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Abstract: The prevalence of the overweight and obesity is on the rise worldwide. Obesity can
increase the risk of certain cancers and liver steatosis development. Previously, we reported that
obesity increased liver steatosis in a mammary tumor model, but little is known about the effects of
obesity in the liver in regard to global DNA methylation, DNA damage, and oxidative/nitrosative
stress. Using a mammary tumor model, we investigated the effects of obesity on oxidative stress
and DNA reaction. Five-week-old lean and obese female rats were used. At 50 days of age, all rats
received 7,12-dimethylbenz(α)anthracene (DMBA) and were sacrificed 155 days later. HPLC with
electrochemical and ultraviolet detection and LC-MS were used. Obesity caused higher (p < 0.0004)
methionine levels, had no effect (p < 0.055) on SAM levels, caused lower (p < 0.0005) SAH levels,
caused higher (p < 0.0005) SAM/SAH ratios, and increased (p < 0.02) global DNA methylation. Levels
of free reduced GSH were not significantly lower (p < 0.08), but free oxidized GSSG was higher
(p < 0.002) in obese rats. The GSH/GSSG ratio was lower (p < 0.0001), and oxidized guanosine
was higher (p < 0.002) in DNA of obese rats compared to lean rats. Obesity caused significant
oxidative/nitrosative stress, oxidative DNA damage, and change of DNA methylation pattern in the
liver, and these changes may contribute to the development of liver steatosis in breast cancer models.
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1. Introduction

For over two decades, the US has experienced a rise in the proportion of overweight and obese
adult population. If current trends continue, it is estimated that all adult Americans will be classified
as overweight/obese by the year 2048 [1]. Similarly, many other countries are experiencing dramatic
increases in obesity. Worldwide, greater than 1.9 billion adults are overweight—of which 600 million
are obese [2,3]. These statistics reveal serious health implications due to the association between obesity
and the risk for chronic diseases, including type 2 diabetes, cardiovascular disease, liver disease, and
certain types of cancer [4]. Obese populations have higher mortality rates from all cancers and other
chronic diseases [5–7].
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Obesity is shown to have a significant impact on the metabolic profiles for a variety of
cellular-tissue-organ levels in animals and humans. Several studies have shown that obesity can
play an important role in the promotion of fatty liver. Fatty liver disease, ranging from simple hepatic
steatosis and non-alcoholic steatohepatitis to cirrhosis, is a major health problem in the US and the
world [8–11]. It is well established that liver diseases are often accompanied by significant changes
in methionine cycle metabolites [12–15]. However, the full pathophysiological picture of fatty liver
conditions is not completely understood and requires more research. We hypothesize that obesity
will increase oxidative/nitrosative stress and DNA modification in 7,12-dimethylbenz(α)anthracene
(DMBA)-induced mammary tumor models. Previously, we reported the methionine pathway
metabolites had different serum concentration in obese rats compared to lean in obese DMBA-treated
rat model [16]; however, the correlation between the serum and liver metabolic profiles has not been
investigated in this model.

Methionine is an essential amino acid involved in multiple intracellular functions such as protein
synthesis and methylation of a variety of substrates (more than 100 methylation reactions), including
DNA and glutathione synthesis [17]. In the liver under physiological conditions, methionine is
converted to S-adenosylmethionine (SAM), a primary source of a methyl group (CH3) (Figure 1).
The availability of CH3 and activity of cell/organ specific methylases are equally important and
required for transmethylation reactions. After donation of a methyl group, including DNA methylation,
SAM is converted to S-adenosylhomocysteine (SAH). SAH is a very potent inhibitor of cellular
methylation reactions [18,19] and is further converted to homocysteine. Homocysteine can be
remethylated back to methionine using a methyl group from folate, or can be used in a downstream
transsulfuration path to generate cysteine and, subsequently, glutathione.
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Figure 1. Methionine metabolism, DNA methylation, and DNA oxidative damage.

Glutathione is the most abundant intracellular antioxidant in the liver and plays an important
role in maintaining intracellular redox balance [20–22]. Alteration of the intracellular redox balance
creates oxidative/nitrosative stress and can affect the activity of multiple intracellular proteins and
affect the activity of a variety of enzymes including methylases [19,23,24].

There is a link between obesity and the development of epigenetic DNA modification and
DNA damage that can lead to a chronic pathological condition in the liver. Oxidative stress is an
important part of this condition as it exacerbates DNA damages and the formation of a modified base
8-OH-guanosine. 8-OH-Guanosine is well accepted and widely used as a measure for testing in the
research community for monitoring and evaluating oxidative damage. DNA oxidative damage takes
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place frequently in cases of fatty liver and may be associated with chronic pathological conditions
leading to liver fibrosis and cancer. It has been reported that fatty liver can lead to DNA damage
mediated by reactive oxygen species and the formation of 8-OH-guaonosine [25,26].

Previously, we showed that obesity increases fatty liver in a mammary tumor model [27].
The obese rats had a significantly higher steatosis score (4.90 ± 0.06) when compared to the lean
rats (1.53 ± 0.11) (p < 0.01). Additionally, we included images that show representative hepatic liver
steatosis in lean and obese rats (Figure 2). However, the effects of obesity on the level of global DNA
methylation, DNA damage, and oxidative stress in liver of the DMBA-induced mammary tumors
have not been reported. In the present study, we used the DMBA-induced mammary tumor obese
Zucker rat model to investigate the effects of obesity on liver oxidative and nitrosative stress and on
the modification of DNA bases that can contribute to the development of liver steatosis.
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Figure 2. Left photomicrograph shows micro- and macro-vesicular steatosis in obese rats involving
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evidence of fatty changes in lean rats (original mag 40×).

2. Results

We used a lean and obese Zucker rat model to investigate the effects of obesity on the level of global
DNA methylation, DNA damage, and oxidative stress in the liver of DMBA-induced mammary tumors.

2.1. Methylation Circle Metabolites and Global DNA Methylation Level

Our results show (Table 1) that obesity caused significantly higher (p < 0.0004) methionine levels,
lower (p < 0.0005) SAH levels, and higher (p < 0.0005) SAM/SAH ratios (methylation ratio). Global
DNA methylation, defined as relative level of 5-methylcytosine, of obese rats was significantly (p < 0.02)
higher compared to the lean rats. A multiple liner regression analysis of methylation ratio versus global
DNA methylation shows a significant (p-value = 4.27 × 10−16) difference in linear slopes and data
distribution between obese and lean animals (F(3, 42) = 67.38, p = 4.27 × 10−16, R2 = 0.83) (Figure 3).

Table 1. Level of methionine metabolites and global DNA methylation in liver of lean and obese rats.

Metabolites Obese (n = 20) Lean (n = 26) p

Methionine (nmol/mg protein) 0.798 ± 0.187 0.596 ± 0.129 <0.0004
SAM (nmol/mg protein) 0.868 ± 0.325 0.703 ± 0.247 0.055
SAH (nmol/mg protein) 0.184 ± 0.039 0.267 ± 0.069 <0.0005

SAM/SAH 4.91 ± 1.882 2.72 ± 1.051 <0.0005
5-methylcytosine (%) 4.882 ± 0.675 4.37 ± 0.673 <0.02

mean ± standard deviation.
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2.2. Reduced and Oxidized Glutathione, their Ratio, and Oxidative DNA Damage Level

Levels of free reduced glutathione (GSH) (Table 2) were not significantly (p < 0.08) lower in
obese rats compared to lean rats, but the level of free oxidized glutathione disulfide (GSSG) was
significantly (p < 0.002) higher in obese rats compared to the lean rats. The GSH/GSSG ratio was
significantly (p < 0.0001) lower in obese rats compared to lean rats. Obese rats developed a significantly
higher (p < 0.004) level of oxidized guanosine (8-OH-guanosine) in DNA liver compared to lean rats.
Multiple liner regression modeling of the GSH/GSSG ratio versus DNA oxidation shows significant
(p-value = 2.21 × 10−14) difference in linear slope and data distribution between two obese and lean
animals (F(3, 42) = 53.37, p = 2.21 × 10−14, R2 = 0.79) (Figure 4).

Table 2. Level of glutathione metabolites and DNA oxidation in liver of lean and obese rats.

Metabolites Obese (n = 20) Lean (n = 26) p

GSH (nmol/mg protein) 28.2 ± 6.28 31.8 ± 6.96 <0.08
GSSG (nmol/mg protein) 0.864 ± 0.157 0.738 ± 0.125 <0.002

GSH/GSSG 32.9 ± 6.77 43.8 ± 10.13 <0.0001
8-OH-Guanosine (ng/µg DNA) 0.528 ± 0.139 0.409 ± 0.121 <0.004

mean ± standard deviation.
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2.3. S-Nitrosoglutathione and 3-Nitrotyrosine Level

Levels of 3-nitrotyrosine (p < 0.04) as well as levels of S-nitrosoglutathione (GSNO) in obese rats
were significantly higher (p < 0.04) compared to lean rats (Table 3).

Table 3. Level of nitrosative stress metabolites in liver of lean and obese rats.

Metabolites Obese (n = 20) Lean (n = 26) p

GSNO (pmol/mg protein) 37.2 ± 7.46 30.4 ± 12.51 <0.04
nitrotyrosine (nmol/mg protein) 0.261 ± 0.035 0.239 ± 0.036 <0.04

mean ± standard deviation.

3. Discussion

Our original experiment was designed to investigate the effects of obesity on mammary tumor
development. We treated all rats with 7,12-dimethylbenz(α)anthracene (DMBA) and found that the
liver samples were not affected by cancer in either lean or obese rats. We had an opportunity to
investigate and compare liver metabolic status in these two groups of animals. In the present study,
the liver of obese rats demonstrated a higher level of essential amino acid methionine. An increase in
the level of methionine in the liver of obese rats was also reported by Serkova et al. [28]. This higher
level of methionine could resonate and be a part of general and complicated trends of imbalance in
amino acids metabolism in the livers of obese rats [29]. We were interested in investigating the effects
of obesity on methionine content in the liver because almost half of human or animal body methionine
metabolism happens in the liver [30] and methionine participates in biological methylation reactions
and glutathione synthesis. Additionally, an increase in the level of SAM and a decrease in the SAH
level in obese animals compared to the lean group resulted in higher SAM/SAH ratios in the livers
of obese rats. The increase of global DNA methylation in the liver of obese rats in our study was
also reported by Williams et al. [31]. The increase in the methylation ratio in the liver of an obese rat
can affect global DNA methylation, which can result in hypermethylation of specific genes [32–34].
Additionally, despite the same line direction in multiple liner regression analysis in both groups, the
slope of the liver of obese rats was significantly steeper (p < 10−15), and the data variability is different
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compared to lean animals. We consider global DNA hypermethylation to be an important contributor
to pathogenesis of fatty liver, which can further develop to cancer [35].

In the present study, obesity led to lower levels of the reduced (active) form of glutathione,
higher levels of the oxidized (inactive) form GSSG, and higher levels of oxidative stress based
on lower GSH/GSSG ratios (oxidative stress ratio), as has also been previously reported by other
investigators [36,37].

Increase of pro-oxidative environment contributed to an increase in DNA damage by reactive
oxygen species products based on an increase in the content of oxidized guanosine (8-OH-guanosine)
present. Despite the same line direction in multiple liner regression analysis in both groups, the slope
of the liver of obese rats is significantly less steep (p < 10−13), and data variability is different between
the two groups. This finding indicates the rate of DNA damage by reactive oxygen species will increase
much faster in obese animals with the same depletion rate of the GSH/GSSG ratio. In addition to
higher levels of oxidative stress in obese rats, we observed an increase in the level of nitrosative
stress created by reactive nitrogen species in the livers of obese animals, as has been reported by
others [38,39]. The combination of oxidative and nitrosative stress has much more potential damaging
power and much higher capabilities in maintaining of chronic inflammation and immunological
dysbalance in the liver [40–42]. The combination of oxidative and nitrosative stress with chronic
inflammation conditions can be considered important contributing factors to fatty liver development in
DMBA-induced mammary tumor models. The pathogenetic role of 8-OH-guanosine in the formation
of fatty livers is not clear. Future study in our laboratory will focus on the role of oxidative/nitrosative
stress, DNA damage, and DNA methylation status in the pathogenesis of steatosis in DMBA-induced
mammary tumor models using Zucker rat models.

4. Materials and Methods

• Experimental Design: The animal protocols were approved by the Institutional Animal Care and
Use Committee and the Institutional Animal Care and Use Committee of the University of
Arkansas for Medical Sciences. A total of 46 five-week-old female Zucker rats (20 obese fa/fa
and 26 lean) were obtained from Harlan Industries (Indianapolis, IN, USA). Harlan Industries
performed genotyping to identify fa/fa and lean/lean rats at the age of 24 days. Rats were housed
2 per cage with ad libitum access to water and semi-purified diet (AIN-93G diet, Harlan Teklad,
Madison, WI, USA). At 50 days of age, all rats, as part of an experiment on the effects of obesity
on mammary tumor development [43], received the carcinogen 7,12-dimethylbenz(α)anthracene
(DMBA, Sigma Chemical Co., St. Louis, MO, USA) via gavage (65 mg DMBA/kg body weight
in sesame oil). Rats were euthanized at approximately 155 days later. Livers were removed and
weighed. The livers were snap-frozen in liquid nitrogen and stored at −80 ◦C until processing for
analysis of the metabolic profile related to methionine cycle and oxidative and nitrosative stress.

• Methods: Liver sections were evaluated for the presence of microvesicular and macrovesicular
steatosis. The percentage of liver cells showing fat accumulation was estimated (Figure 2). A score
of 1 to 4 was given to each section, reflecting the relative degree of steatosis in hepatocytes:
1 (<25%), 2 (25–50%), 3 (51–75%), and 4 (>75%) [27].

• To detect and quantify metabolites of our interest in the livers of Zucker rats, we used
high-performance liquid chromatography with electrochemical (HPLC-ECD) and ultraviolet
(HPLC-UV) detection and liquid chromatography-mass spectrometry (LC-MS) techniques.
All methodological details about HPLC-ECD have been described previously [44,45]. Briefly,
approximately 20 mg of frozen liver tissue were homogenized in ice-cold phosphate-buffered
saline buffer. To precipitate proteins, 10% metaphosphoric acid was added to the homogenate
and incubated for 30 min on ice. The samples were then centrifuged at 18,000 g at 4 ◦C for 15 min,
and 20 µL or 10 µL of the resulting supernatants were injected into the HPLC or LC-MS systems
accordingly for metabolite quantification. The pellet was used for protein analysis using BCA
protein assay.
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DNA was extracted from frozen liver samples using the Puregene DNA Purification kit (Qiagen,
Valencia, CA, USA). The levels of 8-OH-guanosine and 5-methylcytosine in liver DNA were measured using
HPLC-UV combined with electrospray tandem mass spectrometry (LC-MS) as previously detailed [46].

5. Statistical Analysis

Results are presented as mean ± standard deviation. Significant differences, p < 0.05, between
groups were evaluated using an unpaired 2-tailed Student’s t-test. Multiple linear regression modeling
and graphing were performed in the R statistical computing environment [47]. The linear regression
modeling algorithm in the R Stats Package, stats, was used to create the multiple linear regression
models as well as perform summary statistical assessment of the overall model fit and evaluation of the
model coefficients. All model coefficients were significant contributors to the fitted models (p < 0.05).

6. Conclusions

In summary, obesity caused a very complex change of metabolic profile in liver with significant
oxidative/nitrosative stress, oxidative DNA damage, and change of DNA methylation pattern. This
combination of factors can contribute to the development of liver steatosis in breast cancer models.

Further research focus is needed to investigate the relationship between modification of DNA
methylation and oxidative by DNA damage in the development of liver steatosis in breast cancer model.
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CH3 methyl group
DMBA 7,12-dimethylbenz(α)anthracene
DNA deoxyribonucleic acid
Fa fatty
GSH glutathione
GSNO S-nitrosoglutathione
GSSG glutathione disulfide
HPLC high-performance liquid chromatography
HPLC-ECD high-performance liquid chromatography with electrochemical detection
HPLC-UV high-performance liquid chromatography with ultraviolet detection
LC-MS liquid chromatography-mass spectrometry
Mg milligram
n number
ng nanogram
nmol nanomole
p p-value
pmol picomole
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SD standard deviation
Mg microgram
µL microliter
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