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Visualization of heterogeneity 
and regional grading of gliomas by 
multiple features using magnetic 
resonance-based clustered images
Rika Inano1,2, Naoya Oishi2,3, Takeharu Kunieda1, Yoshiki Arakawa1, Takayuki Kikuchi1, 
Hidenao Fukuyama2,4 & Susumu Miyamoto1

Preoperative glioma grading is important for therapeutic strategies and influences prognosis. 
Intratumoral heterogeneity can cause an underestimation of grading because of the sampling error 
in biopsies. We developed a voxel-based unsupervised clustering method with multiple magnetic 
resonance imaging (MRI)-derived features using a self-organizing map followed by K-means. This 
method produced novel magnetic resonance-based clustered images (MRcIs) that enabled the 
visualization of glioma grades in 36 patients. The 12-class MRcIs revealed the highest classification 
performance for the prediction of glioma grading (area under the receiver operating characteristic 
curve = 0.928; 95% confidential interval = 0.920–0.936). Furthermore, we also created 12-class MRcIs 
in four new patients using the previous data from the 36 patients as training data and obtained tissue 
sections of the classes 11 and 12, which were significantly higher in high-grade gliomas (HGGs), and 
those of classes 4, 5 and 9, which were not significantly different between HGGs and low-grade gliomas 
(LGGs), according to a MRcI-based navigational system. The tissues of classes 11 and 12 showed 
features of malignant glioma, whereas those of classes 4, 5 and 9 showed LGGs without anaplastic 
features. These results suggest that the proposed voxel-based clustering method provides new insights 
into preoperative regional glioma grading.

Gliomas are the most common primary brain tumor with poor prognosis and are graded according to the classi-
fication by the World Health Organization (WHO) of the most malignant region. Tumor grading is important for 
deciding the treatment, including surgical resection, adjuvant radiation, and chemotherapy. The 5-year survival 
rate of patients with low-grade gliomas (LGGs) (grade II) is 42–92%1, whereas patients with high-grade gliomas 
(HGGs) (grades III and IV) have a worse prognosis2. In particular, glioblastomas (grade IV) develop rapidly3, and 
the 5-year survival rate of patients with these tumors is only 2%4. The histologic findings of glioblastomas include 
diffuse infiltration and simultaneous necrosis in different parts of the tumor. Owing to their heterogeneity, the 
initial diagnosis by biopsy differs from the diagnosis by total resection in 38% of cases5. Previous studies have 
attempted to grade tumors as a whole; therefore, they could not obtain local information on tumors. If the grade 
of each region is identified preoperatively, then neurosurgeons can clarify the target for biopsy and the parts of the 
tumor that need to be resected or preserved, thereby preserving motor or language function.

Magnetic resonance imaging (MRI) is essential for noninvasive diagnosis of the existence, extent, and char-
acteristics of brain tumors. T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1WIce), 
T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging 
(DWI) sequences are generally performed before surgery. These conventional images can yield a large amount of 
useful information on tumors, such as tumor morphology, the presence of enhancement, intratumoral hemor-
rhage, or edema, and are helpful for predicting the tumor grade. It is still controversial whether the presence of 
enhancement indicates malignancy6–8. Contrast enhancement is nonspecific to malignancy and primarily reflects 
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the passage of contrast material across a disrupted blood–brain barrier9. Despite this uncertainty, we often exam-
ine T1-enhancing regions to determine the target area for the biopsy. Therefore, the most malignant tissue section 
may not be obtained. The peritumoral hyperintensity on T2WI or FLAIR is also nonspecific, representing tumor 
infiltration, vasogenic cerebral edema, or both10,11. These previous studies suggest that glioma grading using only 
a single feature in MRI is not accurate.

Recently, some studies have applied pattern recognition methods using multiple features to predict tumor 
grading12,13. However, these methods demonstrate several problems in clinical application. Pattern recognition 
methods have two types of clustering, namely supervised and unsupervised, and previous studies have applied 
either of them. Supervised methods require a priori knowledge of boundaries and tissue signatures, whereas 
unsupervised methods do not14. Because methods for preoperative assessment of tumor pathology have not yet 
been developed, supervised labeling can be inaccurate. Although unsupervised methods are useful and not arbi-
trary, complicated features, such as those used in previous studies12,13, make it difficult for clinicians to recognize 
the most sensitive features for grading. Therefore, unsupervised techniques with multiple and simple features are 
more useful and suitable for clinical application.

We have recently reported that the multiple features calculated from voxel-based diffusion tensor images 
(DTI) and clustered by a two-level clustering approach, an unsupervised clustering method with a self-organizing 
map (SOM)15 followed by K-means (KM)16, can effectively differentiate between LGGs and HGGs17. SOM is a 
well-known type of neural network unsupervised learning15 that simplifies features and shows good visualization 
of results for data understanding and survey using component planes18,19. In addition, features that have similar 
patterns can be identified by KM clustering for the results of SOM. This two-level clustering approach has two 
important benefits in terms of noise reduction and computational cost. First, because the KM algorithm is very 
sensitive to outliers20, any outliers can adversely affect the accuracy of the clustering. When an SOM is applied 
prior to KM, outliers can be filtered out, improving the clustering accuracy. Second, the computational time of the 
two-level clustering approach is considerably shorter than that of KM alone17. However, DTI has some limitations 
such as distortions induced by susceptibility artifacts and low-spatial resolution; hence, the use of DTI in clinical 
situations or in a navigational system becomes difficult, thereby automatically providing real-time cross-sectional 
images on conventional MRIs of the brain intraoperatively. To circumvent the problems of DTI, imaging methods 
that show less distortion and higher spatial resolution, such as T1WI, T1WIce, T2WI, and FLAIR, were used in 
this study. The higher spatial resolution of these images is suitable for an intraoperative neuronavigational system 
because the preoperative voxel-based clustered images will have been correctly combined with the preoperative 
conventional MRI as much as possible to obtain tissue section for each class. Furthermore, the high-spatial reso-
lution leads to the possibility of regional glioma grading. We aimed to develop novel MR-based clustered images 
(MRcIs) using our two-level clustering approach with multiple features in conventional MRI, such as T1WI, 
T1WIce, T2WI, and FLAIR, and to use those images to visualize the regional glioma grading because these con-
ventional MRIs are more familiar to neurosurgeons and are easier to understand. We also aimed to determine 
if our method can correctly predict glioma grading preoperatively in a supervised manner. We demonstrate the 
possibility of regional glioma grading confirmed by pathological examination with an MRcIs-based neuronavi-
gational system in new patients with glioma.

Results
Visualization of unsupervised clustering map. We retrospectively reviewed 36 patients, including 21 
patients with HGGs and 15 patients with LGGs (Table 1), who underwent T1WI, T1WIce, T2WI, and FLAIR 
before tumor resection. An overview of the study procedure is depicted in Fig. 1. The component planes of the 
four MRI variables from T1WI, T1WIce, T2WI, and FLAIR by the SOM analysis show the information of each 
sequence in each map unit as well as the associations between the clusters and variables18 (Fig. 2). The component 
planes differed from each other. For example, for 12 clusters, T2WI values in the classes 1–5 and 9 were higher 
than those of the other classes, whereas FLAIR values in the classes 4 and 9 were higher than those of the other 
classes. T1WIce values in the classes 11 and 12 and T1WI values in class 7 were higher than those of the other 
classes.

Figure 3 shows representative cases of LGGs and HGGs. Although the voxels of the classes 11 and 12 can be 
seen in the abnormal areas of LGGs and HGGs, most of them were linearly consecutive, and the raw T1WIce 

Histopathology n
WHO 
grade Age (years) Location

high-grade gliomas 21 III and IV 53.7 ± 17.7

glioblastoma 15 IV 56.6 ±  16.3 frontal, parietal, temporal, 
frontoparietal

anaplastic astrocytoma 4 III 33.5 ±  4.8 frontal, temporal

anaplastic oligoastrocytoma 2 III 72.0 ±  5.0 frontal

low-grade gliomas 15 II 43.5±13.3

diffuse astrocytoma 7 II 48.6 ±  14.9 frontal, parietal, 
frontoparietal

oligoastrocytoma 3 II 40.3 ±  15.5 frontal, temporal

oligodendroglioma 4 II 38.0 ±  3.7 frontal, temporal

mixed oligoastrocytoma 1 II 40.0 frontoparietal

Table 1.  Summary of patient data. Age (years) is given as means ±  standard deviation.
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showed that some of them were enhanced vessels. However, in HGGs, voxels of the classes 11 and 12 without 
vessels were observed, which spread like a stain within the tumor (pink arrow in Fig. 3). Conversely, enhanced 

Figure 1. Study procedure for MRI data of glioma. 

Figure 2. Component planes with SOM ranging from blue to red according to intensities in each MRI 
value. The inter-class borderlines obtained by KM+ +  with K =  12 are shown on the SOM component planes 
as white lines between the nodes. Detailed intensity profiles can be seen on the SOM component planes and 
patterns in each class (from 1 to 12) on the illustrative map (lower right).
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regions were not always seen to cluster in the classes 11 or 12, particularly in LGGs (light blue arrow in Fig. 3). 
Thus, a clear differentiation between LGGs and HGGs could be observed on the MRcIs.

Classification performance using MRcI. The results of leave-one-out cross-validation (LOOCV) that was 
used to assess the classification performances using MRcIs and support vector machines (SVM) are shown in 
Fig. 4A (left). The differences in the areas under the curve (AUCs) were significant among the classes  
[F(6, 693) =  1147.4; p <  10−16, η = .0 91p

2 ]. Tukey’s post-hoc tests showed that the AUC was significantly higher 
for the 12-class MRcIs than that for other classes (p <  0.001). There were no significant differences in AUCs 
among other classes, except for the 4-class MRcIs. The tests also showed that the AUC was significantly smaller 
for the 4-class MRcIs than that for other classes (p <  0.001). The AUC of the 12-class MRcIs was the largest among 
the classes [0.928; 95% confidence interval (CI) =  0.920–0.936] (Fig. 4A; right). The sensitivity, specificity, and 
accuracy of the 12-class MRcIs were 0.81 (95% CI =  0.808–0.812), 0.937 (95% CI =  0.928–0.946), and 0.863 (95% 
CI =  0.859–0.867), respectively. In contrast, the AUC of the 4-class MRcIs was considerably smaller (0.578; 95% 
CI =  0.560–0.597). There were no significant group differences in AUCs among the 6-, 8-, 10-, 16-, and 20-class 
MRcIs (0.882, 0.876, 0.864, 0.887, and 0.888, respectively).

Differences in the ratio of each class. The log-ratio values of each class of the 12-class MRcIs with 
the highest classification performances were compared between LGGs and HGGs (Fig. 4B). The values of the 
classes 1 and 2 were significantly higher in LGGs than in HGGs (p <  0.0001, r =  0.64; p <  0.001, r =  0.61; respec-
tively), whereas the values of the classes 11 and 12 were significantly higher in HGGs than in LGGs (p <  0.001, 
r =  0.56; p <  0.0001, r =  0.67; respectively). Furthermore, in the 12-class MRcIs, the values for the classes 11 and 
12 were significantly higher in HGGs than in LGGs; similar patterns were observed for the 8- to 16-class MRcIs. 
Conversely, values of the classes 1 and 2 were significantly higher in LGGs than in HGGs; similar patterns were 
also observed for the 10- to 20-class MRcIs (Supplementary Fig. S1).

Differences in the features of each class. We further grouped the 12-class MRcIs into three subclasses 
to simplify the relationships among them, namely “Class L” (classes 1 and 2), “Class N” (classes 3–10), and “Class 
H” (classes 11 and 12). Figure 5 shows the relationships in the T1WIce-, T1WI-, T2WI-, and FLAIR-normalized 
intensity values between the Class L, N, and H using a scatter plot matrix. The distributions of Class H were 

Figure 3. Representative cases of low- and high-grade gliomas, including the 12-class MRcIs, which 
showed the highest classification performance. The MRcIs, T1WI, T1WIce, T2WI, and FLAIR are shown for 
each patient. Each color on the MRcIs corresponds to each class in the 12-color bar (left hand corner). Inside 
the enhanced tumor regions, Classes H and L/N are shown in red and green, respectively, on the enlarged 
T1WIce (right).
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Figure 4. (A) Plots of AUC versus the value of K in the KM method. The values are presented as the mean 
values of AUCs. The error bars are 95% CIs (light purple-shaded area). * p <  0.001 (versus all the rest), one-way 
analysis of variance followed by Tukey’s multiple comparison tests. The 12-class MRcIs significantly showed 
the highest AUC (left). The ROC curves (dark purple line) in the 12-class MRcIs with AUC and 95% CIs are 
illustrated by the darker purple-shaded area for classification between low-grade and high-grade gliomas 
(right). (B) Strip chart and box plots showing the median, interquartile range, inner fence, and outliers (circles) 
for the log-ratio values of each class by 12-class MR-based clustered images of low-grade (blue) and high-grade 
(red) gliomas. †p <  0.001 (Class H <  Class L), * p <  0.001 (Class L <  Class H), exact Wilcoxon–Mann–Whitney 
tests. The horizontal color bar on the bottom shows Class L (class 1 and 2) in blue, Class N (class 3–10) in green, 
and Class H (class 11 and 12) in red. (C) Radar charts for MR-based variables in each class by 12-class MRcIs 
categorized into the following three simplified groups: Classes L, N, and H.

Figure 5. Scatter plot matrix showing the relationships in Classes L, N, and H between the normalized 
intensity values in T1WIce (CE), T1WI (T1), T2WI (T2), and FLAIR. All three classes are shown in the right 
upper triangle (blue, green, and red), whereas only Classes H and L are shown in the left lower triangle (blue 
and red).
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totally different from those of Class L on the scatter plots of T1WIce/T1WI and T1WIce/T2WI (Fig. 5; lower left 
triangle). The distributions of Classes L and H for T1WIce/FLAIR, T1WI/T2WI, and T2WI/FLAIR also differed, 
with partial overlaps. Regarding the three Classes shown in the right upper triangle in Fig. 5, Class N ranged with 
partial overlaps, particularly for T1WIce/T2WI and T1WIce/FLAIR. Class N widely overlapped with Class L for 
T1WIce/T1WI and with Class H for T1WI/T2WI, T1WI/FLAIR, and T2WI/FLAIR. Although the relationships 
among the four MRI features are complicated, we found that grading was dependent on the T1WIce values as well 
as the relationships among the four features. Furthermore, within the enhanced tumor regions, Class N was found 
in both LGGs and HGGs, whereas most of the cases of Class H within the tumors were found in HGGs (Fig. 3; 
right column). The ratios of the normalized intensities of the T1WI and FLAIR images within the enhanced 
tumor regions were significantly higher in Class H than in Class L (p <  10−16, r =  0.19; p <  10−16, r =  0.21; respec-
tively) (Supplementary Fig. S2). Conversely, the ratios of T2WI intensities within the enhanced tumor regions 
were significantly higher in Class L than in Class H (p <  10−16, r =  0.18). Even within the enhanced tumors, the 
Classes L and H showed different patterns for the features, including T1WI, T2WI, and FLAIR. These results also 
strengthen the importance of the relationships among the four MRI features with regard to grading.

Individual patterns in the MRI-derived features. The radar charts of the individual normalized inten-
sities of the four MR sequences for each class in the 12-class MRcIs with the highest classification performances 
are shown in Fig. 4C. The chart patterns of the classes 11 and 12, which were significantly higher log-ratio values 
in HGGs than in LGGs, comprised high T1WIce values. Conversely, the classes 1 and 2, which were signifi-
cantly higher in LGGs than in HGGs, had higher T2WI values than T1WI, T1WIce, and FLAIR values. However, 
although class 5 had a radar chart pattern similar to class 1, there were no significant differences in log-ratio 
values between LGGs and HGGs in class 5 (p =  0.20, r =  − 0.22).

MRcI-guided tissue sampling. We also developed 12-class MRcIs in four new patients who were clinically 
suspected to be gliomas using the previous unsupervised clustered data obtained from the 36 patients. The num-
ber of clusters was tentatively chosen because 12-class MRcIs showed the best classification performance. MRcIs 
were automatically transferred to the Brainlab Neuronavigation interface (BrainLab AG, Feldkirchen, Germany), 
thereby providing real-time cross-sectional images of the brain intraoperatively. Using this interface, we obtained 
tissue sections in the classes 4 (Class N), 5 (Class N), 9 (Class N), 11 (Class H), and 12 (Class H). Two tissue sam-
ples for Class N and a sample for Class H in the subject 1, one for Class N and one for Class H in the subject 2, one 
for Class N in the subject 3, and two for Class N in the subject 4, respectively (Fig. 6). Therefore, six tissue samples 
for Class N and two for Class H were totally evaluated. Unfortunately, Class L tissue sections were not obtained 
because the correction of the voxels within the tumors was considerably small on the neuronavigational interface 
for these patients. In the Class H pathological tissue samples, we observed atypical tumor cells that were hypercel-
lular with mitotic figures along with vascular proliferation characterized as HGG. Conversely, the classes 4, 5 and 
9 which were defined as Class N showed that cellularity was moderately increased; however, no other anaplastic 
features such as necrosis, destruction, or neovascularization were observed (Fig. 6).

Discussion
We investigated a two-step clustering approach using SOM followed by KM to visualize the grade of glioma with 
MRI and to distinguish HGGs from LGGs. MRcIs enabled us to predict the glioma grading even though they 
were calculated from preoperative images. Next, we assessed the validity of MRcIs for glioma grading in a super-
vised manner using SVM. The 12-class MRcIs exhibited the highest classification performance for predicting the 
glioma grade. The classifier in the 12-class MRcIs showed that the ratios of the classes 11 and 12 were significantly 
higher in HGGs and those of the classes 1 and 2 were significantly higher in LGGs. Four new patients underwent 
individual MRcIs for intraoperative pathological examination; the Class H tissues showed pathological findings 
of HGG, whereas the Class N tissues indicated LGG. Although the relationship between the class and pathology 
should be clarified by examining more patients, the findings of the MRcI-guided tissue sampling suggest that 
regional glioma grading is possible.

Although the method was largely based on that described by Inano et al.17, we improved some methodolog-
ical points. First, we introduced bias field correction implemented as the “unified segmentation” algorithm of 
SPM821,22 to reduce the effect of spatially varying homogeneity in MRcIs. Because bias field correction was not 
considered in our previous study, clustered images revealed spatially varying homogeneity like a color gradient, 
which sometimes makes it difficult to predict the boundary when the boundary class of tumor is the same as the 
outside of tumor. The bias field correction technique made clustered images easier to understand grading. Second, 
BraTumIA23 was newly introduced in this study to define regions of interest (ROIs) automatically. Using the soft-
ware, anyone can reproducibly define the same ROI. It is important to define ROIs as masks for the effective bias 
field correction. Furthermore, the abnormal areas of BraTumIA were sometimes located in multiple parts of the 
brain except tumor, we need to check the number of tumors using conventional MRI to exclude the possibility 
of multifocal gliomas. If a new patient would have multifocal gliomas, we would need to select two or more ROIs 
as masks.

In most previously conducted studies, only one feature was used for grading7,8, and the results of those studies 
are still controversial. Although some of these studies used multiple features for grading in a supervised manner, 
they needed preoperatively to decide pathology of each area, such as edematous tissue, LGG, HGG, because a 
supervised manner needs labeled data. We previously reported a novel unsupervised method that does not need 
pathological information in advance. In that study, we found that multiple features from DTIs were useful for 
glioma grading17. We further used more conventional MRIs in the present study, and the multiple features of these 
conventional MRIs were also useful. Although the T1WIce was remarkable in Class H and was suspected to be 
a key feature for grading, some enhanced areas were not involved in Class H. When considering only T1WIce, 
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both malignant and nonmalignant areas can be included and the grade of glioma cannot be determined. This may 
be the reason why past studies had different results for enhanced tumor regions. Furthermore, it is difficult for 
clinicians to determine where is enhanced especially on slightly enhanced regions. As to our dataset, the number 
of patients whose enhanced regions within tumor were automatically calculated from BraTumIA was 27 and the 
accuracy of preoperative tumor grading was 0.833. Using our clustering methods for only T1WIce as a single fea-
ture, the accuracy of pre-op tumor grading was 0.822, which was worse than our original result (0.863). Although 
using several MR images can facilitate tumor grading by allowing comparison of the images on the basis of the 
individual MRI characteristics, they are not always sufficient for clinicians because it is difficult to distinguish 
slight differences or relationships by the visual inspection of the images. Our method can form a clear clustered 
image summarized by merging the information from the different types of MRIs; each voxel contains information 
for tumor grading. Clinicians can easily grade the gliomas by the visual inspection of the clustered images. Thus, 
our novel method is advantageous because of multiple MRI features, particularly in clinical situations, and shows 
the potential of using multiple features.

The chart patterns of Class H comprised higher T1WIce values than the other Classes. In HGGs, the voxels 
of Class H without vessels were observed and were found to spread like a stain within a tumor. However, the 
enhanced regions were not always clustered in Class H, which were significantly higher in HGGs. This result 
suggests that T1WIce cannot sufficiently predict glioma grade, which may explain why previous studies could 
not show the role of contrast enhancement in tumor grading6–8. Therefore, we focused on contrast-enhanced 
areas within tumors to clarify the role of T1WIce. Class N was seen in both LGGs and HGGs, whereas Class H 
was mostly seen in HGGs, as shown in Fig. 3. This result may indicate that previous reports could not grade the 
gliomas as they only used enhancement information. Contrast enhancement is a sign of a leaky blood–brain 
barrier, and is related to the neovascularity of the tumor6. Conversely, some authors have reported that approxi-
mately 32–40% of nonenhancing glial tumors contain histologically anaplastic components8,24. This means that 
tumor enhancement may be due to the formation of capillaries with an inadequate blood–brain barrier, rather 
than due to the active destruction of the existing blood–brain barrier25. Another study also showed that there is 
a correlation between tumor vascular density and cell proliferation rate26. These studies may indicate that LGG 
can sometimes be enhanced. Conversely, regarding T2WI, Class L had high T2 values, whereas Class H did not. 
Edematous tissue is defined as tissue with a high T2WI signal intensity27, and T2WI hyperintensity is sometimes 

Figure 6. The 12-class MR-based clustered images and the pathological features of resected tissues 
(stained with hematoxylin and eosin) in each class for four patients, including classes 4 (Class N), 5 (Class 
N), 9 (Class N), 11 (Class H), and 12 (Class H). The pathological diagnoses of subjects 1 and 2 were high-
grade gliomas and those of subjects 3 and 4 were low-grade gliomas, all of which were corresponded to the 
preoperative predictions by MR-based clustered images. The pathological hallmarks of high-grade gliomas are 
presented in Class H (right column), and the atypical features and hypercellularity found in HGG are not seen 
in Class N (middle column). Scale bars, 100 μ m.
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considered to indicate edematous tissue; however, the peritumoral hyperintensity on T2WI is nonspecific and 
represents tumor infiltration, vasogenic edema, or both11. Although the classes 3, 5, and 9 also had high T2WI 
values, they were included in Class N. This means that some areas showing T2WI hyperintensity are specific to 
LGGs, whereas others are not. Further, FLAIR can be used to assess abnormalities in the white matter; however, 
hyperintensity on FLAIR can indicate edema and/or tumor cell infiltration. We used two-dimensional T2WI and 
FLAIR data and coregistered them with T1WI. The accuracy of the results may increase if three-dimensional 
T2WI and FLAIR images are applied. However, when considering their clinical application, three-dimensional 
T2WI and FLAIR are uncommon, particularly in local hospitals, and our methods may be sufficiently useful for 
predicting preoperative tumor grading.

The 12-class MRcIs had the best classification performance, and the numbers may be justified when consider-
ing MRI for brain tumors because the following can be identified using this imaging modality: white matter, gray 
matter, cerebrospinal fluid, high-grade tumors, low-grade tumors, infiltration of tumor cells, edema, necrosis, 
gliosis, hemorrhage, cystic lesions, fibrous change, and calcification. However, our goal was not to distinguish 
between these tissues, but to develop a method of determining the parts of brain tumors that are the most likely 
to be malignant. We believe that our additional categorization of the three “Classes” allows improved under-
standing of each class. We defined the classes that were significantly higher in HGGs as “Class H,” those that were 
significantly higher in LGGs as “Class L,” and those that did not contribute to the grading decision as “Class N.” 
This method of categorization was effective from two points of view. First, the suspected malignant areas can be 
visualized; thus, we do not need to further confirm the pathology of the tissue. Second, organizing more voxels 
can make the resection of the tumor via neuronavigational guidance easier because the voxel numbers for some 
classes of MRcIs were considerably small to be visualized on the neuronavigational system and to be resected as a 
separate class. It should be noted that the categorization of the three groups differs from the original smaller num-
ber of classes such as four because we categorized it according to the results of the 12-class MRcIs, which showed 
the best classification performance. In addition, the patterns of the values of the classes 11 and 12 in 12-class 
MRcIs were similar to those of the 8- to 16-class MRcIs. The patterns of the values of the classes 1 and 2 in the 
12-class MRcIs were also similar to those of the 10- to 20-class MRcIs. Although the 12-class MRcIs showed the 
best performance, the other classes of clusters, except for the 4-class MRcIs, also showed high AUCs, with values 
over 0.85. These results suggest that our method is robust for classification regardless of the number of clusters, 
particularly for those over six.

We successfully used our approach to visualize the grade and heterogeneity of gliomas; furthermore, we pro-
spectively applied our method to four new patients in order to confirm the utility of our proposal method and 
the possibility of regional glioma grading. The pathological features were atypical tumor cells that were hyper-
cellular with mitotic figures along with vascular proliferation, thereby suggesting a suspected malignant tumor 
in the pathological tissue samples of Class H. Moreover, although cellularity was moderately increased, no other 
anaplastic features such as necrosis, destruction, or neovascularization were identified in the tissue samples of 
Class N (Fig. 6). The overall accuracy of the two tissues for Class H was 100% (2/2) according to their histological 
grades. Furthermore, the pathological features of all the six tissue samples for Class N did not show any anaplastic 
features. These results suggest that regional grading prediction of Class H using MRcIs is consistent with patho-
logical results. Although the excellent diagnostic accuracy of machine tissue classification for eight tissue samples 
in the four patients, the sample size remains small for a clinically meaningful conclusion and further studies are 
needed with more patients, particularly in terms of validating the diagnostic accuracy of machine tissue classi-
fication. Because of the heterogeneity of gliomas, diagnosis by biopsy is sometimes inaccurate5; the high-spatial 
resolution of T1WI, T1WIce, T2WI, and FLAIR may be better for the correct resection of the suspected malig-
nant area to circumvent the limitation of our previous study involving the use of DTI, which has a low-spatial 
resolution. Although we showed only the 12-class MRcIs showing the best performance as representative cases 
and applied to new patients, all the AUCs among the 6-, 8-, 10-, 12-, 16-, and 20-class MRcIs consistently revealed 
good classification performances over 0.86 shown in Fig. 4A (left). Furthermore, shown in Supplementary Fig. S1, 
the chart patterns of Classes H and L in all numbers of K except 4-class demonstrated a similar pattern to those 
in the 12-class MRcIs. The distribution patterns of classes H and L in MRcIs of all numbers of K except 4 were 
also similar. Although we tentatively chose the 12-class MRcIs showing the best performance in order to obtain 
pathological tissues in each class of an MRcI for new tumors, the distribution patterns of classes H and L regard-
less of numbers of K except 4 were similar in this study. However, a future study with more patients will be needed 
to validate the optimal number of clusters. Although further studies are needed with more patients, our results 
suggest the potential of regional glioma grading using MRcIs. Further studies may be able to clarify the difference 
between “malignant” and “benign” enhanced areas in patients, and can help in surgical strategy, such as identi-
fying the tumor regions that must be resected for good prognosis. Unfortunately, non-enhancing tumor regions 
characterized as Class H were not found in the new four patients or no apparently non-enhancing tumor char-
acterized as Class H was found in the training cohort. It would be important to show apparently non-enhancing 
tumor characterized as Class H and confirmed in histology as high grade. In addition to pathological features, 
genetics subtypes such as IDH1/2 mutations would be important. As our study was retrospective study, as to the 
IDH1 mutation, only 13 out of 21 HGG patients were examined. Two of 10 grade IV gliomas who were examined 
the sequence of the IDH1 gene revealed IDH1 mutation and eight of 10 did not reveal IDH1 mutation. Two of 
three grade III gliomas who were examined the sequence of the IDH1 gene revealed IDH1 mutations and one of 
three did not reveal the IDH1 mutation. The survival outcomes were as the following: all two grade IV patients 
with IDH1 mutation lives at least 32 months, whereas one out of two grade III patient without IDH1 mutation 
only survived 9 months. Mutation of IDH1 gene would be associated with improved outcome28 even in our small 
dataset. The genetic subtypes are one of the prognostic factors and can be used as supervised learning adding to 
the pathological features in prospective study. Applying our method, we may be able to predict the genetic sub-
types by preoperative images in the future. More extensive surgical resection of gliomas is associated with longer 
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life expectancy1; therefore, if tumors can be removed with minimal volume of resection, the risk of functional 
deficit may be decreased, which can improve the quality of life for patients.

Materials and Methods
The overview of the study procedure of the present study is depicted in Fig. 1 and is summarized below:

Clustering stage:
1. Intensity normalization of the bias field-corrected MR images.
2. Feature extraction from intensity-normalized T1WI, T1WIce, T2WI, and FLAIR images.
3. Clustering of the input vectors from the feature extraction using SOM followed by KM.
4. Visualization of the whole brain in MRcIs.

  Classification stage:
5. Calculation of class ratios by MRcIs within the regions of interest (ROIs).
6. Classification using MRcIs by SVM.

We also applied our method prospectively to four new patients in order to confirm the utility of our proposal 
method and the possibility of regional glioma grading. The additional overview of the prospective study proce-
dure is summarized below:

MRcI-guided tissue sampling stage:
1. Construction of MRcIs for new patients according to the clustering stage.
2. Resection of tissue from representative classes in MRcIs during operation.
3. Comparison of pathological tissue samples with the corresponding MRcIs.

Subjects. We retrospectively reviewed 36 patients (23 men, 13 women) with gliomas who underwent DTI, 
T1WI, T1WIce, T2WI, and FLAIR sequences in our study17. 32 out of 33 patients in the previous study were also 
involved though we did not use the same images, that is, DTIs. One patient whose MR images except DTI were 
obtained using another MRI machine was excluded and four more patients whose MR images were obtained 
using the same MRI were added in this study. They were aged between 16 and 83 years and had newly diagnosed 
and histologically confirmed diffusely infiltrative gliomas as defined by the WHO classification29 at the Kyoto 
University Hospital between March 2010 and June 2013. Tumor resections were performed on 35 patients, and a 
biopsy was performed on one patient who has gotten the diagnosis as anaplastic oligoastrocytoma, WHO grade 
III, classified as HGG. Twenty-one tumors were located in the frontal region, nine in the temporal, three in the 
parietal, one in the occipital, and two in the frontoparietal (Table 1). The present study was approved by the Ethics 
Committee of the Kyoto University Graduate School of Medicine (C 570) and written informed consent was 
obtained from all patients. This study was conducted in accordance with the Declaration of Helsinki. Additional 
details of the MRI acquisition of the study are provided in Supplemental Information.

MRI post-processing. The MRI data were analyzed using SPM8 (Statistical Parametric Mapping software; 
Wellcome Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). First, T1WIce, T2WI, 
and FLAIR were coregistered with each T1WI and resliced with the 4th degree B-spline interpolation to match 
with T1WI voxel-for-voxel21 using SPM8. The data were corrected for bias field signals, which corrupt MR images 
spatially22, with the “unified segmentation” algorithm of SPM8 using the default settings (warp regularization =  1, 
warp frequency cut-off =  25, bias regularization =  0.0001, bias FWHM =  60, and voxel size =  1 mm ×  1 mm ×  1 
mm)21,30,31.

The present study was largely based on the method of voxel-based DTI clustering described by Inano et al.17 
with some modifications. First, the features for unsupervised clustering were extracted from the voxels on the four 
MR sequences, namely T1WI, T1WIce, T2WI, and FLAIR, with samples at every 125 (5 ×  5 ×  5) voxels within the 
binary whole brain mask image calculated by gray matter, white matter, and cerebrospinal fluid images, which were 
obtained based on T1WI with the “unified segmentation” algorithm of SPM8 (Segment)21. The number of extracted 
features was 161,157 ±  1853 (mean ±  standard deviation) for each subject. The features of all subjects were stacked 
and used for the input vectors. The components of each input vector were extracted from T1WI, T1WIce, T2WI, 
and FLAIR images in this study. Second, the extracted feature vectors were used for calculating voxel-based clus-
tered images. We applied a two-level clustering approach using a batch-learning self-organizing map (BLSOM)15 
and the K-means+ +  (KM+ + ) algorithm32 for unsupervised clustering. The results from BLSOM are more con-
sistent than those of the standard sequential SOM due to the independence of the input order33, and the KM+ +   
algorithm improves both the speed and accuracy compared with the classic KM algorithm32. Following our pre-
vious study, we chose the numbers of K =  4, 6, 8, 10, 12, 16, 20. We implemented this two-level clustering algo-
rithm using the in-house SOM software, which enabled the use of BLSOM followed by KM+ + . Third, after 
unsupervised clustering by BLSOM followed by KM+ + , 400 protoclusters (weighted vectors) with K-class label 
information were generated. The label information of the nearest protocluster was assigned to each voxel on the 
four intensity-normalized MR images within the binary whole brain mask image. Then, voxel-based images with 
K-class label information were obtained, namely the MRcIs (Fig. 1). The common logarithmic value of the ratio of 
each class in MRcIs was calculated from ROIs defined by BraTumIA described in the next section in each subject 
and used to input the features to the SVM34.

http://www.fil.ion.ucl.ac.uk/spm
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Definition of ROIs. We calculated ROIs from the abnormal areas of the BraTumIA23. ROIs from BraTumIA 
were used for the following two purposes: for the “Masking image” of the “Segment” in SPM and for the calcula-
tion of the common logarithmic value of the ratio of each class in MRcI in each patient. ROIs included necrotic 
tissue, active enhancing tumor tissue, nonenhancing tumor tissue, and edematous tissue. The number of voxels 
in each ROI ranged from 2541 to 306,000. Because the abnormal areas of BraTumIA were sometimes located in 
different parts of the brain, we checked the main part of the tumor using by T1WI, T1CE, T2WI and FLAIR and 
manually defined only one ROI, because all patients had only one tumor mass in the study. There was no other 
manual editing in removing ROIs during incomplete skull stripping. The co-registration function in SPM was 
used instead of the built-in co-registration from BraTumIA. We used these ROIs for the “Segment” of SPM as a 
tumor mask set as the “Masking image”, which forces the masked area not to contribute when estimating param-
eters, in the previous subsection and for SVM, as described in the next section. Note that ROIs were not used for 
unsupervised clustering or for creating MRcIs.

Classification using MRcI: SVM. A linear kernel SVM34 was chosen as a classifier to distinguish between 
LGGs and HGGs and the hyperparameter (C) of the linear kernel SVM was optimized according to the method 
described in a practical guide to SVM classification35 and in our previous study17.

A LOOCV strategy was also used to assess the classification performance that is widely used in machine learn-
ing and allows the use of most of the data for training36. The decision function derived from the training datasets 
is used to classify or calculate a decision value for the test subject. After all the 100 times LOOCV were repeated, 
the mean accuracy, sensitivity, and specificity for all the folds are calculated, respectively. We also evaluated the 
decision values37 for receiver operating characteristic (ROC) curves and AUC, and the CIs of these estimates 
calculated using 100 times LOOCV. We used C+ +  and the LIBSVM library (Chang and Lin, 2011; software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm) to implement a linear kernel SVM with a two-step grid search 
technique for hyperparameter (C) and a LOOCV strategy.

Statistical analysis. Statistical analysis was performed in accordance with our previous study17. We deter-
mined if the classification performances significantly different according to K in the KM+ +  method (K =  4, 6, 
8, 10, 12, 16, 20), and analyzed the AUCs for the different numbers of K by one-way analysis of variance followed 
by Tukey’s multiple comparison tests. Differences were considered to be statistically significant when p <  0.05.

The behavior of the classifier in the K class with the best classification performance was evaluated using the 
pROC library in R to generate ROC curves with 95% CIs computed with 2000 stratified bootstrap replicates17.

Wilcoxon–Mann–Whitney tests with exact p values and CIs calculated by a permutation test followed by a 
Bonferroni correction for multiple comparisons were used to compare the log-ratio values of each class in the 
K class with the best classification performance between LGG and HGG groups38. The differences between the 
groups were considered to be statistically significant when p <  0.05/K.

The ratios of the normalized intensities on the four MR images of each class in the K class with the best classi-
fication performance were analyzed with bootstrapped 95% CIs. Then, we used bootstrapped 95% CIs to analyze 
the ratios of the normalized intensities on three of the MR sequences, namely T1WI, FLAIR, and T2WI, within 
the enhanced tumor regions when K revealed the best classification performance. The statistical software package 
R, version 3.0.2 (The R Foundation for Statistical Computing, http://www.r-project.org/), was used to perform 
all statistical analyses.

References
1. Sanai, N. & Berger, M. S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4), 753–766 (2008).
2. Law, M. et al. Low-Grade Gliomas: Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging–Prediction of 

Patient Clinical Response 1. Radiology 238(2), 658–667 (2006).
3. Ohgaki, H. & Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5), 1445–1453 (2007).
4. McLendon, R. E. & Halperin, E. C. Is the long‐term survival of patients with intracranial glioblastoma multiforme overstated? 

Cancer 98(8), 1745–1748 (2003).
5. Jackson, R. J. et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-oncol 3(3), 193–200 (2001).
6. Watanabe, M., Tanaka, R. & Takeda, N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34(6), 

463–469 (1992).
7. Scott, J., Brasher, P., Sevick, R., Rewcastle, N. & Forsyth, P. How often are nonenhancing supratentorial gliomas malignant? A 

population study. Neurology 59(6), 947–949 (2002).
8. Ginsberg, L. E., Fuller, G. N., Hashmi, M., Leeds, N. E. & Schomer, D. F. The significance of lack of MR contrast enhancement of 

supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49(4), 436–440 (1998).
9. Vogelbaum, M. A. et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response 

Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 70(1), 234–244 (2012).
10. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working 

group. J Clin Oncol 28(11), 1963–1972 (2010).
11. Law, M. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic 

imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24(10), 1989–1998 (2003).
12. Zacharaki, E. I. et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn 

Reson Med 62(6), 1609–1618 (2009).
13. Vijayakumar, C., Damayanti, G., Pant, R. & Sreedhar C. Segmentation and grading of brain tumors on apparent diffusion coefficient 

images using self-organizing maps. Comput Med Imaging Graph 31(7), 473–484 (2007).
14. Reddick, W. E., Glass, J. O., Cook, E. N., Elkin, T. D. & Deaton, R. J. Automated segmentation and classification of multispectral 

magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6), 911–918 (1997).
15. Kohonen, T. Self-Organizing Maps, Springer Series in Information Sciences, vol. 30 (Springer-Verlag Berlin Heidelberg, 1995).
16. MacQueen, J. Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium 

on mathematical statistics and probability (Oakland, CA, USA), pp 281–297 (1967).
17. Inano, R. et al. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading. Neuroimage Clin 5, 

396–407 (2014).

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.r-project.org/


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:30344 | DOI: 10.1038/srep30344

18. Alhoniemi, E., Hollmén, J., Simula, O. & Vesanto, J. Process monitoring and modeling using the self-organizing map. Integr Comput 
Aided Eng 6(1), 3–14 (1999).

19. Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. Neural Networks, IEEE Transactions on 11(3), 586–600 (2000).
20. Velmurugan, T. & Santhanam, T. Computational complexity between K-means and K-medoids clustering algorithms for normal and 

uniform distributions of data points. Journal of computer science 6(3), 363 (2010).
21. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26(3), 839–851 (2005).
22. Juntu, J., Sijbers, J., Van Dyck, D. & Gielen, J. Bias field correction for mri images. Computer Recognition Systems. pp 543–551 

(Springer-Verlag Berlin Heidelberg, 2005).
23. Porz, N. et al. Multi-modal glioblastoma segmentation: man versus machine. PLoS One 9(5), e96873 (2014).
24. Barker, F. G. et al. Age and the risk of anaplasia in magnetic resonance‐nonenhancing supratentorial cerebral tumors. Cancer 80(5), 

936–941 (1997).
25. Atlas, S. W. Magnetic resonance imaging of the brain and spine, vol. 2 (Lippincott Williams & Wilkins, 2009).
26. Tynninen, O. et al. MRI enhancement and microvascular density in gliomas: correlation with tumor cell proliferation. Invest Radiol 

34(6), 427–434 (1999).
27. Castillo, M., Smith, J. K., Kwock, L. & Wilber, K. Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. 

AJNR Am J Neuroradiol 22(1), 60–64 (2001).
28. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine 360, 8, 765–773 (2009).
29. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 114(2), 97–109 

(2007).
30. Focke, N. K. et al. Automated normalized FLAIR imaging in MRI‐negative patients with refractory focal epilepsy. Epilepsia 50(6), 

1484–1490 (2009).
31. Huppertz, H.-J., Wagner, J., Weber, B., House, P. & Urbach, H. Automated quantitative FLAIR analysis in hippocampal sclerosis. 

Epilepsy Res 97(1), 146–156 (2011).
32. Arthur, D. & Vassilvitskii, S. k-means+ + : the advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM 

symposium on Discrete algorithms (Society for Industrial and Applied Mathematics, New Orleans, Louisiana), pp 1027–1035 (2007).
33. Brugger, D., Bogdan, M. & Rosenstiel, W. Automatic cluster detection in Kohonen’s SOM. Neural Networks, IEEE Transactions on, 

19(3), 442–459 (2008).
34. Vapnik, V. N. & Vapnik, V. Statistical learning theory. Vol. 1 (Wiley New York, 1998).
35. Hsu, C.-W., Chang, C.-C. & Lin, C.-J. A practical guide to support vector classification. Technical report (Department of Computer 

Science and Information Engineering, National Taiwan University, 2003).
36. Dosenbach, N. U. et al. Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010).
37. Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology, 

2(3), 27 (2011).
38. Hothorn, T., Hornik, K., Van De Wiel, M. A. & Zeileis, A. A Lego system for conditional inference. The American Statistician 60(3) 

(2006).

Acknowledgements
This work was partly supported by the following: Grant-in-Aid for Scientific Research (C) 15K09920, 15K10361, 
and 25462254 from the Japan Society for the Promotion of Science (JSPS) (to N.O., T.K., and Y.A., respectively), 
Grant-in-Aid for Young Scientists (B) 25861273 from JSPS (to T. K.), Grant-in-Aid for Challenging Exploratory 
Research 25670623 and Scientific Research (B) 24390343 from JSPS (to S.M.), Grant-in-Aid for Scientific 
Research on Innovative Areas, “Glial assembly: a new regulatory machinery of brain function and disorders” (to 
H.F. and N.O.), and “Development of BMI Technologies for Clinical Application” under the Strategic Research 
Program for Brain Sciences by the Ministry of Education, Culture, Sports, Science and Technology of Japan (to 
N.O.).

Author Contributions
R.I., N.O., T.K., Y.A., T.K., H.F. and S.M. designed research; R.I. and N.O. performed research, analyzed data, and 
wrote the paper. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Inano, R. et al. Visualization of heterogeneity and regional grading of gliomas by 
multiple features using magnetic resonance-based clustered images. Sci. Rep. 6, 30344; doi: 10.1038/srep30344 
(2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustere ...
	Results
	Visualization of unsupervised clustering map. 
	Classification performance using MRcI. 
	Differences in the ratio of each class. 
	Differences in the features of each class. 
	Individual patterns in the MRI-derived features. 
	MRcI-guided tissue sampling. 

	Discussion
	Materials and Methods
	Subjects. 
	MRI post-processing. 
	Definition of ROIs. 
	Classification using MRcI: SVM. 
	Statistical analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  Study procedure for MRI data of glioma.
	Figure 2.  Component planes with SOM ranging from blue to red according to intensities in each MRI value.
	Figure 3.  Representative cases of low- and high-grade gliomas, including the 12-class MRcIs, which showed the highest classification performance.
	Figure 4.  (A) Plots of AUC versus the value of K in the KM method.
	Figure 5.  Scatter plot matrix showing the relationships in Classes L, N, and H between the normalized intensity values in T1WIce (CE), T1WI (T1), T2WI (T2), and FLAIR.
	Figure 6.  The 12-class MR-based clustered images and the pathological features of resected tissues (stained with hematoxylin and eosin) in each class for four patients, including classes 4 (Class N), 5 (Class N), 9 (Class N), 11 (Class H), and 12 (
	Table 1.   Summary of patient data.



 
    
       
          application/pdf
          
             
                Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images
            
         
          
             
                srep ,  (2016). doi:10.1038/srep30344
            
         
          
             
                Rika Inano
                Naoya Oishi
                Takeharu Kunieda
                Yoshiki Arakawa
                Takayuki Kikuchi
                Hidenao Fukuyama
                Susumu Miyamoto
            
         
          doi:10.1038/srep30344
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep30344
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep30344
            
         
      
       
          
          
          
             
                doi:10.1038/srep30344
            
         
          
             
                srep ,  (2016). doi:10.1038/srep30344
            
         
          
          
      
       
       
          True
      
   




