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Abstract

Background: Oxidative damage to mitochondrial DNA has been implicated as a causative factor
in a wide variety of degenerative diseases, aging and cancer. The modified guanine, 7,8-dihydro-8-
oxoguanine (also known as 8-hydroxyguanine) is one of the major oxidized bases generated in
DNA by reactive oxygen species and has gained most of the attention in recent years as a marker
of oxidative DNA injury and its suspected role in the initiation of carcinogenesis. 8-hydroxyguanine
is removed by hOggl, a DNA glycosylase/AP lyase involved in the base excision repair pathway.

Methods: We over-expressed wild type and R229Q mutant hOGG/ in the nucleus and
mitochondria of cells lacking mitochondrial hOGGI expression through an expression vector
containing nuclear and mitochondrial targeting sequence respectively. We used quantitative real
time PCR to analyze mtDNA integrity after exposure to oxidative damaging agents, in cells
transfected with or without mitochondrially-targeted mutant hogg|.

Result: Over-expression of wild type hOggl in both nucleus and mitochondria resulted in
increased cellular survival when compared to vector or mutant over-expression of hOGGI.
Interestingly, mitochondrially-targeted mutant hoggl resulted in more cell death than nuclear
targeted mutant hoggl upon exposure of cells to oxidative damage. Additional we examined
mitochondrial DNA integrity after oxidative damage exposure using real-time quantitative PCR.
The presence of mutant hogg! in the mitochondria resulted in reduced mitochondrial DNA
integrity when compared to the wild type. Our work indicates that the R229Q hOGG/ mutation
failed to protect cells from oxidative damage and that such mutations in cancer may be more
detrimental to cellular survival when present in the mitochondria than in the nucleus.

Conclusion: These findings suggest that deficiencies in hOGG I, especially in the mitochondria may
lead to reduced mitochondrial DNA integrity, consequently resulting in decreased cell viability.
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Background

The detection of mitochondrial DNA (mtDNA) mutations
in several human diseases has stimulated interest in
understanding how the integrity of the mitochondrial
genome is maintained [1-4]. It is believed that these muta-
tions likely result from the exposure of mtDNA to reactive
oxygen species (ROS). mtDNA is continuously exposed to
ROS which are formed as byproducts of normal cell
metabolism and during exposure to physical and chemi-
cal agents such as y-irradiation, UV-irradiation or H,0,
Lack of protective histones, proximity to oxidative phos-
phorylation and limited capacity for repair of DNA dam-
age [5-7] predispose mtDNA to attack by ROS. ROS such
as hydroxyl radical (OH*), superoxide radical (O,), and
singlet oxygen (10O,), damage DNA directly [8], inducing
a wide range of DNA lesions that include single and dou-
ble strand DNA breaks, apurinic apyrimidinic (AP) sites,
DNA-protein-cross-links and oxidized DNA bases [8,9].
Among the oxidized bases, the modified guanine, 7,8-
dihydro-8-oxoguanine (8-oxoG) (also known as 8-
hydroxyguanine) is one of the major lesions generated in
DNA by oxygen radicals [9] and has gained most of the
attention in recent years as a marker of oxidative DNA
injury and its suspected role in the initiation of carcino-
genesis [10,11]. It has been shown that the presence of 8-
0x0G results in incorporation of deoxyadenosine triphos-
phate (dATP) opposite 8-0xoG during replication yielding
G:CtoT: A transversions [10,12-14]. Since 8-0x0G con-
stitutes a premutagenic lesion, efficient repair mecha-
nisms are vital to prevent these lesions from becoming
permanent mutations.

To prevent the deleterious action of 8-0x0G, living organ-
isms have evolved specific DNA repair mechanisms for
this biologically important lesion. E. coli. possess the GO
system, [15] which consists of three genes namely: MutT,
MutM and MutY. MutT, encodes a phosphatase that
hydrolyzes 8-oxoGIP in the nucleotide pool to 8-
0oxoGMP, thus preventing incorporation of 8-oxoGTP
during DNA replication, while MutM is a DNA glycosy-
lase/AP lyase that preferentially removes 8-0xoG opposite
cytosine. MutY is a DNA glycosylase that specifically
removes adenine opposite 8-0xoG. The existence of these
three genes in E. coli for the repair of 8-0x0G supports the
fundamental biological importance of this lesion. A
MutM homologue, called OGG1, was isolated from Sac-
charomyces serevisiae in 1996 [16,17]. Several groups inde-
pendently isolated a human homologue of OGGI
(hOGGT1) [18-21]. The hOGGI1 gene encodes two major
isoforms, a-hOGG1 and B-hOGGI that are products of
alternative splicing. a-hOGG1 has a nuclear localization
signal while B-hOGG1 is targeted to mitochondria
[22,23]. hROGG1 has been shown to have both DNA glyc-
osylase/AP lyase activity that preferentially removes 8-
oxoG opposite cytosine. Inactivation of Fpg or MutY
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genes in E. coli or OGG1 in yeast leads to a spontaneous
mutator phenotype characterized by the exclusive increase
in G: CtoT: A transversions [15,24-27]. Additionally,
OGG]1-deficient strains of S. cerevisiae have an increased
frequency of mitochondrial mutants [28]. Other studies
have shown that cellular survival and mtDNA repair can
be enhanced by targeting wild type hOGG1 to the mito-
chondria [29,30], suggesting that this gene is critical for
the maintenance of mitochondria genome and cellular
survival in response to oxidative DNA damage. Accord-
ingly, mutations in hOGG1 may affect mtDNA integrity
and the ability of cells to survive under oxidative stress.
hOGGI1 mutations have been detected in human cancers
[31,32]. In this study, we examined the effect of mutant
hoggl (R229Q) found in a leukemia cell line [33], on
mtDNA integrity and cellular survival.

Current assays of DNA repair measure global DNA dam-
age utilizing large quantities of DNA or involve whole
cells [34,35]. DNA damage and repair at the gene level,
has been performed using gene specific repair assay by
alkaline gel electrophoresis and Southern hybridization
which also require large quantities of DNA and radio-
labeled 32P [36]. Quantitative PCR has been used to meas-
ure DNA repair at an individual gene level [37-39]. We
used quantitative real time PCR to analyze mtDNA integ-
rity after exposure to oxidative damaging agents, H,O,
and Adriamycin in cells transfected with or without mito-
chondrially-targeted mutant hoggl. We found that target-
ing R229Q mutant hoggl to the mitochondria
significantly reduced mtDNA integrity and resulted in
decreased cellular survival after exposure to oxidative
agents when compared to the wild type hOGGI. Our
results also showed that mitochondrially targeted mutant
hoggl was more detrimental to cellular survival than
nuclear targeted mutant hoggl.

Methods

Plasmid construction

Plasmid pCMV/myc/mito and pCMV/myc/nuc were
obtained from Invitrogen, CA. hOGG1 was amplified
using ¢-DNA from normal retinal epithelial cells (ARPE-
19) using forward primer, 5 ACGGTCGACATGCCT-
GCCCGCGCGCTTICT 3' and reverse primer 5' AAG-
GAAAAAAGCGGCCGCGCCITCCGGCCCITIGGAAC 3
(underlined are Sal I and Not I sites) and cloned into to Sal
I/Not I sites of plasmid pCMV/myc/mito resulting in
pCMV/myc/mito-hOGG1. The cloned gene was then
sequenced to rule out any mutation. Plasmid pCMV/myc/
mito-hOGG1 (MTS-hOGG1) was then used to generate a
mutant at amino acid position 229, by changing CGA
(Arginine) to CAA (Glutamine) using primers 5'
CTGGCTGCAGCAGCTACAAGAGTCCTCATATGAG 3
and its reverse complement, using the site directed muta-
genesis kit (Stratagene, La Jolla, CA). The generated
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mutant plasmid was called pCMV/myc/mito-mutant-
hoggl (MTS-mutant-hoggl). Again the generated plasmid
was sequenced to rule out any mutation other than the
desired point mutation at codon 229. pCMV/myc/mito-
hOGG1 and pCMV/myc/mito-mutant-hoggl  were
digested with Sal I and Not I. Both the wild type and
mutant hOGG1 were cloned into to Sal I /Not I sites of
plasmid pCMV/myc/nuc resulting in plasmids pCMV/
myc/nuc-hOGG1 (Nuc-hOGG1) and pCMV/myc/nuc-
mutant-hoggl (Nuc-mutant-hoggl) respectively. MTS rep-
resents mitochondrial targeted sequence and Nuc repre-
sents nuclear targeted sequence. The generated plasmids
were sequenced to rule out any mutations.

Cell culture

HelLa cells were transfected with plasmid MTS-hOGG1,
MTS-mutant-hoggl, Nuc-hOGG1, Nuc-mutant-hoggl, and
empty vector (Invitrogen, Carlsbad CA) using Fugene 6
(Roche, Indianapolis IN) in the ratio of 1:6 (DNA in ug:
Fugene in pl). Transfected HeLa cells were maintained in
DMEM low glucose supplemented with 10% FBS
(Hyclone, Logan, UT) and 5% Penicillin-Streptomycin.
All experiments were performed at 72 h post transfection,
for maximum transfection efficiency.

Preparation of mitochondrial and nuclear fractions

One T75 flask of each cell type (empty vector, MTS-
hOGG1, MTS-mutant-hoggl, Nuc-hOGG1 and Nuc-
mutant-hoggl - transfected HeLa cells) were harvested at
72 h post transfection and washed once with ice cold 1X
PBS. The cells were then treated with 0.04% ice-cold digi-
tonin solution {0.4 mg Digitonin/ml; 2.5 mM EDTA, 250
mM Mannitol; 17 mM MOPS (pH 7.4)}, re-suspended
and the contents dounce-homogenized with 10 strokes.
To the homogenized cells, sucrose-mannitol buffer {525
mM Mannitol; 175 mM Sucrose; 12.5 mM Tris-HCI (pH
7.4)} was added and further dounce homogenized with
20 strokes. A small aliquot (20 ul) was observed under the
microscope to assure complete disruption of cells. The
cells were centrifuged at 2500 rpm in a microfuge for 10
min at 4°C. The resulting pellet was saved for nuclear pro-
tein extraction and the supernatant was re-centrifuged at
2500 rpm for 10 min at 4°C until no further pellet was
visible. There after the supernatant was centrifuged at
14000 rpm (Eppendorff microfuge) for 20 min at 4°C.
The obtained mitochondrial pellet was re-suspended in
1X sucrose-mannitol buffer and centrifuged at 14000 rpm
for 20 min at 4°C. Proteins were isolated from the mito-
chondrial and nuclear pellets using RIPA buffer contain-
ing proteases inhibitors. The protein concentration was
determined using the Bio-Rad protein estimation kit (Bio-
Rad, Hercules, CA) as per manufacturer's recommenda-
tion.
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Total cellular extract

One T75 flask of empty vector transfected Hela cells was
harvested at 72 h post transfection and washed once with
ice cold 1X PBS. The cells were then suspended in RIPA
buffer (10 mM Tris pH 7.4, 150 mM NaCl, 5 mM EDTA,
1% Triton-X-100, 0.1% SDS) containing protease inhibi-
tors (Roche, cat 1697498) and 1 mM PMSF (added fresh
at all times), sonicated for 1 min. The cells were then cen-
trifuged at 4°C at 14000 rpm in a microfuge, and the
supernatant (cellular lysate) was stored at -80°C for fur-
ther experiments.

Western Blot analysis

Twenty microgram of protein lysates were separated on
standard SDS-Polyacrylamide gel electrophoresis. The
proteins were transferred on to a PVDF membrane at 200
mA for 1h. The membrane was blocked with 5% non-fat
dry milk and phosphate buffered saline (PBS) with 0.1%
Tween-20 (PBS-T) at room temperature for 1h, and then
treated with polyclonal anti-hOGG1 antibodies (Novus
Biologicals, Littleton, CO) in the presence of 5% non-fat
dry milk and PBS-T over night at 4°C. All washings were
done with PBS-T. The membrane was washed 4 times, 5
minutes each and treated with anti- rabbit HRP conjugate
in the presence of 5% milk with PBS-T for 1 h at room
temperature. The membrane was washed again 8 times, 5
minutes each and developed with Amersham developer as
per manufacturer's instructions. Loading controls for
mitochondrial extracts were performed by using cyto-
chrome c oxidase II (Cox IT)antibody (obtained from
Molecular Probes, Eugene, OR) and Lamin B (Santa Cruz,
CA) was used for nuclear extracts.

Cell viability assay

HeLa-MTS-hOGG1, HeLa-MTS-mutant-hoggl, HeLa-Nuc-
hOGG1, HeLa-Nuc-mutant-hoggl and HeLa-Vector were
grown in 35 mm, 6-well culture plates for 72 h post trans-
fection as this time point showed maximum transfection
efficiency. The cells were rinsed with Hanks' Balanced Salt
Solution (HBSS) and treated with 0, 100, 200, 400, 500
and 600 uM of H,0, for 2 h. The MTS-hOGG1 and vector
only transfected cells were also treated with 0, 20, 40, 60,
80, 100 uM of 4-nitroquinoline 1-oxide (4NQO) for 1 h
in serum free media at 37°C in 5% CO, incubator. After
the desired time of exposure, the drug containing medium
was aspirated, the cells were rinsed with HBSS and then
allowed to recover in 1 ml of regular growth medium for
16 h. 100 ul MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphe-
nyltetrazolium bromide) solution was added to each well
and incubated at 37°C and 5% CO,. Four hours following
incubation, 1 ml solubilization buffer was added and the
mixture was incubated overnight at 37°C to allow com-
plete solubilization. Spectrophotometric readings (As;¢ nm
- Ags0 nm) Were obtained on a Molecular Devices Spectra
Max 250, 96 well plate reader (Sunnyvale, CA). The per-
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cent survival was calculated by assigning the (As;g ym —
Ags0 nm) Of the untreated cells to 100%. The ATCC - MTT
Cell Proliferation Assay kit was used for all experiments.

Drug preparation and exposure

HeLa-MTS-hOGG1, HeLa-MTS-mutant-hoggl and Hela-
Vector were grown in 35 mm dishes for 72 h post transfec-
tion. The cells were rinsed with HBSS and then treated
with 400 uM H,0, and 28 uM Adriamycin for 2 h each
and 50 uM 4NQO for 1 h in serum free medium at 37°C
in 5% CO, incubator. After the desired exposure time, the
drug containing medium was removed, the cells were
rinsed again with HBSS. To isolate the DNA, the cells were
trypsinized, washed with PBS, and incubated in lysis
buffer {100 mM NaCl; 10 mM Tris-HCI (pH 8); 0.25 mM
EDTA; 0.5% SDS} containing 100 pug/ml proteinase K for
24 h at 48°C. DNA was extracted by a standard phenol-
chloroform procedure followed by alcohol precipitation.

Quantitative Real-Time PCR

The 7900HT sequence-detection system (Applied Biosys-
tems) was used to perform real-time PCR amplification
for nuclear B-actin and the mtDNA regions cytochrome ¢
oxidase (Cox I and Cox II), D-loopl (401-490), and
D310. Table 1 lists the primers and probes used to amplify
the respective DNA regions. All primers were obtained
from Invitrogen (Carlsbad, CA). All TagMan probes
(Applied Biosystems, Foster City, CA) were labeled with
5'-FAM (6-carboxyfluorescein, fluorescent reporter) and
3'-TAMRA (6-carboxy-tetramethylrhodamine, fluores-
cence quencher). PCR amplifications were carried out in
buffer containing 16.6 mM ammonium sulfate, 67 mM
Tris base, 2.5 mM MgCl,, 10 mM 2-mercaptoethanol,
0.1% DMSO, 0.2 mM each of dATP, dCTP, dGTP, and
dTTP, 600 nM each of forward and reverse primers, 200
nM TagMan probe, 0.6unit Platinum Tag polymerase,
and 2% Rox reference dye. DNA (1 ng) was used to
amplify both the mitochondrial regions and the B-actin.
The real-time PCR reactions were performed in triplicate
for each gene and standard curves were obtained by using
HelLa DNA from untreated cells. Data analysis was per-
formed by using Microsoft EXCEL software. mtDNA/
nDNA ratios were calculated by dividing the mtDNA sig-
nal for each gene by the B-actin signal and expressing the
ratio as a percentage of the untreated control set at 100%.

Results

Over expression of mutant hoggl in mitochondria

We transfected HeLa cells with mitochondrially-targeted
wild type hOGG1, mutant hoggl, or the empty vector. Fig-
ure 1 shows that at 72 h post transfection DNA from the
cells transfected with mutant-hoggl actually harbored the
mutation Arg229GIn. To show that hOGGI protein was
specifically expressed in the mitochondria, we performed
western blot analysis on total cell extract and mitochon-
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drial extracts after transfection. As observed in vector
transfected HeLa cells, hOGG1 was expressed in the total
cell extract, but virtually absent in the mitochondrial frac-
tion (Figure 2A, Vector- total extract and Vector- mito-
chondrial extract), confirming that HeLa cells lack hOGG1
protein in their mitochondria. Furthermore, when com-
pared to the vector only transfected cells, mitochondrial
extracts of the wild-type MTS-hOGGI and the MTS-
mutant-hoggl showed a clear over expression (more than
100 fold) of the 39 kD hOGG1 protein (Figure 2A, Wt
hOGG1 and mutant hoggl). The R229Q mutation did not
affect the expression and transportation of hOGGI as
there was no difference in the mitochondrial expression
when compared to the wild type hOGG1. The nuclear tar-
geted wild-type hOGG1 and the mutant-hogg! showed a
robust over expression in the nucleus only (Compare vec-
tor, total extract in Figure 2A, with nuclear extract in Figure
2B). Targeting of hOGG1 to the nucleus did not result in
translocation to the mitochondria (Figure 2B, Mt extract).
In order to rule out contamination from non-mitochon-
dria or non-nuclear fractions, the membranes were
washed and hybridized with mitochondrial Cox II and
nuclear envelope Lamin B antibody.

Effect of mutant hoggl on cell viability

Mitochondrial DNA damage may alter mitochondrial
function, consequently affecting cell growth. To deter-
mine whether over expression of mutant hoggl in mito-
chondria and nucleus had any effect on cellular survival
following oxidative stress, we performed the MTT cell pro-
liferation assay. MTT is a tetrazolium salt that is reduced
by fully functioning mitochondria and results in a change
of color from yellow to purple. Thus, the reduction of
MTT can be monitored spectrophotometrically [40].
Therefore, a change in mitochondrial function and cell
viability can be assayed using MTT as previously shown
[39]. Hela cells transfected with MTS-mutant hoggl
(Arg229GIn) were more sensitive to oxidative damage
when compared to cells transfected with wild type MTS-
hOGG]1 (Figure 3A). Our results also showed that mito-
chondrially-targeted mutant hoggl resulted in decreased
cell survival compared to nuclear targeted mutant hoggl
upon oxidative damage with 400 uM H,O, (Figure 3A,
compare Nuc-mutant-hoggl and MTS-mutant-hoggl). Sta-
tistical analysis using student's t-test revealed that p value
for Nuc-hOGG1, MTS-hOGG1 and Nuc-mutant-hoggl was
0.0004; 0.008 and 0.029 respectively. When the wild type
MTS-hOGG1 and vector only transfectants were treated
with varying concentrations of 4NQO, there was a modest
decrease in cellular survival however, there was no signif-
icant difference between MTS-hOGG1 and vector trans-
fected cells, (Figure 3B), again confirming that htOGG1 has
little, if any effect on 4NQO-induced damage.
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Table I: Sequence of Primers and Probes used in the Quantitative Real-time PCR Analysis.

Region Forward primer (5'-3") Reverse primer (5'-3') TaqMan probe (5'-3")
D-Loop tatcttttggcggtatgeacttttaacagt tgatgagattagtagtatggg caccccccaactaacacattattttccce
(401-430) (487-467) (431-459)
D310 cacacagacatcataacaaaaaatttcc ggtgttagggtectttgtttttgg cccececteccecgettct
(269-296) (378-355) (303-321)
Cox Il ccccacattaggcttaaaaacagat tatacccceggtegtgtage caattcccggacgtctaaaccaaaccacttte
(8080-8104) (8160-8141) (8106-8137)
Cox | ttcgecgaccgttgactattetct aagattattacaaatgcatggge aacgaccacatctacaacgttatcgtcac
(6007-6030) (6103-6081) (6051-6079)
B-Actin tcacccacactgtgeccatctacga cagcggaaccgctcattgecaatgg atgccctcccccatgecatectgegt
(2141-2165) (2435-2411) (2171-2196)

Mutant hoggl and mtDNA integrity

We used quantitative real time PCR to analyze mtDNA
integrity after exposure to oxidative damaging agents, in
the presence and absence of mitochondrially-targeted
wild type hOGG1 or mutant hoggl. Quantitative real-time
PCR assay allows for the measurement of DNA damage in
any individual amplifiable DNA segment. The fundamen-

WT hOGGI1

C GCTACG G G T

Mutant hoggl

Figure |

Sequence of hoggl Mutant. hOGG/ (wild type) and
mutant-hogg| (mutant) were transfected in Hela cells. 72 h
post transfection, total RNA was isolated and RT-PCR was
performed using Superscript Il (Invitrogen, Carlsbad, CA) as
per manufacturer's instructions. Automated DNA Sequenc-
ing results indicated that cells transfected with mutant-hogg |
harbored mutant hogg!, where CGA is changed to CAA at
codon 229. Arrow indicates mutated position (G to A).

tal principle of this assay is that DNA damage will impede
the progression of the DNA polymerase used in the PCR
reactions [38,39]. Thus, DNA damage is detected as a
reduction of the available template for PCR (decreased
DNA integrity), resulting in a shift of the amplification
curve to the right [39]. The major advantage of the quan-
titative real-time PCR assay is that only nanogram quanti-
ties of DNA are required, and DNA damage can be
assessed at the individual gene level. Further this method
enables the monitoring of mtDNA integrity directly from
total cellular DNA without the need for isolating mito-
chondria, or a separate step of mtDNA purification [41].

We performed quantitative real-time PCR amplification
for the nuclear B-actin gene and specific mtDNA regions:
cytochrome ¢ oxidase (Cox I and Cox IT), D-loop (401-
490), and D310 [37]. The extent of decrease in mtDNA
integrity was analyzed by calculating the mtDNA/nuclear
DNA (B-actin) ratio, and normalizing to the untreated
control set at 100%. Ratios of mtDNA/nDNA were used to
obtain the relative DNA integrity whereby a lower ratio
represents less initial template, denoting a decrease in the
integrity of mtDNA. The mtDNA/nDNA ratio of the
untreated HeLa-Vector was set at 100%. Similarly, the
mtDNA/nDNA ratio of the untreated MTS-hOGG1 and
MTS-mutant-hogg1 were set at 100% for calculating values
obtained with recombinant wild-type (hOGG1) or mutant
(hoggl) respectively. Figure 4 shows representative real-
time PCR amplification curves of B-actin (Figure 4A), D-
Loop (Figure 4B) and Cox I (Figure 4C) using DNA iso-
lated from HeLa-Vector and HeLa-MTS-hOGG1 (wt)
transfected cells treated with 400 uM H,O, for 2 h. At the
concentration of H,0, used in these studies, there was no
damage to the B-actin region as evidenced by the overlap-
ping curves in the absence (vector) and presence of wild
type hOGG]1 (Figure 4A). However amplification curves of
both D-loop and Cox I shifted to the right in the absence
(vector) of wild type hOGG1, showing a one cycle differ-
ence (2 fold decrease in amplifiable template). This indi-
cates that recombinant hOGGT1 is efficient in maintaining
the mtDNA integrity after oxidative damage.
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Figure 2

Expression of hOGGI targeted to mitochondria. Hela
cells were transfected with empty vector, MTS-hOGG/, MTS-
mutant-hogg !, Nuc-hOGG/, and Nuc-mutant-hogg!. Mito-
chondrial, nuclear and total cellular extracts were isolated
and analyzed by Western blot analysis using anti-OGG |/
antiserum. Twenty microgram of mitochondrial, nuclear and
total cellular extract for each indicated transfection was
loaded into each lane (Figure 2A. & B.). Protein extracts in
each lane are as indicated. Immunodetection of Lamin B and
COX Il was done to assure that the transfected proteins
were in nucleus and mitochondria respectively.
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A quantitative analysis of the damage induced by H,0, to
the different mitochondrial regions is depicted in Figure
5A. When compared to the wild type hOGG1 (black bars),
both the vector only (hatched bars) and mutant hoggl
(spotted bars) transfected cells had approximately 2 fold
reduction in mtDNA integrity as evidenced by the reduced
ratios. Little to no damage was observed in all regions in
the presence of wild type MTS-hOGG1, showing that over-
expression of wild type hOGGI limited damage to the
mtDNA during the 2 h concurrent damage/repair time.
On the contrary, over-expression of a mutant hoggl was
abortive in protecting against oxidative damage to
mtDNA in all regions analyzed (Figure 5A). Statistical
analysis using student's t-test revealed that p value for D-
loop1, D310, COX I and COX II was 0.0001; 0.004; 0.004
and 0.003 respectively. A similar trend was observed with
Adriamycin (Figure 5B). Over-expression of mutant hoggl
resulted in reduced mtDNA integrity compared to wild
type hOGG1 (MTS-hOGG1) after exposure to Adriamycin,
indicating that the R229Q hOGGI mutation compro-
mised mtDNA integrity. Conversely, over-expression of
the wild type hOGG1 resulted in no damage to the tran-
scribed regions (Cox I and Cox II), and less damage to the
control region (D-loop and D-loop1) (Figure 5B), indicat-
ing that over expression and localization of hOGGI to
mitochondria enhanced mtDNA integrity. A statistical
analysis for figure 5B using student's t-test revealed that p
value for D-loop1, D310, COX I and COX II was 0.0005;
0.0006; 0.0001 and 0.001 respectively. Our results clearly
indicate that the Arg229GIn amino acid change was una-
ble to protect mtDNA integrity from oxidative damage(s).
Interestingly, when the cells were exposed to 4NQO, both
the wild type (hOGG1) and the vector transfected cells
were significantly damaged (as evident from the low
ratios) resulting in a significant reduction in mtDNA
integrity (Figure 5C). These observations indicate that the
major lesions induced by 4NQO are not repaired by
hOGG1. 4NQO is known to induce lesions that are
mainly repaired through the nucleotide excision repair
(NER) pathway, exclusive of hOGGI.

Discussion

Understanding the maintenance of mtDNA integrity and
its contribution to normal cellular survival is vital to
unraveling human mitochondrial diseases. mtDNA muta-
tions have been found in patients with a variety of chronic
diseases and cancer [1,2,42,43]. Moreover, increase in 8-
ox0oG levels as well as rare hOGG1 mutations were
reported in various types of human cancer [1,2,32,42-45].
It It has been speculated that damage to mtDNA may be
important in determining cellular survival and that lack of
repair of mtDNA could result in initiating the mitochon-
drial-dependent apoptotic pathway and increased cell
death. Mutations in hOGG1 may affect mtDNA integrity,
and the ability of cells to survive under oxidative stress. In
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Cell Survival of hHOGGI Regulated Cells. Hela cells
transfected with indicated plasmids were grown in regular
growth media, for 72 h post transfection. The cells were
plated at a density such that they reached a 70% confluence
on the day of the treatment. The cells were then treated
with 400 UM H,O, (A) for 2 h and for | h with 4NQO (B) in
serum free media, and allowed to recover in normal growth
medium for 16 h. Cellular survival was assessed using the
MTT cell proliferation assay kit. Error bars represent stand-
ard deviation of four points. Nuc-hOGG/ (nuclear targeted
hOGGI); MTS-hOGGI (mitochondrially-targeted hOGG|),
Nuc-mutant-hogg! (nuclear targeted mutant hogg!), MTS-
mutant-hogg| (mitochondrially-targeted mutant hoggl), Vec-
tor (empty vector). p < 0.05 when the data from Nuc-
hOGGI, MTS-hOGGI and Nuc-Mutant-hogg! transfectants
was compared with vector-only cells using Student's t test.
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this study, we examined the effects of a human leukemia
R229Q mutation in the DNA repair gene hOGG1 on
mtDNA integrity and cellular survival.

We used Hela cells to examine the effect of mitochondri-
ally and nuclear-targeted mutant hoggl on cellular sur-
vival and mtDNA integrity. Hela cells have normal
protein expression of nuclear tOGG1, but lack expression
of hOGGT1 protein in the mitochondria [30]. Thus, HeLa
cells provide an excellent model for studying the effects of
mitochondrially-targeted hOGG1. When compared to the
wild type hOGG1, our Western blot results showed that
the R229Q mutation did not affect the expression level of
hoggl protein. Furthermore, our western blot also sug-
gested that the nuclear-targeted mutant hoggl was con-
fined to the nucleus only. Our results showed that
targeting and over-expression of the R229Q mutant hoggl
to the mitochondria resulted in a reduction of both cellu-
lar survival and mtDNA integrity after oxidative damage.
Over-expression of mutant hoggl in both nucleus and
mitochondria also failed to protect the cells from oxida-
tive damage when compared to over-expression of the
wild type hOGGI. However, mitochondrially-targeted
mutant hoggl was more detrimental to cellular survival
than nuclear-targeted mutant hoggl upon oxidative dam-
age. Previous results by Hyun et al [33] showed that
R229Q mutation resulted in decreased HOGG1 enzymatic
activity as measured by in vitro 8-oxoG incision assay.
Together these results indicate that functional hOGG1 is
critical and required for maintenance of mitochondrial
genome and cellular response to oxidative damage. Addi-
tionally, we show that over-expression of wild type
hOGGT1 in the mitochondria resulted in increased mtDNA
integrity in both the control and coding regions, and
enhanced cellular survival after oxidative damage expo-
sure. H,0, has been shown to induce a wide variety of
lesions, including strand breaks and at least 11 major dif-
ferent base oxidations [46]. Among these, 8-0x0G is the
most stable and has long been suspected to play an impor-
tant role in the initiation of carcinogenesis [47-51].
Recently we have shown that with decreased expression of
hOGGT1 in lung cell lines, there is an increase in 8-0xoG
levels coupled with a decrease in mtDNA integrity due to
increased damage of mtDNA, upon exposure to H,O,
treatment [52]. Further, the generation of mice deficient
in the repair 8-oxoG (0ggl-/- mice) has opened the door
for alternative approaches. Results obtained from hOGG1
knockout animals indicated an increase in 8-0x0G lesions
in the liver, and a higher spontaneous mutation frequency
[53]. Other studies have shown that hOGG1 knockout
mice developed lung tumors spontaneously with
increased 8-0xoG in their DNA [54]. However, there is
still limited information on hOGGI and integrity of
mtDNA.
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Real Time PCR Amplification Curves. Representative real-time PCR amplification curves generated for nuclear -actin
gene (Fig. 4A.), mitochondrial D-Loop (Fig. 4B.) and Cox I (Fig. 4C.) with and without wild type MTS-hOGG! after treatment
with 400 uM H,O,. Each experiment was performed in triplicate and is shown by overlapping amplification curves. ARn = (Rn*)
- (Rn°), where Rn* is the fluorescence emission intensity of reporter/emission intensity of quencher at any time point, and Rn-
is the initial emission intensity of reporter/emission intensity of quencher in the same reaction vessel before PCR amplification

is initiated.

Previous results [30] showed that over-expression of wild
type hOGG1 enhanced mtDNA repair and cellular sur-
vival. In this report, we showed that the R229Q mutant
hoggl caused a decrease in mtDNA integrity and sensitized
cells to induced oxidative damage. Together our mutant
hogg1 results and those of Rachek et al., [30] highlight the
importance of fully functional hOGG1 in cellular protec-
tion against ROS, and further that this gene is required for
efficient maintenance of mtDNA integrity and cellular
survival. Additionally, our results show that oxidative
damage to mtDNA may contribute to cellular sensitivity
suggesting that mtDNA is a key determinant and that its
excessive damage may trigger cell death pathways.

We also treated cells with 4ANQO, a UV-mimetic agent that
induces a wide range of lesions including DNA adducts,
single-strand breaks, pyrimidine dimmers, abasic sites,
and perhaps a limited amount of oxidized bases [55].
These lesions are mainly repaired through nucleotide exci-
sion-repair, a mechanism not yet established in the mito-
chondria. Although the cells were moderately sensitive to
4NQO, we found no significant difference in the survival
pattern of the MTS-hOGG1 or the vector only transfected
cells following exposure to 4NQO. Furthermore, the
decrease in mtDNA integrity by 4ANQO was not affected by
the presence of MTS-hOGG1, suggesting that 4ANQO did
not induce damage that is repaired by hOGG1. We
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D310

Cox |
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mtDNA integrity after oxidative damage exposure. MtDNA integrity of indicated mitochondrial regions in Hela cells
transfected with empty vector, MTS-hOGGI and MTS-Mutant hogg! and treated with (A) 400 uM of H,O, for 2 h; (B) 28 uM of
Adriamycin for 2 h and (C) 50 uM of 4-NQO for | h were analyzed by using quantitative real-time PCR amplification. The
extent of decrease in mtDNA integrity was analyzed by calculating the mtDNA/nuclear DNA ratio, and normalizing to the
untreated control set at 100%. The error bars represent standard deviation of each experiment done twice in triplicates. An
asterisk indicates a significant difference (0.004 > p > 0.0001), when compared to the vector using Student's t test.

attribute this result to the narrow substrate specificity of
hOGG1 which specifically repairs 8-oxoG opposite cyto-
sine [18,19,56,57] and has little or no affinity for other
lesions.

We used quantitative real-time PCR to analyze mtDNA
integrity in cells with or without mitochondrially-targeted
wild type hOGG1 and mutant hoggl. The assay is based on
the principle that DNA damage will impede the progres-

sion of the DNA polymerases used in the PCR reactions
[37-39,58]. Although some polymerases like yeast and
human pol 1 can bypass 8-0xoG efficiently and accu-
rately, other polymerases like yeast pol d have been shown
to stall at or just before the lesion, only by-passing about
14% of the time [59]. E. coli RNA polymerase and mam-
malian RNA polymerase I have also been shown to stall
at 8-0xoG lesions, resulting in decreased transcript forma-
tion [60,61]. These findings indicate that 8-oxoG can
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impede both DNA and RNA polymerases, interfering with
transcription and replication of DNA. Our quantitative
PCR assay was able to assess and distinguish mtDNA
integrity in MTS-hOGG1, MTS-mutant-hoggl and vector
only transfected cells after oxidative damage exposure.
Our results showed clear differences in mtDNA integrity
between wild type MTS-hOGG1, MTS-mutant-hoggl and
the vector only transfected cells. Because of the distinct
differences observed between wild type and mutant
hOGG]1, our findings suggest that the Taq polymerase
used did not efficiently bypass 8-0xoG lesion, rather it had
limitations. However, the role of 8-0xoG in blocking
polymerases still remains controversial. Recent reports
show that the use of quantitative real time PCR (QPCR) is
very useful in measuring the integrity of both nuclear and
mitochondrial genomes exposed to different genotoxins,
and has proved particularly valuable in identifying reac-
tive oxygen species-mediated mitochondrial DNA
(mtDNA) damage. [41].

The results from the present study showed that mitochon-
drially-targeted hOGG1 plays a crucial role in maintaining
mtDNA integrity and cellular survival.

Conclusion

Our results demonstrate that functionally compromised
hogg1 mutants in the mitochondria compromised mtDNA
integrity. Furthermore, the presence of mutant hoggl in
the mitochondria failed to protect cells from oxidative
damage, more than when the mutant hoggl was present in
the nucleus. hOGG1 alterations and point mutations
occur in human cancers, suggesting that aberrant hOGG1
function may increase both nuclear and mtDNA mutation
loads. It is also believed that HOGG1 polymorphic vari-
ants may predispose individuals to cancer. Thus targeting
other hOGG1 variants or mutants to the mitochondria
will help us further elucidate their role in cancer and other
human diseases.
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