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Abstract

The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable
challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic
variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate
analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For
microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose
an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and
regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior
knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user
to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease
status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both
simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a
Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers
by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining
Bayesian significance levels, and improving computational efficiencies are also discussed.
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Introduction

Biomarkers play a central role in the development and conduct

of translational and personalized medicine [1]. They are used in

predicting the progression of disease (prognosis markers), selecting

treatment regimes (predictive markers), screening diseases (diag-

nostic markers), and assisting with other forms of health related

tasks. Genomic biomarkers have already been applied for making

critical decisions, e.g., the Oncotype Dx test for quantifying risk of

disease recurrence in women with early-stage breast cancer and

for assessing the likely benefit from certain types of chemotherapy

[2]. The most notable challenge in molecular biomarker discovery

is caused by high-dimensionality of the data sets. There are

thousands of genes in microarray data analysis [3] and millions of

single nucleotide polymorphisms (SNPs) in genome-wide associa-

tion studies (GWAS) [4] from which biomarkers are identified.

Traditionally, discovery of differential genes was achieved by

univariate analyses where each gene is considered individually,

e.g., the weighted voting scheme of Golub et al. [5], the partial

least squares of Nguyen et al. [6], and the Wilcoxon test statistic of

Dettleing et al. [7]. Such gene-wise comparison methods have to

deal with the multiple comparison problem. Although schemes

have been proposed in adjusting the study-wise type-1 error or

restraining false positive rates, there lacks an effective way to

explicitly incorporate correlational or functional relationships

between the genes. Without studying the interactions of genes

and their joint impacts on phenotype, the traditional gene-wise

methods barely offer any biological interpretation. An earlier trial

to link gene-wise tests together was seen in LIMMA [8] using the

idea of empirical Bayes [9]. It makes the analysis stable by

borrowing information across genes via Bayesian hierarchical

modeling and shrinkage estimator [10]. Similar to gene-wise

analyses, LIMMA still treats gene expressions as outcome variables

and compares them across experimental conditions.

A more straightforward approach is to treat disease status or

phenotype as the outcome variable while setting genes as

predictors. This arrangement is not only meaningful, but allows

for studying multiple genes’ joint impact on the outcome variable.
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Thereby, the task of biomarker identification naturally becomes a

problem of variable selection in fitting regression models. Standard

frequentist or likelihood-based variable selection schemes via

criterion assessment such as BIC and AIC or stepwise subset

selection algorithms become infeasible when the number of

variables p becomes large; see an extensive discussion in Miller

[11]. As an alternative solution, Bayesian variable selection (BVS)

not only provides intuitive probabilistic interpretation, but also

explores the model space efficiently in a stochastic way to ensure

that the models with high probabilities would show up earlier and

more frequently during a simulation process. This is the reason

that the first satisfactory scheme of BVS was called ‘stochastic

search variable selection (SSVS)’ [12]. The theory of SSVS was

further developed [13] and many other stochastic searching

schemes have been proposed, e.g., the simplified method of Kuo

and Mallick [14], the Gibbs variable selection [15], Geweke’s BVS

with block-updates [16], and the reverse jump MCMC algorithm

[17]. BVS algorithms were also extended to much wider settings,

e.g., generalized linear models (GLMs) [18,19]; multivariate

regression models [20]; and even mixed-effects models [21,22];

see O’Hara and Sillanpää [23] for a detailed review.

The first applications of BVS in the setting of n%p arose from

analyzing genetic data in the early 2000s. Examples include

Bayesian model selection in gene mapping studies [24,25] and

SSVS for identifying multiple quantitative trait loci [26–28]. Most

of the methods use hierarchical Bayesian modeling to enable

borrowing information from neighbors [29]. It is especially

noteworthy that BVS has been successfully applied to GWAS

data that contains millions of genetic variants or SNPs [30,31]. As

stated by Guan and Stephens [4], ‘‘even using relatively simple

MCMC algorithms, BVS can indeed produce useful inferences in

problems of this size (with thousands of SNPs)." For genomic data,

including genome sequencing and gene expression microarray

data, biomarker identification with full BVS strategies is becoming

popular. BVS resorts to hierarchical modeling to control the

model size while as much as possible allowing data structures to be

complex [32,33]. A fair number of BVS applications have been

demonstrated in the previous decade [34–36].

A recent focus in BVS development is on how to model

biological processes that involve gene or protein groups function-

ing in concert. A comprehensive understanding of such processes

would help to unravel disease mechanisms and to design more

effective therapeutical products [37,38]. Recent studies demon-

strate that evaluating changes in expression across pre-defined

gene sets often increases statistical power and produces more

robust results [8,39–42]. Therefore, an appropriate approach

eliciting biologically meaningful and informative priors for BVS is

a worthy pursuit [38,43,44].

Following the above review of BVS development history, a

generalized strategy called integrative BVS (iBVS) for biomarker

discovery is presented in the Methods section. We propose an

iBVS strategy with a novel prior called PLS g-prior for handling

covariance matrices with n%p and incorporating gene pathways

into the selection procedure. In the Simulation section, the above

iBVS for gene expression data with binary disease status is

validated using simulated data and compared with other standard

BVS routine. In the Application section, the strategy of iBVS is

illustrated using a practical Affymetrix microarray data set for

patients with stroke. Remarks and discussions are given in the

Discussion section.

Methods

Notations
Suppose that y1, � � � ,yn are n independent observations of the

outcome variable Y , which could be binary, count or continuous.

Each outcome is associated with a set of predictor variables

x1, � � � ,xp whose values form the matrix X :

X~(x1, � � � ,xp)~

x11 x12 � � � x1p

x21 x22 � � � x2p

..

. ..
.

P
..
.

xn1 xn2 � � � xnp

0
BBBBBBB@

1
CCCCCCCA
:

In microarray data, xij denotes the normalized level of

expression for the jth gene on the ith subject. The outcome

variable Y is said to have a distribution in the exponential family if its

probability density function can be written in the general form,

f (y; j,w)~ expfyj{b(j)

a(w)
zc(y,w)g. Most of the distributions that

we know such as Gamma, Beta, Poisson, and Gaussian

distributions are all members of the exponential family. When Y

follows an exponential family distribution, the GLM [45] is

introduced in studying the relationship between Y and X via

g(m)~Xb, ð1Þ

where g() is a link function after which the expected value of Y ,

m~E(Y ), is predicted by the linear combination of X1,:::,Xp.

Bayesian Variable Selection in GLMs
A fundamental task of regression analysis is to select which

subset of the predictors are used to predict or explain the variance

Y . When other features of the GLMs such as the choice of link

function are determined, the problem of variable selection is

equivalent to the task of model selection. This paper focuses on the

explicit way of Bayesian variable/model selection in which an

indicator vector c~(c1, � � � ,cp)’ is introduced where

cj~
1, if Xi is selected;

0 otherwise:

�

Then the equation of GLM can be rewritten as

g(m)~
Xp

j~1

Xjbj(c): ð2Þ

By specifying prior distribution of c and b (and possibly other

parameters such as residual variance in a linear regression model),

one applies Bayes rule to derive the posterior distribution

P(c,bDX ,Y )!P(c,b)P(Y DX ,c,b) from which to obtain the poste-

rior probabilities P(cDX ,Y ) for model selection (c [ C). Within the

scope of this article, we define BVS as a procedure of variable

selection based on the posterior marginal selection probabilities,

Integrative BVS Framework with Informative Priors

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e67672



P(cj~1DX ,Y )~
X
c[C

I(cj~1)P(cDX ,Y ) ð3Þ

which has the form of Bayesian model averaging (BMA) [46]. This

BVS selection probability P(cj~1DX ,Y ) calibrates the overall

strength of Xj in predicting Y across various models.

Depending on the specification the prior distribution, P(c,b),
many schemes of BVS have been proposed, e.g., independent

prior distributions (i.e., P(cj ,bj)~P(cj)P(bj)) [14] and Gibbs

variable selection where P(bj Dcj~0) is set as a ‘pseudo-prior’ [15].

The most influential scheme is the SSVS [12], which assumes that

P(cj ,bj)~P(bj Dcj)P(cj) with

P(bj Dcj)~(1{cj)N(0,s2)zcjN(0,c2s2), ð4Þ

a mixture of a concentrated Gaussian distribution (when cj~0)

and a diffused one (when cj~1 and c2
w1). Alternatively one may

specify P(bj Dcj)~(1{cj)d0(bj)zcjN(0,s2), which has a natural

interpretation and can be further extended to the multivariate

setting, i.e., the g-prior [47],

P(bDc)*N(0,g(X
0
cXc){1), ð5Þ

where Xc is the sub-matrix of X consisting of columns with cj~1,

and constant g can be fixed at n or estimated via empirical Bayes.

The g-prior is a conjugate prior; one may analytically integrate out

b from P(c,bDX ,Y ) to obtain P(cDX ,Y ) or P(cj DX ,Y )’s, which are

of primary interest in BVS.

Nonetheless, g-prior has an undesirable feature: as b̂b??,

B01?(1zg)(p{n)=2, where B01 is the Bayes factor in favor of the

null model (i.e., the one with b~0). It is because of this Bayes

factor paradox that Jeffreys [48] rejected normal priors, and later

Zellner and Siow (ZS) [49] proposed the Cauchy prior,

P(bDc)*Ca(0,g(X
0
c Xc){1): ð6Þ

From the viewpoint of objective Bayes [50], ZS-prior satisfies six

of the seven desirable features (e.g., consistency, predictive

matching, and invariance) for the choice of model prior, but it

does not lead to closed-form answers. It was then further extended

to the so-called ‘robust prior,’ which is formulated as the scale

mixture of normal distributions [51]. Please see Bayarri et al. [52]

and the reference therein for recent development of objective BVS

priors, e.g., intrinsic priors [53–55], expected posterior priors [56],

and integral priors [57].

The prior P(c) can be naturally set as c*P
p
j~1 Bern(pi). When

there is no preference, we can simply let pj~p, i.e.,

P(c)~Pp
j~1 pcj (1{p)(1{cj ). The value of p can be set to control

the number of selected variables a priori. For a data set with 100

variable, setting p~0:01 implies that only one variable be selected

before observing the data. We do not recommend using

P(cj)~0:5 because it indicate equal probabilities (2{p) for all

models and does not induce any multiplicity adjustment [58].

Alternatively, one may introduce a hyper prior distribution for p,

P(p)~Beta(a,b), which could provide automatic multiplicity

adjustment [59–61].

BVS When n%p
Note that most of the above discussion assumes nwp. When

BVS is applied to biomarker identification for genomic data where

it is often seen that n%p, we face many challenges. First, since the

size of model space (2p) increases exponentially with p, it becomes

an intimidating task for a thorough search among all genes. Even

with stochastic searching strategy, the MCMC sampling algorithm

has a large computational burden at the level O(n2p2). Second,

among the p genes, many of them are ‘noisy’ variables in the sense

that they either have low quality such as missing or censored

values or do not participate the biological processes under study.

Blindly including them into the analysis would make the modeling

procedure time consuming or end up with invalid conclusions.

Third, the rank of matrix, X
0
cXc, would be much smaller than DcD,

the number of selected genes, making the matrix inversion

impossible. Fourth, there are many genes whose expressions are

highly correlated, easily leading to singularities in setting priors as

well as deriving the posterior distributions. These between-gene

correlation or causal structures, on the other hand, cannot be

simply ignored.

iBVS–A Generalized Framework of BVS. To solve the

above problems, we could have two options: (1) to restrain the size

of model space to a level that BVS can be accomplished within

acceptable amount of time; and (2) to apply the principle of

parsimony to reduce the number of model parameters via

regularization and shrinkage estimators. In this article, we provide

a generalized 2-step procedure called iBVS.

Step One is a ‘robust’ screening process aiming to directly

reduce the dimension p by removing genes with little useful signal

or those having no known biological relationship to the target

disease or phenotype. By ‘robust’ screening, we mean to use the

combination of various criteria jointly to ensure that enough genes

are included for Step Two. For example, we can first conduct

gene-wise t-tests to remove genes with p-values larger than a pre-

specified cut-off level (e.g., 0.01) that is much higher than the level

after a multiplicity adjustment. Among the excluded genes, we

may conduct gene-wise Wilcoxon test to further verify that no

gene has a p-value smaller than 0.05; otherwise the genes will be

moved back into the gene set. We may also move back those genes

that have been discovered to be functionally or structurally related

to the target disease or phenotype in the study. By curating public

data bases, we can generate a list of proteins that are functionally

related to the Y , and then find all the genes that code them. All

these genes would be moved back to the gene set for consideration.

We should also further move back additional genes that are

connected to any genes in the current set according to a specific

way of defining gene-gene networks, e.g., metabolic pathways [62]

and protein-protein interaction networks [63]. The final retained

set of genes is termed as the ‘signature set’ and used for Step Two.

The screening process may also allow investigators’ subjective

preferences and other methods such as the topological analysis of co-

expression network [64] and bagged gene shaving [65]. Here, we

emphasize that the screening is not purely just for dimension

reduction based on testing statistics. It is rather a key component of

iBVS for biomarker identification, which aims to create a broad

enough but biologically meaningful signature set for further

conducting BVS in the next step.

Step-Two of iBVS focuses on variable selection within the

framework of Bayesian hierarchical modeling (BHM) that aims to

investigate the joint distribution of genes in the signature set in

predicting phenotype or disease status. BHM offers a flexible way

in modeling complex structured data while restraining the number

of parameters. To reduce the computation burden of BVS for

Integrative BVS Framework with Informative Priors
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large p (number of signature genes), various strategies are

conceived. As seen in Godsill [66], and Yi [67], we can adopt

the ‘composite model selection’ principle and restrict that in each

MCMC iteration, only models with DcDvn are allowed to be

selected. This can be done by creating a special proposal

distribution in the Metropolis-Hastings (M-H) algorithm. Using

the idea of ‘Leaps and Bounds’ [68], Annest and Bumgarner et al.

[69] proposed the iterative model selection algorithm that first

orders all variables with a univariate selection method and then

moves a 30-variable window down the ordered variables. To

handle the problem of rank(X
0

cXc)vp, a direct solution is by Yang

and Song’s gsg-prior [70], which is the generalized inverse of X ’X
in Zellner’s g-prior. Ridge regression is also originated to handle

the problem of inverting a nearly singular matrix and Cholesky

decomposition is usually adopted to speed up the matrix inversion.

Some high-performance Gibbs samplers and M-H sampling

algorithms have been developed [71]. A straightforward solution

is to run multiple chains simultaneously (see Gelman and Rubin

[72]) on multiple virtual machines in computer clusters or using

Cloud Computing platforms. Some approximation methods are

also introduced trying to improve the computing speed, e.g., the

Matching Pursuit method [73,74].

In this paper, we proposed an iBVS with novel prior called PLS

g-prior in dealing with large p problems and with informative prior

on variable selection that reflect the gene-gene networks using

Markov random field (MRF).

Incorporate Informative Priors
Meaningful prior information may come from different sources,

including published literature, online knowledge bases, and

empirical experience of the investigators. However, it is still not

completely clear how to best use them or relate them effectively in

variable selection [75]. The most convenient way for informative

prior elicitation is to incorporate the relative frequencies of

identified biomarkers from published literature or from investiga-

tors’ subjective preference. For example, Kitchen et al. [76] used

results from the scientific literature when constructing several

informative exchangeable subset selection priors.

A more comprehensive approach is by adopting the view of

systems biology, which studies biological processes as whole

systems instead of isolate parts. For many diseases, expression-

based classification alone do not achieve high accuracy because

changes in expression of the few genes causing disease can be

subtle compared to those of the downstream effectors, which vary

considerably from patient to patient. A more effective means of

marker identification is to combine expression measurements over

pathways and identify which pathways act as markers in predicting

or explaining phenotypes. Here pathway refers to a group of

Figure 1. An Example of KEGG Pathway.
doi:10.1371/journal.pone.0067672.g001
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functionally or structurally related genes that jointly form a

network. Several pathway- or network-based marker identification

approaches have been proposed recently, e.g., Chuang et al. [77]

integrates expression profiles with pathways extracted from protein

interaction networks and Lee et al. [78] does so by adopting

pathways curated from literature. Large protein-protein interac-

tion networks have recently become available for human, enabling

new opportunities for elucidating pathways involved in major

diseases and pathologies. This network-based marker discovery

approach has shown success in diagnosis of metastatic breast

cancer [77] as well as classification of cell fate decisions during

development [79].

In this article, we combine the idea of gene- and network-based

marker discovery and provides an iBVS framework for identifying

contributive genes and important pathways. Informative priors on

pathway definition could come from publicly available literature

and databases: (1) DNA-sequence data (e.g., GeneBank and EBI);

(2) RNA sequence data (e.g., NCBI and Rfam); (3) GWAS data

(e.g., dbSNP and HapMap); (4) protein sequence data (e.g.,

UniProt, PIR and RefSeq); (5) protein class and classification (e.g.,

Pfam, IntDom, and GO); (6) gene structural (e.g., ChEBI, KEGG

ligand Database, and PDB); (7) genomics (e.g., Entrez Gene,

KEGG, and MetaCyc); (8) Signaling pathway (e.g., ChemProt and

Reactome); (9) metabolomics (e.g., BioCycy, HMDB, and

MMCD); (10) protein-protein interaction (e.g., IntAct, DIP,

MiMI). These databases could help us define pathways or

networks upon which to map our gene expression data under

analysis. Using the available biological information on inter-

connectivities and interactions between genes, we aim to discover

pathways that are associated with a specific biological process.

Srivastava et al. [80] have employed the GO information into

Figure 2. Gene and Pathway selection results in Scenario 1. The top figure corresponds to the posterior distribution of gene with effect size
b~(1:5,3:0,2:0,2:0), and second figure b~(0:375,0:75,0:5,0:5). The two smaller figures on the bottom demonstrate the posterior pathway selection
probabilities, with the left one corresponding to b~(1:5,3:0,2:0,2:0), and right one b~(0:375,0:75,0:5,0:5). The labeled red lines indicate causal
genes or causal pathways (those containing causal genes). These distributions were obtained by averaging over the 100 simulated sets of data.
doi:10.1371/journal.pone.0067672.g002
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their priors, and Stingo et al. [38] have used KEGG network

information.

There are also many other types of public data that may not be

used directly to construct pathways, but could be used directly for

deriving prior distributions for the current model. For example, by

searching literature (PubMed and Google Scholar) or reanalyzing

older gene expression data from GEO, ArrayExpresss, and

Oncomine, we could have some insights in determining the size

and form of the model before analyzing the data set at hand.

Many available clinical (e.g., OMIM, GeneCards, and Cancer-

Genes) or drug databases (e.g., DrugBank and SuperTarget) could

also provide structural or semi-structural information for us to

restrain model space and parameters.

Posterior Inference
As was mentioned in section 1, when the posterior space is huge,

we usually use the MCMC simulation to fit the posterior

distribution [81], instead of trying to obtain the exact values via

complicated calculations. The Gibbs sampler, and M-H sampler

are some of the well known Markov Chain Monte Carlo (MCMC)

algorithms. If possible, one should first analytically integrate out

the nuisance parameters (e.g., b, which is not of our main interest).

This can significantly speed up the MCMC simulation procedure.

As seen later, there are other ways to enhance the speed and

efficiency of MCMC, including various means to define the

proposal function in an M-H algorithm.

Once we obtain the samples from a MCMC procedure, we can

summarize them to estimate the posterior probabilities of selecting

genes and selecting pathways. In practice, certain guidelines

should be followed for making posterior inferences. The setting of

Figure 3. Gene and Pathway selection results in Scenario 2. The top figure corresponds to the posterior probabilities of gene selection with
effect size b~(3:0,2:0), and second figure b~(0:75,0:5). The two smaller figures on the bottom demonstrate the posterior probabilities of pathway
selection, with the left one corresponds to b~(3:0,2:0), and right one b~(0:75,0:5). The red lines indicate causal genes or causal pathways (those
containing causal genes). These distributions were obtained by averaging over the 100 simulated sets of data.
doi:10.1371/journal.pone.0067672.g003
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a cut-off for the important genes and pathways should adopt the

cross-validation strategy. As many research papers have shown, in

comparison to choosing one single best model, Bayesian model

averaging (BMA) would provide a better performance in

prediction problems [82]. It is also possible that different models

be used for variable selection and for making prediction or

classifying samples using the selected variables; model selecting

and making predictions are often viewed as two different goals.

iBVS for Biomarker Identification with Binary Outcome
In this section, we illustrate our iBVS method for biomarker

identification for gene expression data with binary outcomes. Here

we employ Bayesian hierarchical modeling approach to do gene

Figure 4. Posterior Gene Selection Probabilities when P = 2000. The top figure shows the result for Scenario 3, and the bottom one Scenario
4.
doi:10.1371/journal.pone.0067672.g004

Figure 5. Mean Square Error for Gene Selections. Averaged over 100 simulated data in Scenario 1 for two set of gene effect sizes b. The top one
is for b~(1:5,3:0,2:0,2:0) and bottom one b~(0:375,0:75,0:5,0:5).
doi:10.1371/journal.pone.0067672.g005
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selection and pathway selection simultaneously and the PLS g-

prior is introduced.

Suppose our gene expression data have up to K pathways, we

denote the pathway membership by the matrix S (Sij~1 if the jth

gene belongs to ith pathway; Sij~0 otherwise), and denote gene-

gene network by the matrix R (Rij~1 if there is a direct edge

between the ith and jth genes; Rij~0 otherwise). In addition to

using the indicator c~(c1,:::,cp)’ for gene selection, we introduce

another indicator j~(j1, � � � ,jK )’ for pathway selection, where

jk~1 (or 0) if the kth pathway is selected (or excluded). When the

outcome variable Yi is binary, the Probit model of Albert and

Chib [83] is applied,

Yi~
0, if Ziƒ0,

1, if Ziw0:

�

where the latent variable Zi is assumed to have the standard

normal distribution, i.e.,

Zi~az(T(j,c)b(j,c))izEi,

Ei*N (0,1), i~1, � � � ,n,
ð7Þ

where b(j,c)~(b(k1,c), � � � b(kDjD,c)), T(j,c)~(T(k1,c), � � � ,T(kDjD,c)),

with DjD denotes the number of selected pathways in predicting

Zi, and T(kl ,c) denotes the vector of first PLS component of Xkl ,c.

Note that Xkl ,c is the sub-matrix of X , consisting of only the

columns that correspond to selected genes in the selected kth
l

pathway. Here, we use kl (l~1,:::,DjD) to index the number of the

lth selected pathway (i.e., jkl
~1); e.g., when K~5 and

j~(0,1,1,0,0) is the pathway selection result, we have DjD~2,

k1~2, and k2~3.

Prior specification for regression parameters. Note that

since observation data Y and expression data X are usually

standardized, we’ll assume a*N (0,h), where h is usually chosen

as a large number to indicate that we have little prior information

on the value of a. As for the prior on b, some commonly used

priors include a mixture distribution of a two normals, one normal

and one point mass, or one point mass and one uniform; Zellner’s

g{priors, Zellner-Siow’s Cauchy priors, or equivalently a mixture

of infinitely many normals. Yang and Song [70] generalized g-

prior to the so called gsg-prior.

For our hierarchical model, we propose a generalized g-prior

called PLS g-prior,

b(j,c)Dc*N (0,c(T ’(j,c)T(j,c))
z), ð8Þ

where (T ’(j,c)T(j,c))
z represents the Moore-Penrose generalized

inverse of T ’(j,c)T(j,c), similar to Yang and Song [70]. The name

comes from the fact that T(j,c) is the first PLS component of Xkc.

Note that this generalized inverse is well-defined for any matrix.

Prior specification for variable selection

indicators. Following the principles in setting priors on variable

selection indicators, we assume that the pathway selection

indicators fjkgK
1 are independently Bernoulli distributed,

Figure 6. ROC Curves for iBVS and YS-BVS (Yang & Song’s BVS).
doi:10.1371/journal.pone.0067672.g006

Figure 7. Gene and Pathway Selection Results for Stroke Data.
doi:10.1371/journal.pone.0067672.g007
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p(j)~ P
K

k~1
w

jk
k (1{wk)(1{jk ), 0ƒwkƒ1: ð9Þ

where wk indicates the proportion of pathways expected a priori in

the model. One may assume that wk follows a mixture distribution

of a Dirac Delta distribution and a Beta distribution:

p(wk)~rd0(wk)z(1{r)B(wk Da0,b0). If we integrate out the

hyper-parameters, a0 and b0, to get the marginal distribution of

j, we will end up with a product of Bernoulli distributions with

parameter wnew
k ~

a0(1{r)

a0zb0

. Later on, we will omit the ‘‘new’’ in

superscript and still denote it as wk.

To take into account the pathway membership information for

each gene as well as the biological relationships between genes

within pathways as indicated by the matrix R, we follow Li and

Zhang [43] and Stingo et al. [38] and use a MRF to describe the

prior on each component of the gene selection indicator c,

p(cj Dci,i[Nj)! exp (cj(mzg
X
i[Nj

ci)), ð10Þ

Table 1. Top 30 genes selected using BVS on Stroke Data.

No BVS.ID Post.Prob. Probe.Set.ID Gene.Symbol Gene.Title

1 196 0.951 206177_s_at ARG1 arginase, liver

2 61 0.26 202635_s_at POLR2K polymerase (RNA) II (DNA directed)
polypeptide K, 7.0kDa

3 356 0.184 205067_at IL1B interleukin 1, beta

4 486 0.15 1552912_a_at IL23R interleukin 23 receptor

5 634 0.126 235086_at THBS1 thrombospondin 1

6 514 0.125 207445_s_at CCR9 chemokine (C-C motif) receptor 9

7 576 0.114 207113_s_at TNF tumor necrosis factor

8 103 0.096 203939_at NT5E 5’-nucleotidase, ecto (CD73)

9 541 0.091 206126_at CXCR5 chemokine (C-X-C motif) receptor 5

10 95 0.087 219308_s_at AK5 adenylate kinase 5

11 559 0.085 214146_s_at PPBP pro-platelet basic protein (chemokine
(C-X-C motif) ligand 7)

12 524 0.082 210549_s_at CCL23 chemokine (C-C motif) ligand 23

13 339 0.076 205291_at IL2RB interleukin 2 receptor, beta

14 530 0.074 216598_s_at CCL2 chemokine (C-C motif) ligand 2

15 472 0.071 205445_at PRL prolactin

16 343 0.069 207072_at IL18RAP interleukin 18 receptor accessory
protein

17 26 0.067 223359_s_at PDE7A phosphodiesterase 7A

18 397 0.066 211333_s_at FASLG Fas ligand (TNF superfamily, member 6)

19 1098 0.059 52255_s_at COL5A3 collagen, type V, alpha 3

20 394 0.058 241819_at TNFSF8 tumor necrosis factor (ligand)
superfamily, member 8

21 89 0.056 212739_s_at NME4 non-metastatic cells 4, protein
expressed in

22 158 0.056 203302_at DCK deoxycytidine kinase

23 334 0.055 205327_s_at ACVR2A activin A receptor, type IIA

24 448 0.054 210755_at HGF hepatocyte growth factor (hepapoietin
A; scatter factor)

25 119 0.054 205757_at ENTPD5 ectonucleoside triphosphate
diphosphohydrolase 5

26 346 0.053 205403_at IL1R2 interleukin 1 receptor, type II

27 344 0.053 206618_at IL18R1 interleukin 18 receptor 1

28 1107 0.053 204614_at SERPINB2 serpin peptidase inhibitor, clade B
(ovalbumin), member 2

29 560 0.052 215101_s_at CXCL5 chemokine (C-X-C motif) ligand 5

30 80 0.051 1553587_a_at POLE4 polymerase (DNA-directed), epsilon 4
(p12 subunit)

We list the detailed information on the top 30 genes. BVS.ID refers to the variables in the model: e.g. 196 refers to x196 in our model. Post.Prob. is the posterior
probability of the particular variable.
doi:10.1371/journal.pone.0067672.t001
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where m and g are tuning parameters that will be specified later,

and Nj is the set of neighbors of gene j within the selected

pathway. This is equivalent to the multivariate form

p(cDj)! exp (m1
0
pczgc0Rc); here the 1p is the vector consisting

of p 1’s. There are other ways to take advantage of the MRF

information too, e.g., Wei and Li [84] took a form similar to

exp (mzg
P

i[Nj
(2ci{1)) to take into account the possible down-

regulating effect from neighbors.

In the above hierarchical model, we also need to include

constraints on (j,c) so that (a) no empty pathways will be included;

(b) no gene will be selected unless the pathway containing it is

already selected; (c) adding or removing genes will not cause two

selected pathways having identical sets of selected genes. Any

violation to these three constraints will lead to an invalid

configuration. Thus, we end up with the joint distribution of

(j,c) in the following form, except for invalid configurations where

0 probability will be assigned:

p(j,c)! P
K

k~1
w

jk
k (1{wk)(1{jk) exp (m1

0
pczgc0Rc): ð11Þ

Derivation of posterior distributions. The joint posterior

distribution of (Z,a,b(j,c),j,c) given (Y ,X ) is.

p(Z,a,b(j,c),j,cDY ,X )

! P
n

i~1
p(Zi DY ,X ,a,b(j,c),j,c)p(a)p(b(j,c)DX ,j,c)p(j,c)

!½exp ({

Pn
i~1 (Zi{a{(T(j,c)b(j,c))i

)2

2
)

P
n

i~1
I(Ai)� exp ({

a2

2h
)

|½exp ({
b0(j,c)T ’(j,c)T(j,c)b(j,c)

2c
)

P
mj

i~1
l

{1
2

i � P
K

k~1
p

jk
k (1{pk)(1{jk ) exp (m1

0
pczgc0Rc),

ð12Þ

where I(Ai) is the indicator function and Ai is either

fZi : Ziw0g or fZi : Ziƒ0g corresponding to Yi~1 or Yi~0,

and l1, � � � ,lmj
(mjƒK) are the nonzero eigenvalues of

(T ’(j,c)T(j,c))
z.

We integrate out a and b to obtain the joint posterior

distribution of (Z,j,c) as follows (See Text S1 for detailed

derivation):

p(Z,j,cDY ,X )!
1

DS(j,c)D
1
2

exp ({
Z’S{1

(j,c)Z

2
)

| P
n

i~1
I(Ai)| P

Kj

k~1
p

jk
k (1{pk)1{jk exp (m1

0
pczgc0Rc),

ð13Þ

where S(j,c)~Inzh11’zcT(j,c)(T ’(j,c)T(j,c))
zT ’(j,c).

Computation with MCMC Algorithms
To sample the posterior distribution, we use a hybrid Gibbs and

Metropolis-Hastings MCMC sampling technique, which consists

of the following:

(a) Sampling Z given Y ,X ,j,c : We can see from (13) that

p(ZDY ,X ,j,c)!N (0,S(j,c))
Xn

i~1

I(Ai): ð14Þ

In this article, we follow the method given in Devroye (1986) to

sample each element Zi from its univariate truncated normal

distribution p(Zi DZ({i),Y ,X ,j,c), where Z({i) is the vector of Z

without the ith element.

(b) Sampling (j,c) from p(j,cDY ,X ,Z) :

p(j,cDY ,X ,Z)!
1

DS(j,c)D
1
2

exp ({
Z’S{1

(j,c)Z

2
)

P
Kj

i~1
p

ji
i (1{pi)

1{ji | exp (m1
0
pczgc0Rc):

ð15Þ

The parameters (j,c) are updated using a Metropolis-Hastings

algorithm in a two-stage sampling scheme. The pathway-gene

relationships are used to structure the moves and account for the

constraints specified earlier. Details of the MCMC moves to

update (b,c) are similar to that given in Stingo et al. [38] and

consist of randomly choosing one of the following random move

types that will not give rise to invalid configurations as seen earlier.

Table 2. Top Pathways Selected via BVS.

No KEGG.ID Name Top.genes.extracted Total # of genes

1 Hsa05214 Glioma - Homo sapiens (human) BVS.ID356 (IL1B), BVS.ID486 (IL23R) 253

2 Hsa04060 Cytokine-cytokine receptor interaction
- Homo sapiens (human)

BVS.ID61 (POLR2K) 160

3 Hsa05222 Small cell lung cancer - Homo sapiens (human) BVS.ID196 (ARG1) 106

4 Hsa04623 Cytosolic DNA-sensing pathway
- Homo sapiens (human)

BVS.ID196 (ARG1) 55

5 Hsa04640 Hematopoietic cell lineage - Homo sapiens (human) 107

We list the 5 pathways that have the highest posterior probabilities. Top.genes.extracts refers to the gene with highest posterior probability within a pathway. and Total
# of genes refers to the total number of genes within a pathway.
doi:10.1371/journal.pone.0067672.t002
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Simulation Studies

Study Design
To verify the performance of iBVS and compare it with other

methods, we mainly conducted simulation studies using KEGG

pathways. First, we simulated gene expression data for p~315
genes that involves in K~19 pathways as defined in the KEGG

database. From the pathway structures defined, we obtained the

pathway membership matrix S (i.e., a 315|19 matrix; Sij~1 if

the ith gene belongs to jth pathway, Sij~0 otherwise) and gene-

gene connection matrix R (i.e., a 315|315 matrix; Rij~1 if there

is a direct edge between the ith and jth genes, Rij~0 otherwise).

Then we simulated the binary outcome variable, Yi , which was

generated using the probit model with a latent variable Zi. By

applying iBVS algorithm with PLS g-prior to these synthesized

data with know causal genes, we aimed to assess its sensitivity and

specificity for gene selection. To further verify that iBVS could be

applied in a practical setting with large number of genes, we also

synthesized data with p~2000. Finally, we also compared iBVS to

a BVS strategy that does not employ informative priors.

Each KEGG pathway can be approximately viewed as a

Bayesian Network (BN), as illustrated in Figure 1. For the case of

p~315, we first merged all pathways into one large 315-gene BN

to take into account the genes on multiple pathways. Then we

simulated expression values for all the ‘root genes’ (those without

parental genes directing to them in the BN) using independent

standard normal distributions. Then, the expression values of their

child nodes were simulated using the idea of structural equation

modeling, i.e., Xi~
P

j[Pa(i) wijXjzei, where ei*N(0,0:5) and

wij ’s were random weights to ensure that
P

j[Pa(i) wij~1.

Repeating this procedure, we created 100 samples of expression

values for the 315 genes. Then we standardized all the genes’

expression values to ensure Xi*N(0,1) (i~1, � � � ,315).
To simulate binary outcomes, latent variables Zi’s were first

simulated according to the equation Zi~azXibizEi, where

a~{1:5 and Ei*N(0,1) (i~1, � � � ,100). Then, the binary

outcome Yi is set to be 1 if Ziw0, otherwise it is set to be 0.

Four scenarios of simulation are conducted based on the number

of causal genes and number of total genes.

Scenario 1
For p~315, we chose only 8 causal genes: ½X21,X25,X30� from

the 2nd pathway; ½X95,X102� from the 6th pathway; ½X290,X295�
from the 18th pathway; and ½X234� is shared by the 13th and 14th

pathways. More specifically, we have.

E(Zi)~az(X21zX25zX30)b1z(X95zX102)b2

z(X234)b3z(X290zX295)b4

ð16Þ

where a~{1:5 was fixed, while two levels of gene effect size (i.e.,

b ) were considered: b~(1:5,3:0,2:0,2:0) vs.

b~(0:375,0:75,0:5,0:5). To evaluate the impact of correlation

structure on gene/pathway selection, the 2nd pathway was pre-

specified with highly correlated member genes (51% gene-gene

correlation coefficients were larger 0:6 or smaller than {0:6), the

6th pathway with lowly correlated members (96% gene-gene

correlation coefficients were between -0.20 and 0.20), and the 18th

pathway with mixed high and low correlations.

Scenario 2
Still for p~315, all 19 genes in the 6th pathway and all 9 genes

in the 15th pathway were set as causal genes, i.e.,

E(Zi)~az(X87z � � �zX105)b�1z(X252z � � �zX260)b�2 ð17Þ

where a~{1:5 was fixed and (b�1,b�2) were set as (3:0,2:0) or

(0:75,0:5). As mentioned above, the 6th pathway mainly contains

genes that are weakly correlated. The 15th pathway has both

strong and weak correlations (28% gene-gene correlation coeffi-

cients with absolute value larger than 0:6; 67% smaller than 0:2).

Scenario 3
To consider the much higher dimensional situation, we

extended our simulation studies for Scenario 1. We kept the

original sample size of 100, number of causal genes at 8, effect size

b~(1:5,3:0,2:0,2:0), but this time added 1685 more randomly

generated non-causal genes, corresponding to 81 more artificial

pathways. Hence, the total number of genes in each data set is

2000, belonging to 90 pathways, and the R matrix (i.e., with

elements valued at 1 or 0 to indicate pairwise gene-gene

connectivity) is 2000|2000.

Scenario 4
To study the case of large grouped causal genes as seen in

Scenario 2, we artificially set 50 causal genes from 5 pathways (i.e.,

genes numbered 40–49, 305–314, 950–959, 1320–1329, 1710–

1719) with causal-effect set as 1.0 for the 1st 10 causal genes, 2.5

for the 2nd 10 causal genes, and similarly 1.5, 3.5, and 1.2 for

other three groups. For the 1st and 2nd gene sets, the pathways

they belong to were drawn from the KEGG database with many

gene-gene connections; but for the 3rd, 4th, and 5th sets of causal

genes, the pathways they belong to were purposedly constructed

with no gene connected to other genes.

Parameter specification and MCMC sampler. For each

scenario with each choice of effect size, we repeated the above

procedure to create 100 data sets, each consisting of 100 samples.

Each data set was fed to the iBVS algorithm for the selection of

important genes, where we set hyper parameters as

h~0:1, c~10000, wk~0:02, m~{3, g~0:08. Using Gelman

and Rubin diagnostics [72], the burn-in length was set at 10000

iterations after which 50000 additional iterations were run for

making posterior inference on each data set. The posterior gene/

pathway selection probabilities were then averaged across 100

data sets to assess the performance of BVS and the averaged

selection probabilities are depicted in Figures 2 and 3. For each

MCMC run on one set of data, it took about 10 minutes using a

fairly fast desktop computer (Windows 7, with 4 core 2.3 GHz

CPUs and 4 Gb memory). For the same task with p~2000, it took

54 minutes, which is still an acceptable speed.

Simulation Results
Posterior selection probabilities for p = 315. In Scenario 1,

Figure 2 depicts the posterior gene/pathway selection probabil-

ities, averaged over the 100 simulated sets of data, for the two

levels of effect sizes. The labeled red lines indicate causal genes in

the left plots and the ‘causal pathways’ (those containing causal

genes) in the right plots. When the gene effect size was set as

b~(1:5,3:0,2:0,2:0), the ‘signal-to-noise ratio (SNR)’ is as high as

54.5 and it is a relatively easier task of gene selection. One

observes that our iBVS with PLS g-prior did a great job; all the

eight genes with the highest posterior probabilities are exactly the

same preset causal genes, and the five top pathways are exactly the

same causal pathways.

In comparison, when the effect size was set as

b~(0:375,0:75,0:5,0:5), the SNR becomes 3.4, which makes it
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a much harder job for gene selection. Even for this challenging

task, our iBVS works fairly well. Although some non-causal genes’

averaged selection probabilities stand out, even higher than those

of several causal genes, these non-causal genes are meaningful

markers in the sense that they belong to causal pathways and are

highly correlated with the causal genes. For example, X305 has a

higher selection probability than X290, but it belongs to a causal

pathway (the 18th pathway) and has a correlation coefficient of

0.86 with the causal gene X290. For two highly-correlated genes

within one pathway, it does not make much difference which one

is selected to act as the ‘marker’ in the conduct of personalized

medicine.

As for influence of correlation structures, first in the 6th

pathway, genes are weakly correlated, hence the causal genes are

clearly selected out. In the 2th pathway, genes are highly

correlated, we see that non-causal genes also have relatively high

posterior selection probabilities and the cut between causal and

non-causal is not that clear. This is especially seen in the case with

smaller effect size. As one expects, the contribution of a pathway in

predicting the outcome Y should be determined not only by the

effect sizes of causal genes in it, but also by the number of causal

genes in it. This is exactly the result observed from the iBVS

strategy. For example, gene X234 is a causal gene, belonging to

both the 13th and 14th pathways. Hence we see that both pathways

stand out from non-causal pathways, but at the same time their

averaged posterior selection probabilities are lower than that of the

18th pathway because the latter has two cause genes (X290 and

X295), each having equal effect size with X234.

In Scenario 2 all genes in pathways 6th and 15th are causal genes.

Plots in Figure 3 clearly show that the two groups of genes tend to

have higher posterior probabilities whether the effects of causal

genes are high or low. It is even clear that the top two causal

pathways stand much higher above the rest in terms of posterior

selection probabilities. Comparing the 6th and 15th pathways, it is

seen that the former has a relatively lower pathway selection

probability, although it has larger number of genes and each of the

gens has stronger caul effect (i.e., b�1wb�2). An interpretation is that

the 6th pathway contains genes that are highly correlated; hence

the effective degrees of freedom is smaller than that of the 15th

pathway. Once again, this proves that not only the number of

causal genes, but the correlation structure between genes would

affect the selection of pathway in predicting disease or phenotype.

It is also noted that pathways 8 and 19 and their member genes

tend to have higher selection probabilities as seen from the plots.

This is because some of the genes in these two pathways are highly

correlated with some of the causal genes in the 6th and 15th genes.

The higher absolute level a non-causal gene is correlated with

some causal genes, the higher the posterior selection probability

would be observed for it. This is also the reason that in practical

settings, marker genes instead of causal genes are often identified.

We also found that the direction of the correlation coefficient

would not affect the selection probability of a marker gene; that is,

the correlation coefficient of 0:6 or {0:6 between non-causal gene

A and the causal gene B would lead to the same increase of A’s

selection probability.

Posterior selection results for P = 2000. For Scenario 3, the

posterior gene selection probabilities, averaged over 100 sets of

simulated data are shown in the top part of Figure 4. All the casual

genes (marked by red color) still show significantly higher posterior

selection probabilities than other genes. This further verified that

our iBVS method works well for the case with p = 2000 genes, a

number that we believe is commonly encountered in practical

applications, as the majority of genes are unchanged between

conditions or expressed at baseline levels. Compared to the

simulation result with p = 315 genes, we found that the posterior

gene selection probabilities are much lower in the case of p = 2000.

For example, the selection probability for the causal gene 95,

reduced from 93.6% (when p = 315) to 72.4% (when p = 2000).

In Scenario 4, the bottom figure in Figure 4 shows that all the

casual genes (marked by red color) still show notably higher

posterior selection probabilities than other non-causal genes. But

this time, the cutoff between causal and non-causal gene selection

is not as clear as in Scenario 3. It is interesting to see that the

posterior selection probabilities are not that high for the 3rd, 4th,

and 5th causal gene groups. This is because the groups associate

with genes that are not connected to each other (in other words,

they independently influence the phenotype or disease status).

When groups of highly correlated causal genes are working in

concert, they jointly show higher impact to the phenotype or

disease status.

Determine significant causal or marker genes. When we

determine which or how many genes are significant causal or

marker genes based on the posterior probabilities distribution of all

genes, we use cross-validation methods. In this procedure, a

logistic regression model was used to examine the relationship

between genes and the binary outcome variable. We started from

simplest logistic regression model only including the gene with the

highest posterior probability. Then we add the gene with next

highest posterior probability to the model one at a time, until

reaching a total number of 30 genes included in model. Two

datasets were chosen randomly from 100 datasets, with one being

used for estimating the regression coefficients of the model, and

the other estimating the prediction error. We repeated this 200

times to find the average predicting error. The results of average

prediction error are shown in Figure 5 for b~(1:5,3:0,2:0,2:0)
and b~(0:375,0:75,0:5,0:5). It was clear in the first plot that the

model including the best eight genes had the lowest prediction

error, where the eight genes were exactly the same simulated

causal genes. In the second plot when b was smaller, we saw that

the model with 17 genes performed the best. Note that among the

17 genes 13 are causal genes and 4 are non-causal genes.

Compare iBVS with standard BVS. We further verified the

advantage of our iBVS method with informative priors construct-

ed from known gene-gene networks or pathways. To do this, we

compared our method with other standard BVS schemes without

informative priors. The method of Yang & Song [70] represents

such a standard BVS method, (will be referred as YS-BVS later

on), which is also the most comparable method to ours. In YS-

BVS procedure, pathway selection is not considered and the

existence of network relationships between the genes was

completely ignored.

We ran YS-BVS to the same sets of simulated data. The

following ROC curves for gene selection in two scenarios provide

a direct comparison of this method with ours on gene selection

accuracy in terms of sensitivity and specificity. From the plots in

Figure 6, it is obvious that both in the case of small number causal

genes (Scenario 1) and in the case of large number small-effect genes

(Scenario 2), our method has notably larger AUC (area under

curve). For example, the AUC is 0.992 for iBVS compared to

0.981 for YS-BVS in Scenario 1. This is especially true for Scenario

2 (AUC = 0.913 for iBVS and 0.750 for YS-BVS), which suggests

that in dealing with diseases of complete genomic mechanisms

involving many tiny-effect causal/marker genes, to consider gene

selection within the given network/pathway background would

definitely be a better approach for the task of biomarker

identification. And when applying both methods to simulated
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data with higher noise levels (see Figure 6), our iBVS has a greater

and significant advantage over YS-BVS.

Application
A blood-based biomarker of acute ischemic stroke is of

significant value in clinical practice. Deidentified data was used

from consented subjects recruited as part of the CLEAR Trial

from the University of Cincinnati (Pancioli et al. [85]). Ischemic

stroke was scored by clinical evaluation and evident by neuroim-

aging. Demographic information for stroke subjects and healthy

volunteers was recorded. Blood samples were drawn into

PAXgene tubes (PreAnalytiX, Hilden, Germany) within three

hours of stroke onset and prior to administration of any

medication. RNA was isolated, prepared and hybridized to

Affymetrix Human U133 Plus 2.0 microarrays as previously

described (Stamova et al. [86]) This study aimed to (1) identify

genes in differentiating stroke patients (v3-hr after stroke) from

healthy controls; and (2) identify pathways as groups of genes in

differentiating stroke patients from controls.

Analysis Procedure
A 2-step STS strategy for biomarker identification was adopted

in this application. Firstly, a robust gene screening and pathway

analysis was conducted; then followed by the conduct of

simultaneously selection of genes and pathways using the proposed

iBVS method.

We first selected 815 probe sets by using univariate t-test

(genefilter R package; rowttest) at significance level 10{9. These

probe sets correspond to 605 unique genes. By mapping these

genes to the KEGG database, we found 163 pathways, each

containing at least one of the 605 genes. These 163 pathways

contained 5467 genes in total. This group of genes was referred as

grand signature gene set and it contained too many candidate genes for

our iBVS discovery procedure.

To further reduce the number of candidate genes, we

considered two schemes. The first one was by conducting gene

set enrichment analysis (GSEA) based on the hypergeometric

distribution [40]. In this GSEA, each of the 163 pathways was

viewed as a gene set and the network topology was totally ignored.

By setting the p-value cut-off of 0:1, we kept 24 pathways for the

following iBVS analysis; all with pv0:1. These 24 pathways

contained a total of 1216 genes. For reference, these genes

together is termed Signature Gene Set. An alternative approach is to

subjectively select a small number of pathways according to their

known biological functions that are related to stroke or cardio-

vascular problems. This method was not applied because, unlike

protein-protein interaction networks, KEGG pathways offer less

clinical interpretation.

Since we only have microarray data defined on probe set level, a

procedure of mapping the probe sets to genes was also needed. We

followed the lead of Li et al. [87] to choose only one probe set to

represent the expression level of a gene. If multiple probe sets were

mapped to one gene, we kept the one with smallest p value in the

above multiple t-test procedure.

Finally we conducted the iBVS analysis with PLS g-prior by

considering only the Signature Gene Set and the associated 24

KEGG pathways. Then we followed the iBVS method for

binomial regression with Probit distribution to carry out the

variable selection. Similar hyper-parameters were set as in the

simulation studies and we used Gelman and Rubin diagnostics

[72] to determine the burn-in length as 10000 iterations and

50000 additional iterations were run to make posterior inferences.

It took 5 hours and 40 minutes using a desktop computer with

single core 4.5GHz CPU and 4GB memory.

Application Results
Figure 7 shows the posterior probabilities of genes selected via

our iBVS strategy with integrated biological priors. The top 30

genes (probe sets) are listed in Table 1. In order to select only the

most efficient predictive genes, cross-validation for our iBVS

model was used. The top genes were added into the logistic model,

one by one, to estimate the prediction error. The error analysis of

the model with inclusion of different numbers of predictive genes

shows that the smallest classification error appears when only the

top 3 or 4 genes are selected as predictors. The error increases

with the number of predictors of more than 4, but the errors

greatly decrease again when the 13th or 16th genes are included in

the model. The top 5 pathways are listed in Table 2.

From a biological standpoint, the genes and pathways that

represent the best gene predictors and key pathways are directly

relevant. ARG1, the gene with the greatest predictive value, is a

marker of M2 macrophage activation (Morris et al. [88]), which is

associated with the inflammatory and immune response to stoke.

Abrupt changes in gene transcription triggered as a response to

stroke for initiation of cellular survival mechanisms would be

mediated through POLR2K as a pivotal player in RNA

transcription. IL1B and IL23R are also amongst the other top

genes with the greatest predictive value. These and many others

identified in Table 1 are key modulators in effecting the

inflammatory response of cells responding to the injury of stroke

(Wong et al. [89]).

Given the abundance of chemokine and immune modulating

genes in our list, it was not surprising to see that the KEGG

pathway for cytokine-cytokine interaction is represented, as is the

highly immune pathway for cytosolic DNA-sensing. While gliomas

are brain-related like stroke, the presence of this pathway may

represent its more general cytokine or calcium-related signaling

features. Smaller overlapping sub-networks of characterized

pathways may account for the presence of seemingly unrelated,

yet identified pathways such as that for small cell lung cancer, as it

contains key components of cell proliferation and cell death, which

are also prominent in brain injury.

Discussion

In this paper, we used a generalized Bayesian framework for

biomarker identification. For problems with n%p, it would be

appealing to remove noisy measures or those with lower quality

beforehand and defining the proper level of model space to be

further explored using stochastic search. We then followed the

integrative biomarker discovery scheme to incorporate the gene

network, i.e. pathway information, and adopted a novel PLS g-

prior for the purpose of variable selection. Cross-validation

methods were conceived for determining the Bayesian significance

level in cutting off the posterior probabilities for selecting causal/

marker genes in classifying patients or predicting risk of diseases.

Subjective versus Objective Priors
In this paper, we mainly adopt the perspective of subjective

Bayesian due to the fact that we want to incorporate informative

priors from available scientific sources. Although we used MRF in

this article to illustrate how gene-gene networking structure would

cast upon gene selection, there are many different ways to use the

abundant informative priors (Hill et al. [75]). As seen in the

Method section, even for MRF, we have different ways to

incorporate this information. Choosing an objective prior that

satisfies some fundamental principles as summarized in Bayarri

et al. [52] would be theoretically appealing. For example, when

specifying the prior distribution of the gene/pathway selection
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probability, we may choose a Bernoulli distribution with unknown

hyper-parameter p with Beta prior distribution, instead of setting it

at a fixed level. This would lead to the posterior selection of models

that are not biased toward a mode dimension of p=2.

Comparison to Other Marker Discovery Methods
As mentioned above briefly, regularization methods provide an

alternative solution for feature selection and classification prob-

lems. For GWAS data, Guan and Stephens [4] have indicated that

BVS provides better power and predictive performance than

standard lasso techniques. Our experience with standard BVS for

simulated microarray data with continuous outcomes also suggest

that it outperforms lasso, elastic net [90], and stepwise variable

selection with higher sensitivity and specificity. Nonetheless, there

lacks of evidence in comparing BVS with grouped lasso [91],

which considers the grouping of genes into gene sets. As proved in

the simulation studies, our iBVS performs better than, or at least

equally as well as standard BVS for gene selection. It also has the

advantage to tell you which networks, in addition to which genes,

could predict disease and pathology. Compared to network-based

marker discovery, our iBVS not only suggests which genes are

important, but also could handle those ‘orphan’ genes that have

not been classified into any pathway at the time of study.

In the conduct of standard GSEA or network marker discovery,

one may calibrate the significance of a pathway in predicting

disease or treatment effectiveness by using all its predefined

member genes, but these include a large number of noisy genes

(i.e., those non-contributive and non-causal genes). Alternatively,

one may choose to use only a subset of contributing genes, but

which subset to use is a big challenge. In our iBVS, the two

components are merged together into one procedure, which allows

the two parts learn from each other and reflects the uncertainty of

gene/pathway selection using stochastic simulation.

Future Directions
Although iBVS has been proven as an appealing alternative

solution to traditional gene-wise biomarker identification, its

computational challenges hinder its widespread adoption. With a

large number of parameters in the model, the inference is mainly

based on Monte Carlo simulation, which is time-consuming.

Running over single computers, it would take hours even days to

complete a round of simulation procedure. Nowadays, with the

advent of high-speed cluster computers and the existence of cloud

computing technologies, it is becoming very feasible to apply full

iBVS methods for biomarker identification. Our research team is

developing parallel MCMC algorithm over the Amazon Cloud

platform using the idea of MapReduce.

Currently, the pathway information we have is limited to a

small portion of genes that have been well-characterized. A

relatively large amount of genes are not well-studied, nor their

functions have been identified. In our application, we found that

some genes had not been mapped to any KEGG pathways yet.

Two potential solutions are conceived: (1) develop a stochastic

inference of the gene-gene networks from the data and merge it

into the current BVS MCMC algorithm; (2) query the Internet to

find as more information, literature, and databases to help elicit

richer priors. This topic is part of our ongoing research.
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