpart - nortriptyline - also 
is equally effective to gabapentin in the management of 
neuropathic pain, though the combination of nortriptyline 
and gabapentin was more effective than either drug given 
alone.[108] In general, the effective therapeutic dose ranges 
from 25 to 150 mg/day, with the most or all the doses taken 
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at night-time. The “Start-Low, Go-Slow” approach seems to 
be the best approach in elderly, with the dose up-titrated 
over a period of 6–8 weeks at weekly increments of 10–25 
mg. Thus, the pain relief would be noted only after several 
weeks, which would compromise on the compliance.[45]

Tapentadol and Tramadol
The opioids can be classified into strong opioids which 
include molecules such as morphine, oxycodone, hydro-
morphone, buprenorphine, and fentanyl; and weak opi-
oids which include molecules such as codeine, dihydroco-
deine, tramadol, and tapentadol.[79] Opioids are μ-receptor 
agonists that act by blocking the ascending pain signals 
in the spinal cord. The term atypical opioid is coined for 
those μ-receptor agonists that have one additional non-μ-
receptor mediated mechanism of action. Tapentadol, tra-
madol, buprenorphine, levorphanol, and methadone are 
atypical opioids.[109] Tapentadol exhibits additional norepi-
nephrine reuptake inhibition, whereas tramadol exhibits 
additional serotonin and norepinephrine reuptake inhibi-
tion. These additional mechanisms activate the descend-
ing inhibitory pathways, complement, and potentiate the 
μ-opioid receptor activation, contributing to an opioid-
sparing effect. This opioid-sparing effect result in reduced 
incidence of opioid induced gastrointestinal AEs including 
nausea as well as constipation. Tapentadol ER with a half-
life of 4.4–5.9 h should be initiated at 50 mg twice daily. The 
dose should be increased every 3 days in increments of no 
more than 50 mg twice daily to the effective therapeutic 
dose of 100–250 mg twice daily.

According to the neuropathic pain special interest group-
international association for the study of pain (NeuPSIG-
IASP) recommendations, the weak opioids are considered 
as second line agents and the strong opioids are consid-
ered as third line agents in the management of PDPN.[68] 
The strong opioids are associated with high abuse poten-
tial, and with resultant high mortality from overdosage.[110] 
Hence, the weak opioid tapentadol ER is the only agent 
from this group that has received FDA approval in the 
management of PDPN. Tapentadol ER offers pain relief at 
100–250 mg doses twice daily for up to a period of 1 year. 
Moreover, it offers better compliance in comparison to oxy-
codone-controlled release tablets.[111] It is effective across 
different patient subgroups regardless of age, gender, eth-
nicity, opioid experience, or intensity of pain.[60] It has a bet-
ter safety profile, is well tolerated, and is associated with 
improved HRQoL in patients with PDPN. The TEAEs were 
nausea in 21.1% and vomiting in 12.7%.[61]

A 6-month open extension trial following a 6-week ran-
domization observed that tramadol, in doses of 50–400 

mg/day, is effective in achieving long-term pain relief in 
patients with diabetic neuropathy.[112] The patients treated 
with tramadol experienced superior physical and social 
functioning, though the commonest TEAEs were head-
ache, excessive sleepiness, nausea, and constipation.[113] 
However, a Cochrane systematic review observed that 
the NNTB for 50% pain relief from neuropathic pain is 4.4 
(95% CI 2.9–8.8) with tramadol, whereas the NNTH is 4.2 
(2.8–8.3).[59] However, the evidence showing benefit from 
tramadol was of low or even very low quality. Moreover, 
due to the additional serotonin reuptake blocking effect, 
there is a risk of serotonin syndrome characterized by la-
bile blood pressure, confusion, seizures, or coma, especially 
when the tramadol is administered for the management of 
breakthrough pain in combination with TCAs or SNRIs.[114]

A systematic review that compared the efficacy and safety 
of tapentadol and tramadol in adults observed that the use 
of tramadol in neuropathic pain and tapentadol in PDPN 
has only low level of supportive evidence.[115] Tapentadol is 
associated with fewer serotoninergic side effects (nausea, 
vomiting, and hypoglycemia), higher opioid side effects 
(constipation, respiratory suppression, and abuse poten-
tial), and lesser drug-to-drug interactions in comparison to 
tramadol. Even though tapentadol has been proved to be 
generally safe among the elderly population, there is lack 
of sufficient evidence regarding its safety in vulnerable el-
derly patients, and in those with severe liver or kidney im-
pairment.

Another recently published systematic review observed 
that various opioids including morphine, hydromorphone, 
oxycodone, tramadol, and buprenorphine are effective in 
relieving the neuropathic pain by ≥50% and in reducing 
the disability associated with neuropathic pain without 
any clinically relevant treatment related AEs.[116] The au-
thors also observed that tapentadol is effective in relieving 
the neuropathic pain associated with PDPN by ≥50% and 
in reducing the disability without any clinically relevant 
treatment related AEs. In a retrospective cohort study, the 
abuse liability of tapentadol active pharmaceutical ingredi-
ent is compared with that of morphine, hydromorphone, 
oxymorphone, hydrocodone, oxycodone, and tramadol. 
The study observed that the population-level abuse rate 
is significantly lower than other opioids, but when adjust-
ments are made for availability of drug, the abuse rates 
were lower, but not the lowest.[117]

Buprenorphine is an atypical opioid: A partial agonist at 
the μ-opioid receptor, agonist at the δ-opioid and opioid 
receptor-like 1 (ORL-1) receptor and a weak antagonist at 
the κ-opioid receptor.[109] Levorphanol is another atypi-
cal opioid: Agonist at the μ-opioid, the δ-opioid, and the 
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κ-opioid receptors; antagonist at the NMDA receptors and 
having an SNRI like effect. A recent systematic review that 
evaluated the effects of atypical opioids including tapen-
tadol, buprenorphine and levorphanol in patients with 
neuropathic pain observed that the evidence is strong for 
tapentadol, whereas it is weak for buprenorphine and le-
vorphanol.[116] The transdermal buprenorphine does not 
achieve a clinically significant pain relief due to high with-
drawal rates. The oral levorphanol is as effective as first line 
and second line agents in the management of neuropathic 
pain. The study concluded that atypical opioids with lesser 
abuse potential can be considered as an alternate option in 
those with neuropathic pain that is refractory to first- and 
second-line agents, but only after further research. A Co-
chrane review that evaluated the effect of atypical opioid 
methadone in the management of neuropathic pain ob-
served that definite conclusions cannot be made due to 
very limited and very low-quality evidence available.[118]

Topical Capsaicin
The transient receptor potential vanilloid 1 (TRPV1) recep-
tors are expressed on the primary nociceptive afferents 
which are the small Aδ and C nerve fibers.[119] Capsaicin is 
a natural alkaloid present in red chili peppers and is a se-
lective agonist of TRPV1 receptors. The downstream signals 
from TRPV1 receptors release substance P and other neu-
rotransmitters. The repeated exposure to topical capsaicin 
results in neurotransmitter depletion and a reduction in 
pain signals reaching to central nervous system from pe-
ripheral nervous system. Capsaicin at low concentrations 
achieves analgesia lasting for hours secondary to only 
short-term reversible loss of function of nociceptive affer-
ents.[120] On the other hand, capsaicin at high concentration 
achieves analgesia lasting for several months secondary to 
long-term loss of function of TRPV1 expression in nocicep-
tive afferent terminals. The long-term analgesic effects of 
capsaicin are mediated by mitochondrial dysfunction, mi-
crotubule disorganization, and the calcium-calpain-medi-
ated degeneration of the afferent axons.[121-123]

Capsaicin is recommended as the second-line agent in the 
management of neuropathic pain by AAN and as the third-
line agent by the NICE. It can be used as capsaicin topical 
cream or as an 8% capsaicin patch. The capsaicin topical 
creams (0.025% and 0.075%) have compliance issues, as 
they need to be applied four times daily. On the other hand, 
a single 30-min application of capsaicin 8% patch can have 
long-lasting pain relief lasting up to 3 months.[124] Up to 
four capsaicin 8% patches can be applied simultaneously. 
The capsaicin 8% patch has received European Medicines 
Agency (2015) and FDA (2020) approval for the manage-
ment of PDPN.[125,126] The initial stimulation of the nocicep-

tive afferent neurons results in a burning pain at the site of 
application associated with redness, itching, swelling etc. 
These “application site reactions” are transient, and they 
diminish with repeated use - “capsaicin desensitization.” 
However, during this desensitization phase the neurons be-
come unresponsive to thermal nociception with a possible 
high risk for diabetic foot ulceration. The capsaicin patch is 
tolerated well. The transient application site reactions do 
not improve with lidocaine plaster pre-treatment.[127] More-
over, the lidocaine plaster does not improve the efficacy, 
tolerability, and compliance to capsaicin patch therapy.

A Cochrane review observed that there is insufficient data 
regarding efficacy and tolerability of low-concentration 
capsaicin (<1%) in patients with neuropathic pain.[128] An-
other Cochrane review showed that high-concentration 
capsaicin improves the neuropathic pain in a small pro-
portion of people.[129] Those with positive response in neu-
ropathic pain also get better sleep, and improvement of 
depression, energy levels, and quality of life. Because of 
the high cost associated with capsaicin patch therapy; this 
treatment should be reserved only for adults with neuro-
pathic pain who are refractory to all other available thera-
pies. Moreover, repeated applications should only be done 
in cases exhibiting significant objective pain relief.

Topical Lidocaine
Lidocaine blocks the voltage gated sodium channels 
(Nav1.7 and Nav1.8) on the primary nociceptors Aδ and C 
afferent neurons, and this reduces the ectopic discharges.
[130] Similarly, the drug regulates T cell activity and sup-
presses the nitric oxide generation and exhibits an anti-
inflammatory effect. The lidocaine also directly activates 
the TRPV1 and TRPA1 channels in the nociceptive afferents, 
produces membrane depolarization, and reduces the elec-
trical activity in the afferent neurons. The drug is available 
as 5% lidocaine-medicated plasters and it is applied once 
daily for 12 h. Up to three plasters can be applied simulta-
neously. It is well tolerated, though transient “application 
site reactions” may occur that resolve with removal.

When used as monotherapy, 5% lidocaine-medicated plas-
ters are associated with similar degree of pain relief, but 
with significantly fewer TEAEs when compared to prega-
balin.[131] When these patients who were initially on mono-
therapy with 5% lidocaine medicated plaster or pregaba-
lin were treated with combination therapy, they achieved 
additional pain relief with improved patient satisfaction. 
Moreover, the combination therapy was safe and was well 
tolerated.[132] Similar improvement in neuropathic pain and 
quality of life was noted with a combination of lidocaine 
medicated plaster and gabapentin.[133] A systematic review 
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and network meta-analysis of 23 studies observed that the 
lidocaine medicated plaster has a comparable efficacy to 
amitriptyline, gabapentin, pregabalin, and capsaicin, with 
fewer and less severe AEs.[134] A recent study has noted that 
a combination of capsaicin and lidocaine patch is safe and 
effective in patients with PDPN.[135]

Topical GTN and Topical Clonidine
Glyceryl Trinitrate (GTN) patch is used as an off-label treat-
ment to alleviate the neuropathic pain associated with 
PDPN.[136-138] The GTN is proposed to act via alteration in 
neuronal nitric oxide synthase in the dorsal root ganglion 
cells and the spinal cord contributing to neuronal plastic-
ity.[139] Topical clonidine gel, an α2-adrenergic agonist, has 
been shown to decrease the pain in patients with PDPN.[140] 
In a Cochrane review regarding the use of topical clonidine 
in PDPN, the NNTB for 30% neuropathic pain relief is 8.33 
(95% CI: 4.3–50). The authors concluded that topical cloni-
dine can be considered when no better treatment options 
are available due to adverse effects, contraindications, or 
lack of efficacy.[141]

Intravenous Lidocaine
Intravenous infusion of lidocaine administered, at a dose 
of 3–5 mg/kg, over an hour, offered short-term pain relief 
without any improvement in quality of life.[142,143]

BTX-A
BTX is a neurotoxin produced by Clostridium botulinum and 
it blocks the acetylcholine release at neuromuscular junc-
tions causing muscle relaxation.[144] The analgesic effect of 
BTX is due to inhibition of release of neurotransmitters in-
cluding substance P, glutamate, and CGRP from the afferent 
nerves. Moreover, the BTX reduces the activity of TRPV1. The 
BTX administered every 3 months subcutaneously at doses 
of 50–300 mg into the painful area reduces the neuropathic 
pain intensity, improves the sleep quality and quality of life 
as observed in three RCTs.[145-147] However, the RCT evidence 
is weak due to small sample sizes.[148] According to NeuPSIG-
IASP recommendations, BTX is considered as the third line 
agent in the management of neuropathic pain.[68]

Novel Pharmacological Treatment Options

Sodium Channel Antagonists
Genes encoding the voltage gated sodium channels have 
a significant role in the pathogenesis of small fiber neu-
ropathies. Gain of function mutations of genes encoding 
Nav1.7, Nav1.8, and Nav1.9 are associated with PDPN.[149-152] 
As Nav1.7, Nav1.8, and Nav1.9 are preferentially expressed 

by the peripheral nociceptors, their antagonism would im-
prove pain without causing central and cardiac TEAEs.[153] 
Vixotrigine is an oral Nav1.7 antagonist. In a phase 2 RCT, 
vixotrigine 200 mg administered twice daily achieved sta-
tistically significant reduction in average daily pain score at 
12th week in diabetes-associated small fiber neuropathy, 
but not in idiopathic small fibre neuropathy.[154] The drug 
was well tolerated with the common TEAEs (incidence 
≥2.5%) include dizziness, headache, vertigo, and nausea. 
VX-150 is an oral Nav1.8 antagonist. In a phase 2 RCT, VX-
150 1250 mg administered once daily achieved significant 
pain relief in patients with small fiber neuropathy and was 
well tolerated.[155]

Cibinetide (Innate Repair Receptor [IRR] Ligand)
Cibinetide (previously ARA290) is a novel peptide analo-
gous to erythropoietin, and it acts by selectively interact-
ing with the IRR.[156] Cibinetide improves the neuropathic 
pain via anti-inflammatory effects and through stimulation 
of the regrowth of the nerve fibers from the damaged ax-
ons, both mediated by IRR. In a phase 2 study, 4 mg Cibi-
netide, administered subcutaneously resulted in improve-
ment in HbA1c, lipid levels, neuropathic symptoms and 
small fiber neuropathy. Another potential use of cibinetide 
is to use with low-dose tacrolimus in improving the survival 
after pancreatic islet transplantation.[157] The islet protec-
tion could be mediated by reduction in the Instant Blood 
Mediated Inflammatory Reaction and a delay in the allore-
activity. The drug may also improve the engraftment after 
pancreatic islet transplantation.[158]

Transient Receptor Potential (TRP) Agonists
TRP agonists are an attractive option as novel analgesics 
for the management of neuropathic pain.[159] Few members 
from this group have reached the phase 2 stage: TRPV1 
agonist (AZD1386),[160] TRPA1 agonist (GRC-17536),[161] 
and TRPV3 agonist (SAR292833).[162] The phase 2 trials for 
AZD1386 for the neuropathic pain and osteoarthritis were 
terminated due to various reasons while GRC-17536 has 
successfully completed phase 2 trials.[163]

P2X3 Receptor Ligands
P2X3 or purinoceptor-3 is a ligand-gated ion channel in the 
peripheral nervous system with which the ATP signaling 
results in neuronal sensitization and neuropathic pain. The 
selective antagonist that blocks the P2X3 receptor (eliapix-
ant) and the nonselective antagonist that blocks both P2X3 
and P2X2/3Rs (Gefapixant) have recently completed Phase 
3 clinical trials for refractory chronic cough.[164] However, 
these agents are potential drug targets for the manage-
ment of neuropathic pain.[165]
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Vitamin D
Vitamin D deficiency is associated with greater severity of 
neuropathic pain in patients with diabetic neuropathy.[166] 
Vitamin D treatment is associated with improvement in 
pain severity, pain-related disability, and neuropathy-spe-
cific quality of life in patients with PDPN.[167] Vitamin D is an 
endogenous partial agonist of TRPV1, and this could pos-
sibly explain the analgesic effect of Vitamin D.[168]

Angiotensin II Receptor 2 (AT2R) Antagonist
Upregulation of AT2R and TRPV1 is considered to contribute 
to neuropathic pain. Olodanrigan antagonizes AT2R and in-
hibits the direct phosphorylation of TRPV1.[169] In 2 phase 2b 
trials, the drug administered as 100 mg twice daily achieved 
clinically significant pain relief in patients with post herpetic 
neuralgia and PDPN. However, these two RCTs were prema-
turely terminated due to potential for liver toxicity on long-
term administration observed in preclinical studies, this was 
not observed in the phase 2b trials.[169]

Trazadone and Gabapentinoid Combination
Trazadone is a second-generation antidepressant with a 
sedative effect. It has α1-adrenergic, H1 histaminergic, and 
5HT2 receptor blocking action in the post-synaptic mem-
brane at the lower doses, and it has serotonin reuptake 
inhibitory action in the presynaptic membrane at higher 
doses.[170] Hence, its mechanism of action is often referred 
as Serotonin Antagonist - Reuptake Inhibition. A pilot RCT 
showed a clinically significant improvement in the neuro-
pathic pain symptoms with trazodone-gabapentin combi-

nation.[171] A phase 2 trial comparing trazodone-gabapentin 
fixed dose combination with gabapentin alone or placebo 
in the management of PDPN is in progress.[172]

Dextromethorphan and Quinidine Combination
Dextromethorphan is an NMDA receptor antagonist. In ad-
dition, it is a sigma-1 receptor (σ1) agonist, N-type calcium 
channel antagonist, and a serotonin reuptake inhibitor. 
It has a rapid and extensive metabolism by hepatic cyto-
chrome P450 2D6. Quinidine, a potent cytochrome P450 
2D6 inhibitor, can help in maintaining a bioavailability of 
dextromethorphan so that it can exert a better therapeutic 
effect. At doses of 45/30 mg, or 30/30 mg the combination 
has shown its efficacy and safety for neuropathic pain.[173]

A summary of available pharmacological therapies for the 
management of neuropathic pain as per recommenda-
tions from various guidelines is summarized in Table 4.

Non-Pharmacological Management
The various available neuromodulation techniques used 
in the management of neuropathic pain are given in Table 
5. The Repetitive Transcranial Magnetic Stimulation and 
transcranial direct current stimulation are the commonly 
used central non-invasive neuromodulation (NINM) tech-
niques, whereas TENS is the most common peripheral 
NINM technique.[177] The NINM techniques induce changes 
in neuronal membrane polarity, thereby modulating the 
brain function and pain perception. They also regulate 
the endogenous inhibitory pain pathways and reverse the 

Table 4. Available pharmacological therapies for the management of neuropathic pain as per various guidelines

 AAN[47] NICE[45] IASP[68] ADA[3] IDF[174] Canada[175] French[46] German[86]

 2011 2013 2015 2017 2017 2018 2020 2020

Pregabalin 1 1 1 1 1 1 2 1
Gabapentin 2 1 1 2 1 2 1 1
Duloxetine 2 1 1 1 1 2 1 1
Venlafaxine 2 No mention 1 No mention No mention 2 1 No mention
Amitriptyline 2 1 1 2 1 2 1 1
Tramadol 2 2 2 3 2 3 2 3
Tapentadol No mention No mention 2 3 No mention 3 3 3
Oxycodone ER 2 No mention 3 No mention No mention 3 3 3
Other Opioids 2 No mention 3 No mention 2 No mention 3 2
Dextromethorphan 2 No mention No mention No mention No mention 3 No mention No mention
Lidocaine patch May be used No mention 2 No mention No mention No mention 1 (focal) 2
Capsaicin patch 2 No mention 2 No mention No mention No mention 2 (focal) 2
BTX-A No mention No mention 3 No mention No mention No mention 2 (focal) 3
Sodium Valproate 2 No mention No mention No mention No mention 2 No mention No mention
Neuromodulation No mention No mention No mention No mention No mention No mention 3 No mention

BTX-A: Botulinum toxin-A.
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maladaptive synaptic plasticity. A recent meta-analysis of 
various NINM techniques observed that the central NINM 
techniques and the peripheral electrical NINM techniques 
reduce the neuropathic pain in patients with PDPN.[178] The 
high frequency (10 kHz) spinal cord stimulation provides 
clinically significant pain relief and improvement in HRQoL 
in patients with PDPN refractory to conventional therapy 
are.[179] As the purpose our review is to critically appraise 
the use of pharmacotherapy for PDPN, we are not elaborat-
ing these modalities of treatment in this review.

Summary and Conclusions
Vast majority of patients with DPN remain pain-free, but 
PDPN is estimated to affect 6–34% of all DM and is asso-
ciated with reduced HRQoL and substantial economic 
burden. Early diagnosis and timely intervention are essen-
tial to prevent the development and progression of DPN. 
Delayed diagnosis of DPN after established sensory loss 
results in severe irreversible nerve damage, which could 
have been prevented if diagnosed earlier. Symptomatic 
treatment of PDPN and DAN remains the mainstays of 
management. Using certain patient related characteris-
tics, PDPN patients can be stratified and assigned target-
ed therapies to produce better pain outcomes. PDPN is a 
heterogenous condition caused by a complex interaction 
of various environmental factors, genetic predisposition, 
metabolic disturbances, and vascular dysfunction leading 
on to downstream alterations in the peripheral and central 
nervous system. Understanding the pathogenesis of PDPN 
helps in the development of new treatments targets for the 
management of neuropathic pain.

Management of DPN can be divided into pharmacologi-
cal and non-pharmacological agents. Currently available 
pharmacological agents include GABA analogues such as 
pregabalin and gabapentin either of which are considered 
as the first line pharmacological agents in the management 
of PDPN by various international agencies. The lower doses 
of GABA analogues (pregabalin <300 mg and gabapentin 
<1200 mg) are less likely to be beneficial for the management 
of PDPN. SNRIs and TCAs have also been used as first line 
treatments. Amitriptyline is considered as the most efficient 
agent among all TCAs by AAN. Regarding opioids, the weaker 
ones are considered as second line agents and the stronger 
ones are considered as third line agents in the management 
of PDPN. Capsaicin is recommended as the second-line agent 
in the management of neuropathic pain by AAN and as the 
third-line agent by the NICE. Topical lidocaine plasters can be 
used as monotherapy or as combination therapy with prega-
balin with good outcome. BTX is considered as the third line 
agent in the management of neuropathic pain.

GTN patch can be considered as an off-label treatment to 
alleviate the neuropathic pain associated with PDPN and 
topical clonidine can be considered when no better treat-
ment options are available due to adverse effects, contra-
indications, or lack of efficacy. Vitamin D treatment is also 
associated with improvement in pain severity, pain-related 
disability, and neuropathy-specific quality of life in patients 
with PDPN. A few novel pharmacological treatment op-
tions that are promising but are still in experimental stage 
include sodium channel antagonists, IRR ligands, P2X3 
receptor ligands, trazadone-gabapentinoid combination, 
and dextromethorphan-quinidine combination.

Table 5. Neuromodulation techniques in the management of PDPN[177,178]

Non-invasive neuromodulation (NINM) techniques
Peripheral NINM 
Electrical TENS Transcutaneous Electrical Neural Stimulation
  PENS Percutaneous Electrical Nerve Stimulation
Electromagnetic PEMF Pulsed Electromagnetic Field
  FREMS Frequency-Modulated Electromagnetic Neural Stimulation
Central NINM 
Electromagnetic rTMS Repetitive Transcranial Magnetic Stimulation
Electrical tDCS Transcranial Direct Current Stimulation
  MDM Mesodiencephalic Modulation
Invasive neuromodulation techniques
  ITT Intrathecal Therapy with Ziconotide
  SCS Spinal Cord Stimulation
   Conventional SCS
   Burst SCS
   High Frequency (10 kHz) SCS

PDPN: Painful diabetic peripheral neuropathy.
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