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Abstract

The prevalence of Parkinson’s disease (PD) increases with age. Up to 50% of PD show cognitive decline in terms of a mild
cognitive impairment already in early stages that predict the development of dementia, which can occur in up to 80% of PD
patients over the long term, called Parkinson’s disease dementia (PDD). So far, diagnosis of PD/PDD is made according to
clinical and neuropsychological examinations while laboratory data is only used for exclusion of other diseases. The aim of
this study was the identification of possible biomarkers in cerebrospinal fluid (CSF) of PD, PDD and controls (CON) which
predict the development of dementia in PD. For this, a proteomic approach optimized for CSF was performed using 18
clinically well characterized patients in a first step with subsequent validation using 84 patients. Here, we detected
differentially sialylated isoforms of Serpin A1 as marker for differentiation of PD versus PDD in CSF. Performing 2D-
immunoblots, all PDD patients could be identified correctly (sensitivity 100%). Ten out of 24 PD patients showed Serpin A1
isoforms in a similar pattern like PDD, indicating a specificity of 58% for the test-procedure. In control samples, no additional
isoform was detected. On the basis of these results, we conclude that differentially sialylated products of Serpin A1 are an
interesting biomarker to indicate the development of a dementia during the course of PD.
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Introduction

An increasing prevalence for Parkinson’s disease (PD) can be

detected in advanced age, with 1% among 60-year-olds and 3% in

the 80-year-old age-group [1]. Of note is that patients with PD

have a roughly 6-times higher risk to develop a dementia than an

age-matched healthy control group [2]. Up to 50% of PD show

cognitive decline in terms of a mild cognitive impairment already

in early stages that predicts the development of dementia, which

can occur in up to 80% of PD patients over the long term [3,4].

The dementia syndrome usually develops after approximately 8 to

10 years and has a strong influence not only on the course of the

disease but also on the social environment with higher require-

ments for families and caretakers during everyday life. The latter

causes a psychological strain for the patient and family [5], leading

to increased stress during home care [6] with growing need for

professional care. The dementia syndrome is also accompanied

with a worse prognosis as regards disease-progression and life

expectancy [7]. Early treatment is critical for the modification of

the disease progress as acetylcholine esterase inhibitors have only a

delaying effect on worsening of cognitive deficits in early stages

when neurodegeneration is not exessively advanced. [8]. There-

fore, there is a clear need for a biomarker to define patients at risk.

Neuropathologically, PDD is characterized by cortical Lewy

bodies that also occur in patients with dementia with Lewy bodies.

However it is heretofore unclear whether both diseases are a

matter of a single one. By definition, diagnosis of PDD is made

when the onset of dementia is more than one year after the onset

of Parkinsonism whereas DLB should be diagnosed when

dementia occurs before or concurrently with Parkinsonism

[9,10,11,12,13]. As a rule both PDD and DLB are associated

with histological changes of Alzheimer’s disease [14]. It has been

shown that Lewy bodies contain alpha-synuclein, a presynaptic

filament protein that mainly is expressed in the terminal endings of
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neurons. Therefore, an obvious working theory is that these Lewy

bodies are directly linked to the pathophysiological processes,

especially that alpha-synuclein inclusions are mostly present in

surviving cells and less so in apoptotic cells, suggesting that these

inclusions may play a protective role in cell death by sequestering

toxic molecular species [15,16]. Regarding the formation of alpha-

synuclein containing inclusion bodies and their importance in

neuropathological alterations, Braak et al. were able to indicate a

topographical extent of these lesions with an initial onset in the

dorsal IX/X-motor nucleus and the intermediate reticular zone in

the brain stem, proceeding with an ascending course to cortical

structures, beginning with the anteromedial temporal mesocortex

[17,18,19]. As a possible link between neurotoxicity, aggregation

and propagation it might be concluded that species of neurotoxic

oligomers can be transformed to oligomers which are not

neurotoxic, but have a higher tendency of further aggregation

[20,21].

We and others made attempts to improve the early diagnosis of

dementia in PD patients by measurement of alpha-synuclein or

proposed alpha-synuclein aggregates and by known biomarkers in

CSF and serum [22,23,24,25]. However, for prognosis of disease

progression in an individual patient this neurochemical profile is

currently of limited use [22].

Using an optimized protocol for the proteomic analysis of CSF,

which particularly accounts for the brain protein variation caused

by CSF flow [26], we investigated a set of well defined clinical

groups of patients with PD, PDD and a control group to find a

marker which can differentiate between the demented and non-

demented persons. Thereby, we found that PDD patients can be

identified on the basis of differentially sialylated isoforms of Serpin

A1 in CSF. In a second step, this protein was validated in an

independent set of patients and investigated in human brain

material.

Results

PDD Patients can be Identified on the Basis of Serpin A1
Isoforms

In the first step of our study, identification of regulated proteins

relevant for differentiation of PD versus PDD was approached by

means of 2D-DIGE experiments. CSF samples of 6 patients per

group (PD, PDD, CON) were analysed, whereby an internal

standard consisting of a mixture of all 18 samples was used to

ensure the comparability of the gels during the subsequent

software-based evaluation. No pooling was performed, but two

samples from patients of different groups were loaded on a gel

together with the internal standard so that 18 gels were analysed in

total. Also a dye-switch was made to exclude false results due to

preferential binding of proteins to one dye. A representative gel is

shown in Figure 1. Relevant proteins were identified using

MALDI-ToF MS/MS analysis. Characteristics of all patients are

given in Table 1; Spot data for the identified proteins are shown in

Table 2.

In a second step, we examined the reproducibility of the 2D-

DIGE-data using 1D-immunoblotting as complementary ap-

proach. In order to maintain comparability with the proteomic

2D-DIGE, samples were also used volume-normalized. After

quantitative analysis of the protein-bands, Serpin A1 showed a

statistically significant regulation between PDD on one side and

PD/CON on the other (Figure 2A) with large overlap between the

analysed groups (Figure 3A/B).

On the basis of the pixel volumes out of the DIGE experiments,

we had expected a more prominent difference of Serpin A1

regulation in the subsequent validation phase as seen in our 1D-

immunoblot data. As the most likely explanation for this

discrepancy was that the Serpin A1 regulation seen in 2D-DIGE

was related to particular isoforms (which are not separated in the

conventional 1D-immunoblotting method), we performed 2D-

immunoblots to test for the presence of differential Serpin A1

isoforms in the groups. Here indeed, a different isoform-pattern

was detected with usually #5 spots in PD and CON and 6 or more

spots in PDD. Spots indicated as spot 1 and spot 2 are additionally

seen in PDD patients (Figure 3C). These results could also be

reproduced in the CSF-samples from Kuopio/Finland and

Perugia/Italy, which were investigated in a blinded manner to

test reproducibility of our data and to exclude a centre effect

caused by preanalytical handling procedures of CSF-samples.

In a next step, we were interested in the sensitivity and

specificity of Serpin A1 regarding its relevance as a possible

diagnostic marker to differentiate between PD and PDD. For this,

we analysed the cut-off of 5.5 spots obtained by ROC analysis and

also iterative testing. Using this cut-off (or $6 spots), we compared

PD and PDD and found a specificity of 58% and a sensitivity of

100% by 2D immunoblot approach. In the relevant diagnostic PD

group the additional spots were seen in 10 out of 24 patients;

interestingly, two patients who presented with more than 6 spots

developed a dementia in the course of disease (one patient

developed dementia already after one year whereas the other one

remained stable over a longer time). To test specificity among

dementia subgroups, a small set of patients with other dementia

like Alzheimer’s disease (AD) and fronto-temporal lobar degener-

ation (FTLD) were analyzed whereby the specificity in the

subgroups ranged from 71% in AD to 33% in the FTLD group

using the same cut-off of $6 spots. If more than 6 spots would be

used as a cut-off, than we would obtain a higher specificity with a

loss of sensitivity.

Posttranslational Modifications of the Serpin A1 Isoforms
To further characterize the additional Serpin A1 spots, a mass-

spectrometric analysis of the isoforms detected in the immunoblots

was done by LC-MS/MS using a LTQ Orbitrap XL mass-

spectrometer. Here, Serpin A1 was detected in all 7 spots from a

representative gel of a PDD-patient being the dominant protein in

spots 1 through 5 (Figure 2B). Serpin A1 was also detected in spots

6 and 7 but the dominant protein was identified as GC-vitamin D-

binding protein precursor.

The analysis of posttranslational modifications with emphasis on

possible glycosylations and phosphorylations was performed for

the Serpin A1 isoforms. While we failed to identify phosphoryla-

tions in any of the Serpin A1-spots, glycosylations were detected

for spots 3 to 7 but not for spots 1 and 2 (Table 3) which are the

diagnostic relevant ones to differentiate between PD and PDD. As

this does not necessarily mean that there are no glycosylations in

those spots, a PNGase F digest was performed which revealed that

all Serpin A1 spots in a PDD-patient harbour N-glycosylations

(Figure S1). However, as the additional Serpin A1 spots are still

present after PNGase F treatment, N-linked glycans (or more

precisely their terminal sialic acids) cannot be responsible for the

altered charge states. We therefore hypothesized that sialylated O-

linked glycans may be the underlying posttranslational modifica-

tions for the characteristic Serpin A1 spot pattern and tested this

hypothesis by performing a neuraminidase-digest. Indeed, we

found a shift of the Serpin A1 isoforms towards a more basic pI

(Figure 4). Most importantly, the diagnostic relevant acidic spots

disappeared, indicating a hypersialylation of those isoforms. This

hypersialylation is not due to a decrease in activity of neuramin-

idase (the enzyme responsible for desialylation), as this was found

to be unchanged in CSF (data not shown).

Serpin A1 in the Diagnosis of Parkinson-Dementia
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Source of Additional Serpin A1 is the Brain
We analyzed Serpin A1 expression in brain tissues to investigate

whether the CSF protein amounts can be traced back to protein

release from the brain tissue into the CSF. As our patients show no

elevation of the age-dependent elevated Q-Alb (representation of

the blood-CSF barrier function), flow from the blood into the CSF

as source of our results is not likely. Nevertheless, we can not rule

out, that the Serpin A1 amount in the CSF has its source in the

choroid plexus with consecutive release into the CSF. 1D- and 2D-

immunoblot analysis revealed Serpin A1 expression in brain

material from both CON and patients with Lewy body dementia

which represent a pathologic pendant for PDD (Figure 5A).

However, the additional isoforms of Serpin A1 were not restriced

to patients with DLB and can also be identified in CON

(Figure 5B).

To investigate if the additional Serpin A1 spots were a direct

result of cell destruction in the brain, we correlated tau-values

above 450 pg/ml and the number of Serpin A1 spots $6

performing Spearman-rank correlations. No significant correlation

was found in the various subgroups (PD: r = 20.102, p = 0.663;

PDD: r = 0.428, p = 0.0584; AD: r = 0.169, p = 0.662; FTLD:

r = 0.0, p = 1.0), so that we suppose that the Serpin A1 isoform-

distribution is a tau-level independent marker for PDD. We

intentionally did not investigate or compare values of amyloid ß 1–

42 because of the decreased stability of the protein. Our intention

was to avoid the preanalytical bias of false Aß 1–42 measurement

when comparing our samples to those from Perugia or Kuopio.

Discussion

Parkinson’s disease dementia is diagnosed according to clinical

criteria and neuropsychological examinations [27,28]. Since the

typical Parkinson motor-symptoms are initially predominant, the

cognitive impairments or even a dementia is often neglected and

detected in advanced stages [29]. In order to identify PD patients

who are at risk to develop a dementia, a laboratory biomarker

would be of great advantage.

In this study, CSF-analysis of patients with PD and PDD was

performed using proteomic methods in order to detect proteins of

potential diagnostic value. Of the six proteins identified, only the

serine-protease-inhibitor Serpin A1 could be verified with

biochemical methods to be statistically significant regulated – a

protein that was already described to be relevant in AD and DLB

[30]. However in the validation phase, there was a large overlap

Figure 1. Representative 2D-DIGE gel of CyDye-labeled CSF-proteins. Indication is given in black-white manner for better visibility. Arrows
indicate identified protein spots: number 1 for Serpin A1, number 2 for Fetuin A, number 3 for Ceruloplasmin, number 4 for Serpin F1, number 5 for
Haptoglobin and number 6 for Zinc-alpha-2 glycoprotein (numbers correlate with the numbers in the first row of Table 2). The magnification shows
spot number 1 in CyDye overlay. Abbreviations: pI = isoelectric point of the proteins; MW = molecular weight in kilo-Dalton.
doi:10.1371/journal.pone.0048783.g001

Table 1. Relevant parameters of all groups investigated.

Disease N m/f Age Tau (pg/ml) MMST Hoehn&Yahr

PD 24 9/15 6669 2646140 2664 2.161.1

PDD 21 10/11 7668 3266250 2066 2.961.1

AD 9 5/4 70613 7866427 2364 –

FTLD 6 4/2 6467 4506387 2762 –

CON 24 9/15 70606 – – –

Data are indicated as mean6SD.
Abbreviations: PD = Parkinson’s disease, PDD = Parkinson’s dementia, AD =
Alzheimer’s disease, FTLD = frontotemporal lobar degeneration, CON =
control persons, m/f = male/female, MMST = minimal mental status test.
doi:10.1371/journal.pone.0048783.t001
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among the different groups investigated so that according to those

experiments the total level of Serpin A1 can not be used as a

diagnostic marker. Therefore, we characterized the isoform-

distribution of Serpin A1 and identified a different protein-pattern

with 6 or more spots in PDD and with 5 spots or less in PD and

CON where spots 1 and/or 2 were indicative for differentiation of

PDD with 100% sensitivity and 58% specificity. These results

could be verified in a larger patient-cohort of three different

specialized centers (Ulm/Germany, Perugia/Italy and Kuopio/

Finland) whereby two PD cases with a 7/9 spot-pattern

interestingly developed a dementia in the course of their disease.

This may be suggestive that the isoform-pattern does not only help

to support the diagnosis but has also a predictive value, a

hypothesis that has to be followed up in further studies.

Although our principal goal was the identification of a

biomarker that differentiates PD patients from those with

additional dementia at the time of lumbar puncture in a cohort

with clinically and neuropsychologically proven diagnoses, we

additionally investigated the 2D spot pattern in other dementia

diseases to get the specificity of the protein among dementia-

subgroups. Here, patients with AD revealed in some cases

(specificity 71%) and in FTLD in more cases the typical spot

pattern (specificity 33%). Nevertheless, statistic based conclusions

can not be stated because of the small number of patients in the

subgroups and has to be reproduced with larger patient cohorts.

2D-immunoblotting is a sophisticated method and not applica-

ble for routine assessments, so that further analyses of posttrans-

lational modifications were performed and provided evidence for

glycosylation of the Serpin A1-isoforms. To investigate Serpin A1

glycosylation in more detail, we used the enzymes PNGase F to

remove N-linked glycans as well as neuraminidase to remove

terminal sialylation from N- and O-linked glycans. Only treatment

with the latter resulted in a shift of the Serpin A1 isoforms towards

a more basic pI and thereby in the disappearance of the two

relevant most acidic spots in PDD, indicating an O-linked

hypersialylation to be responsible for altered charged states of

those isoforms. However, this hypersialylation is obviously not

caused by an impaired neuraminidase function, as activity of this

enzyme does not change in the CSF of any of the groups analysed.

This may be the basis for future promising approaches to establish

a routine diagnostic assay for the diagnosis/differential diagnosis of

PD/PDD.

Since Serpin A1 belongs to the acute-phase proteins [31] in

plasma and it is known to be expressed in the liver and also in

macrophages [32], we had to confirm that Serpin A1 was indeed

brain derived. In a pilot experiment, human cortex samples of

patients with DLB and CON were analysed for Serpin A1

expression that could be investigated in brain tissue of both

diseased patients and CON without difference in the protein-spot

pattern. On the basis of these results, we supposed that the

additionally and hypersialylated isoforms in PDD are released into

the CSF, an assumption that is indirectly supported by the

previous finding that unglycosylated Serpin A1 or Serpin A1 with

reduced glycosylation is not secreted into the blood by hepatocytes

[33]. Assuming that this is also true for neurons, it would explain

why Serpin A1 can not differentiate between DLB and CON in

brain tissue. To rule out that the Serpin A1 isoforms are a

pathophysiological correlate of general cell destruction, we

performed correlation analyses with tau protein without differ-

ences of both proteins in our groups.

In general, glycosylation events have already been implicated in

the pathogenesis of neurodegenerative diseases [34,35,36]. How-

ever for PD and PDD, only little is known about the relevant

pathomechanisms of glycosylations and sialylations whereby a role

of alpha-synuclein glycosylation is discussed in the formation of

protein inclusions and disease progression [37,38]. Wang et al.

found that the phosphorylated alpha-synuclein is able to distin-

guish between PD and atypical parkinsonian syndroms like

multisystem atrophy or supranuclear palsy. This may indicate

that investigation of posttranslational modification of proteins is a

Table 2. 2D-DIGE analysis and identification of selected CSF proteins.

Spot
Protein
name Regulation Ratio

Swiss-Prot
accession

MW
[kDa] pI

PMF
coverage [%]

PMF
scorea)

Peptide
sequenced

MS/MS ion
scoreb)

1 Alpha-1-
antitrypsin
(Serpin A1)

PDD vs. CON
PDD vs. PD

1.61 1.80 P01009 46878 5.4 55 257 LYHSEAFTVNFGDTEEAK
LQHLENELTHDIITK
TDTSHHDQDHPTFNK
LYHSEAFTVNFGDTEEAKK

93
84
42
35

2 Alpha-2-HS
glycoprotein
(Fetuin A)

CON vs. PDD 21.32 P02765 40098 5.4 22 63 EHAVEGDCDFQLLK
HTFMGVVSLGSPSGEVSHP
HTFMGVVSLGSPSGEVSHPR

112
38
25

3 Ceruloplasmin PD vs. CON 22.23 P00450 122983 5.4 23 122 GAYPLSIEPIGVR
DLYSGLIGPLIVCR

46
33

4 Pigment
epithelium-
derived factor
(Serpin F1)

PDD vs. CON 1.59 P36955 46484 6.0 42 144 TSLEDFYLDEER
LAAAVSNFGYDLYR

38
25

5 Haptoglobin PDD vs. CON 1.75 P00738 45861 6.1 35 115 YVMLPVADQDQCIR
VGYVSGWGR

58
36

6 Zinc-alpha-2
glycoprotein

CON vs. PDD 21.79 P25311 34079 5.5 54 214 AREDIFMETLK
AYLEEECPATLR
YSLTYIYTGLSK

54

Abbreviations: PD = Parkinson’ disease, PDD = Parkinson’s dementia, CON = control persons, pI = isoelectric point of the proteins, PMF = peptide mass fingerprint,
MS = mass spectrometry.
a) Mascot protein score obtained for the peptide mass fingerprint (PMF). The significance threshold was 56.
b) Mascot MS/MS ion scores obtained for the individual peptides sequenced. The significance threshold was 17–29 depending on how many peptides fell within the
mass tolerance window about the precursor mass. Only the top ranking peptides matching a query for the first time (‘‘bold red hits’’) are reported.
doi:10.1371/journal.pone.0048783.t002

Serpin A1 in the Diagnosis of Parkinson-Dementia

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e48783



better marker to distinguish diseases than the proteins itsself [39].

Analogous to AD, Huntington disease and CJD [40], an

accumulation of pathological aggregates through serine-protease-

inhibitors – in addition to the role of alpha-synuclein in the

pathogenesis of the disease [41,42,43] - can be assumed and PDD

could therefore be a subgroup of neurodegenerative diseases with

cerebral protein aggregation.

Interestingly, Serpin A1 is not only involved in folding of other

proteins but also is, like tau protein and amyloid-beta peptides,

able to polymerise and form aggregates itself [44,45,46]. Those

aggregates were investigated in some diseases with liver-cirrhosis

where Serpin A1-aggregation can be detected in liver tissue [45].

Additionally, those aggregations were found to be relevant in the

development of a dementia syndrome caused by autosomal-

dominant familiar encephalopathy with neuroserpin inclusion

bodies, indicating that both diseases may belong to the common

disease entity of serpinopathies [45,47,48]. One could hypothesize

that the formation of Serpin A1 aggregates takes place in PDD,

possibly triggered by differences in posttranslational modifications

– (hyper-)sialylation instead of phosphorylation – leading to a

different structure and (mal-)function of the protein so that the

formation of aggregates is favoured. In order to refute or confirm

this theory, further investigations especially pathophysiological-,

histological- and animal-based ones are necessary. Here, a

comprehensive amount of patients should be investigated.

Independent of these pathophysiological hypotheses, we sup-

pose that the hypersialylated isoforms of Serpin A1 have a

predictive value for the development of dementia in PD patients

which is worth to be followed up.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The local ethics committees (Ethik-

Kommission der Medizinischen Fakultät der Universität Ulm,

approval numbers: 8801 and 100305 and the regional Ethical

Committee Board (CEAS) of the University of Perugia, protocol

number 19369/08/AV as well as the Ethics Committee of Kuopio

University Hospital, number 5/2002) approved all experiments

within our study. All patients provided written informed consent

for the collection of samples and subsequent analysis. In case of

severe demented patients, their relatives gave written informed

consent to their participation in the study. The capacitiy of the

patients to consent was assessed by means of clinical, neurological

and neuroradiological examinations as well as a neuropsycholog-

ical screening to investigate global cognitive functions. All PD and

PDD patients underwent a detailed psychometric test battery (in

detail described in [26]), covering the following tests: MMSE,

Geriatric Depression scale, Parkinson Neuropsychometric De-

mentia Assessment, Regensburger Wortfluessigkeitstest (RWT),

Doors Test, Alertness/Go/NoGo/geteilte Aufmerkamkeit, Boston

Naming Test, Wechsler Memory Scale (WMS-R), Melmstaedter,

Coloured Progressive Marices, VOSP, Clock Test.

Patients
All CSF samples used for the proteomic approach were taken

from patients attending the general outpatient clinic (University of

Ulm, Department of Neurology) in 2006/2007. CSF was stored at

Figure 2. Identification and regulation of Serpin A1 and its different isoforms. 2A illustrates the 2D-DIGE analysis with the pixel volume
distribution for Serpin A1 corresponding to number 2 in Figure 1. The horizontal lines indicate the median value. Average ratios CON vs PDD 2.34,
PDD vs PD 1.80. p-values CON vs PDD 0.014, PDD vs PD 0.043. 2B shows the isoform distribution of Serpin A1 of a representative PDD gel with
spectral counts for the respective isoforms.
doi:10.1371/journal.pone.0048783.g002
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280uC after analysis of the routine parameters cell count, lactate,

Q-albumin and total protein until further analysis. For the

validation study, additional samples were obtained in blinded

manner from two different centers: Department of Neurology,

Kuopio, Finland (9 PD, 7 PDD) and Department of Neurology,

Perugia, Italy (8 PD, 8 PDD).

All individuals underwent a clinical, neurological, neuroradio-

logical examination and a short neuropsychological screening to

investigate global cognitive functioning. Patients were examined

neuropsychologically for unambiguous classification of their

mental status and exclusion of depressive syndroms. All PD and

PDD patients in Ulm were investigated with a detailed psycho-

metric test battery, described in [28].

Patients with PD, PDD and other Dementia (AD and
FTLD)

The number of patients per group, tau protein values, and the

minimental status test (MMST) for all groups and Hoehn&Yahr

stages for PD and PDD are indicated in Table 1. Tau protein was

measured in each clinical center.

The diagnosis of all PD/PDD patients was made in accordance

with the consensus criteria for PD/PDD [13] as well as on the

basis of the DSM-IV criteria and was established by neurologists

and neuro-psychologists, both blinded with regard to the

neurochemical outcome measures. Patients with PD were on

medication with L-dopa agonists or on L-dopa itsself; patients with

PDD were additionally treated with rivastigmine.

Figure 3. 1D- and 2D-immunoblots of Serpin A1. 3A shows 1D-immunoblot band volumes (adjusted for membrane background) of Serpin A1.
3B shows the statistical analysis for the 1D-immunoblot validation of all proteins found to be regulated in the 2D DIGE experiment. Only Serpin A1
displayed a significant regulation. 3C illustrates the 2D immunoblot of Serpin A1 with the different spot-pattern in PD/CON and PDD with the
relevant additional spots 1 and/or 2 in PDD. 3D shows the distribution of spot pattern in the different groups (PDD, PD versus the dementia
subgroups and CON). *Both PD-patients with 7/9 Serpin A1 spots developed dementia in the course of the disease. Abbreviations: PD = Parkinson’s
disease, PDD = Parkinson’s dementia, CON = control persons, AD = Alzheimer’s disease, FTLD = frontotemporal lobar degeneration, pI =
isoelectric point of the proteins.
doi:10.1371/journal.pone.0048783.g003

Serpin A1 in the Diagnosis of Parkinson-Dementia
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Diagnosis of Alzheimer’s disease (AD) was set according to the

NINCDS-ADRDA criteria [49], the appropriate diagnosis of

FTLD-patients was done in accordance with the consensus criteria

for FTLD [50,51] as well as on the basis of the DSM-IV criteria.

Control Subjects (CON)
The control patients showed neither extrapyramidal-motor nor

dementia-specific symptoms. The final diagnoses of the patients

were as follows: vertigo (n = 2), paresthesia (n = 2), ischemia (n = 4),

complex focal seizures (n = 3), pseudotumor cerebri (n = 1), lumbo-

ischialgia (n = 3), migraine (n = 1), sharp-syndrom (n = 1), Tolosa

Hunt syndrom (n = 1), Arteriitis temporalis (n = 2), polyradiculo-

pathy (n = 1), transient global amnesia (n = 2) and dissociative

disorders (n = 1).

Neuropathology
Samples of human brain cortex tissues from 2 patients with

PDD/DLB (age of 63/80 years, tau-pathology of Braak stage II

and III, Lewy-bodies neocortically localized) and 2 CON (age of

59/46 years, tau-pathology of Braak stage 0 and I, no Lewy-

bodies) were obtained from the German Brain Bank (Ludwig-

Maximilians University, Munich). PDD is neuropathologically

characterized by cortical Lewy bodies that also occur in patients

with dementia with Lewy bodies. However it is heretofore unclear

whether both diseases are a matter of a single one.

CyDye Labeling
Proteomic analysis via 2D-DIGE was done with a volume-based

normalization as described previously [26] with the exception that

6 individual samples of each group were compared. In brief,

400 ml of each CSF sample were concentrated by VivaSpin

columns with a 3 kDa cut-off (Sartorius Biolabs products), then

albumin and immunglobuline were depleted. For conventional gel

staining, the depleted CSF was acetone-precipitated and resus-

pended in 7 M urea, 2 M thiourea, 4% CHAPS, 1% DTT, 1%

IPG Buffer (40%) pH 4–7 by rocking for 1 h at ambient

temperature. For CyDye labeling, precipitated proteins were lysed

in 7 M Urea, 2 M Thiourea, 4% CHAPS, 30 mM Tris-HCl

pH 8.1 at 10uC. Insoluble fractions were removed by centrifuga-

tion. For CSF proteome comparison in the first instance, 6

individual CSF samples of each group were compared by the

mixed internal standard methodology described by Alban et al.

[52]. CSF proteins were labeled with CyDyesTM (GE Healthcare),

fluorescent dyes developed for the difference gel electrophoresis-

system. Individual samples were labeled either with Cy3 or Cy5

for a dye-switched comparison to avoid potential dye-to-protein

preferences. For the mixed internal standard, aliquots of each

Table 3. Posttranslational modifications of Serpin A1.

spot # m/z (z)
neutral mass
(Da) glycan fragments observed

spot 1 – – None observed

spot 2 – – None observed

spot 3 906.4291 (+2) 1810.8436 (HexNAc)(Hex)(NeuAc)

spot 4 906.4286 (+2) 1810.8426 (HexNAc)(Hex)(NeuAc)

670.9987 (+3) 2009.9746 (HexNAc)(Hex)(NeuAc)

675.6698 (+3) 2023.9900 (HexNAc)(Hex)(NeuAc)

913.4363 (+2) 1824.8580 (HexNAc)(Hex)(NeuAc)

spot 5 906.4276 (+2) 1810.8406 (HexNAc)(Hex)(NeuAc)

675.6693 (+3) 2023.9861 (HexNAc)(Hex)(NeuAc)

670.9987 (+2) 2009.9743 (HexNAc)(Hex)(NeuAc)

913.4363 (+3) 1824.8580 (HexNAc)(Hex)(NeuAc)

1223.8602 (+3) 3668.5582 (HexNAc)2(Hex)2(NeuAc)2

1227.1494 (+3) 3678.4252 (HexNAc)2(Hex)2(NeuAc)2

1320.8926 (+3) 3959.6572 (HexNAc)2(Hex)2(NeuAc)2

spot 6 760.8801 (+2) 1519.7456 (HexNAc)(Hex)

778.8799 (+2) 1555.7452 (HexNAc)(Hex)

906.4281 (+2) 1810.8380 (HexNAc)(Hex)(NeuAc)

583.3101 (+3) 1746.9085 (HexNAc)(Hex)

1005.9940 (+2) 2009.9734 (HexNAc)(Hex)(NeuAc)

1013.0013 (+2) 2023.9884 (HexNAc)(Hex)(NeuAc)

1020.0094 (+2) 2038.0034 (HexNAc)(Hex)(NeuAc)

1133.5909 (+2) 2265.1674 (HexNAc)(Hex)(NeuAc)

spot 7 760.8811 (+2) 1519.7476 (HexNAc)(Hex)

860.4453 (+2) 1718.8784 (HexNAc)(Hex)

659.0319 (+3) 1974.0739 (HexNAc)(Hex)

906.4280 (+2) 1810.8414 (HexNAc)(Hex)(NeuAc)

913.4352 (+2) 1824.8562 (HexNAc)(Hex)(NeuAc)

1005.9948 (+2) 2009.9734 (HexNAc)(Hex)(NeuAc)

1013.0012 (+2) 2023.9874 (HexNAc)(Hex)(NeuAc)

1048.4598 (+4) 4189.8109 (HexNAc)2(Hex)2(NeuAc)2

1003.0392 (+5) 5010.1586 Indeterminate

Listing of glycosylation residues for Serpin A1 isoforms represented by spot 1 to
7 of a 2D DIGE experiment. Interestingly, spots number 1 and 2 seem not to be
glycosylated. Abbreviations: HexNAc = N-acetyl-hexosamine, Hex = hexose
(mannose, glucose or galactose), NeuAc = sialinic acid.
doi:10.1371/journal.pone.0048783.t003

Figure 4. Investigation of posttranslational modifications.
Immunoblot of Serpin A1 in a PDD-patient with and without
neuraminidase-treatment (different exposures of times are shown to
better visualize the individual spots, intensity of both blots were similar;
exposure time for the immunoblot without neuraminidase-treatment
= 2 seconds, exposure time for the immunoblot with neuraminidase-
treatment = 10 seconds). Treatment with the enzyme leads to an
isoform shift towards a more basic pI and thereby to the disappearance
of the diagnostic relevant most acidic spots 1 and/or 2. ‘‘Untreated’’
means usage of a native CSF-sample without neuraminidase-digest.
doi:10.1371/journal.pone.0048783.g004
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individual sample included in the experiment were pooled and

labeled with Cy2 in the same dye-to-CSF ratio. The labeling

reaction was stopped by 20 nmol lysine. The labeled samples were

combined and diluted 1.33 x by a stock solution containing 7 M

urea, 2 M thiourea, 4% CHAPS, 4% IPG-buffer pH 4–7, 4%

DTT w/v for subsequent IEF.

2D Gel Electrophoresis and Imaging
Isoelectric focusing was done as described previously [26].

Second dimension SDS-PAGE was performed with homogeneous

12.5% gels (2546200 mm) according to Tastet et al. [53] at

3.5 W/gel overnight at 20uC. The fluorescence signals of the 3

differently Cy-labeled protein samples were imaged using a laser

scanner (DIGE Imager, GE Healthcare) recording emission

wavelengths of 520 nm (Cy2), 580 nm (Cy3) and 670 nm (Cy5).

Proteins were post-stained with silver. Spots of interest were

excised manually and subjected to mass spectrometric protein

identification.

In-gel Digest, Mass Spectrometry and Database Search
Manually excised gel plugs were subjected to an automated

platform for the identification of gel-separated proteins [54] as

described in recent DIGE-based [26,55,56] and large-scale

proteome studies [56,57]. Briefly, a peptide mass fingerprint

(PMF) and six fragment ion spectra for each sample were recorded

automatically with an Ultraflex MALDI-ToF mass spectrometer

(Bruker Daltonics) under the control of the FlexControl 3.0

operation software. Post-processing of mass spectra and generation

Figure 5. Immunoblots of Serpin A1 in human cortex tissue. 5A shows 1D-immunoblot in two CON and two patients with Lewy body
dementia as a pathophysiological correlate of Parkinson’s dementia. The protein can be identified in both tissues of control persons and PDD
patients. 5B illustrates 2D-immunoblot for Serpin A1 of the patients investigated in 4A. The isoform pattern seen in CSF of CON/PD and PDD
(Figure 3C) with spot 1 and/or 2 indicative for PDD could not be reproduced in human cortex tissue. Abbreviations: CON = control persons, DLB =
Lewy body dementia, pI = isoelectric point of the proteins.
doi:10.1371/journal.pone.0048783.g005
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of peak lists was performed with the FlexAnalysis 3.0 software

(Bruker Daltonics).

PMF and MS/MS data sets were batch-processed using the

BioTools 3.1 software (Bruker Daltonics) as interface to the Mascot

2.2 software (Matrix Science) licensed in-house. Database searches

were performed in the Swiss-Prot primary sequence database,

restricted to the taxonomy homo sapiens. Carboxamidomethylation

of Cys was specified as fixed and oxidation of Met as variable

modification. One trypsin missed cleavage was allowed. Mass

tolerances were set to 100 ppm for PMF searches and to 100 ppm

(precursor ions) and 0.7 Da (fragment ions) for MS/MS ion

searches. The minimal requirement for accepting a protein as

identified was at least one peptide sequence match above identity

threshold in coincidence with at least 20% sequence coverage

assigned in the PMF.

Characterization of Serpin A1 Isoforms LC-MS/MS
Samples were subjected to proteolytic digestion on a ProGest

(Genomic Solutions) workstation as follows: Samples were reduced

with DTT at 60uC and then cooled to room temperature.

Furthermore, samples were alkylated with iodoacetamide and

subsequently incubated at 37uC for 4 h in the presence of trypsin.

Formic acid was added to stop the reaction and the supernatant

was analyzed directly by nano LC/MS/MS on a ThermoFisher

LTQ Orbitrap XL. 30 ml of hydrolysate was loaded onto a

5 mm675 mm ID C12 (Jupiter Proteo, Phenomenex) vented

column at a flow-rate of 10 mL/min. Gradient elution was over a

15 cm675 mm ID C12 column at 300 nL/min. A 30 min

gradient was employed. The mass spectrometer was operated in

data-dependent mode and the six most abundant ions were

selected for MS/MS. The Orbitrap MS scan was performed at

60,000 FWHM resolutions. MS/MS data were searched using a

local copy of Mascot (www.matrixscience.com). The parameters

for all LC/MS/MS searches were as follows: Type of search: MS/

MS ion search. Taxonomy: human. Enzyme: trypsin. Fixed

modifications: carbamidomethyl (C). Variable modifications:

oxidation (M), acetyl (N-term), pyro-glu (N-term Q), methyl

(various), deamidation (NQ), PO4 (STY). Mass values: mono-

isotopic. Protein mass: unrestricted. Peptide mass tolerance:

610 ppm (Orbitrap). Fragment mass tolerance: 60.5 Da (LTQ).

Maximum missed cleavages: 2.

Immunoblotting
Equal amounts of total protein or equal volumes (CSF) were

denatured and subjected to a SDS-PAGE in 12% polyacrylamide

gels. Proteins were transferred onto PVDF membranes (Millipore,

USA), correct transfer was checked by Ponceau Red S staining.

The membranes were incubated with the respective primary

antibody (see below) followed by incubation with HRP conjugated

secondary antibodies. Signal detection was performed by en-

hanced chemiluminescence (GE healthcare) on a CCD-camera.

For 2D-immunoblotting, strips were equilibrated for 2620 min in

6 M urea, 125 mM Tris-HCL pH 7.85, 3% SDS and 20%

glycerol (v/v). 1% dithiothreitol (DTT) and 4.2% iodoacetic acid

(IAA) were added for the first and second equilibration step,

respectively. The following primary antibodies were used:

Ceruloplasmin (BD-Biosciences 611488), Fetuin A (R&D Systems

BAF1184), Haptoglobin Hp2 (Abcam AB52652), Serpins A1, A8,

F1 (R&D Systems MAB1268, BAF3156, BAF 1177) and Zinc-

alpha-2 Glycoprotein (BD Biosciences 612354).

PNGase F and Neuraminidase Digests
In order to assess possible glycosylations or sialylations of the

serpin A1 isoforms, 5 ml of CSF was digested with PNGase F (New

England Biolabs) or neuraminidase (Roche, 1585886) as stated by

the manufacturers and subjected to a 2D-immunoblot.

Neuraminidase Assay
To quantitatively assess the neuraminidase level in CSF, a

commercially available Neuraminidase Assay kit (Molecular

probes) was used according to the manufacturer’s instructions.

CSF was measured in a 1+1 dilution.

Calculations and Statistics
Band volumes of immunoblots (adjusted for membrane

background) were determined using the Quantity One software

(BioRad).

Analysis for significant differences in a given parameter between

all tested groups or between two groups were calculated by

Kruskal-Wallis test or Mann-Whitney test. Correlation between

parameters was examined applying Spearman rank correlation. P-

values p#0.05 were considered to be significant. For ROC

analysis, p-values p#0.01 were considered significant (sigma plot

software 10.0). Standard measures of diagnostic test validity such

as sensitivity and specificity were calculated for the diagnostic

groups [58].

Supporting Information

Figure S1 Representative Serpin A1-blots of PNGase F-
treated CSF of PD and PDD. Abbreviations: PD = Parkinson’s

disease, PDD = Parkinson’s disease dementia

(TIF)
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