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Abstract

After the severe nuclear disaster in Fukushima, which was triggered by the Great East

Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut

down for mandatory inspections. To prevent large-scale blackouts, the Japanese govern-

ment requested companies and households to reduce electricity consumption in summer

and winter. It is reported that the domestic electricity demand had a structural decrease

because of the electricity conservation effect (ECE). However, quantitative analysis of the

ECE is not sufficient, and especially time variation of the ECE remains unclear. Understand-

ing the ECE is important because Japan’s NDC (nationally determined contribution)

assumes the reduction of CO2 emissions through aggressive energy conservation. In this

study, we develop a time series model of monthly electricity demand in Japan and estimate

time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on

CO2 emissions from power plants. The dynamic linear model is used to separate the ECE

from the effects of other irrelevant factors (e.g. air temperature, economic production, and

electricity price). Our result clearly shows that consumers’ electricity conservation behavior

after the earthquake was not temporary but became established as a habit. Between March

2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%,

and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the

total electricity demand was estimated at 3.2%–6.0%. We found a seasonal pattern that the

residential ECE in summer is higher than that in winter. The emissions increase from the

shutdown of nuclear power plants was mitigated by electricity conservation. The emissions

reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (−4.5% on average compared to

the zero-ECE case). The time-varying ECE is necessary for predicting Japan’s electricity

demand and CO2 emissions after the earthquake.
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Introduction

After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan

earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for

mandatory inspections. The Nuclear Regulation Authority requested electric power companies

to ensure that all nuclear power plants satisfy new regulatory standards [1]. As of February

2018, only five reactors are in operation, nine reactors are preparing to resume operations,

while 28 reactors remain closed [2]. To avoid a lack of power supply, electric power companies

were forced to increase fossil fuel power generation (Fig 1). At the same time, the Japanese

government asked companies and households to reduce electricity consumption in summer

and winter. In particular, large-scale consumers (contracts of more than 500 kW) in the Kanto

and Tohoku regions were obligated to reduce peak-time electricity consumption in the sum-

mer of 2011 by 15% compared to the summer of 2010 [3]. Early questionnaire surveys show

that companies and households conserved electricity by turning off lights, introducing LED

lights, and limiting the use of air conditioners [4–8]. Owing to the aggressive electricity conser-

vation, Japan could prevent large-scale blackouts except for the rolling blackout implemented

in the Kanto region right after the earthquake. In 2016 and 2017, the Japanese government did

not request electricity conservation to consumers because the risk of electricity shortage was

sufficiently low [9, 10].

Understanding the electricity conservation effect (ECE) is important from the viewpoint of

climate policy. Japan’s NDC (nationally determined contribution), which was submitted to

UNFCCC in July 2015, assumes the reduction of CO2 emissions through aggressive energy

conservation [12]. According to METI [13], Japan needs to reduce electricity demand in 2030

Fig 1. Japan’s electric power generation by energy source, January 1988–March 2016. Source: EDMC Databank [11].

https://doi.org/10.1371/journal.pone.0196331.g001
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by 17% compared to the BAU case. Since the earthquake, many researchers have investigated

the ECE using econometric models. Cho et al. [14] estimate the annual ECEs for 47 prefectures

of Japan using the spatial Durbin model. They obtain the result that the earthquake decreased

the domestic electricity demand in 2011 by 1.3% and increased the domestic CO2 emissions in

the same year by 0.3%. Hayashida et al. [15] estimate a regression model of quarterly electricity

demand and compare electricity demand after the earthquake with the 2010 level. The ECE on

industrial electricity demand in 2011 was 5.4%, and it increased to 7.1% in 2012. The ECE on

the residential electricity demand increased from 5.5% to 9.9%. Nishio [7] investigates electric-

ity conservation by households in the Kanto and Kansai regions using panel data collected by

questionnaire surveys. In the summers of 2011–2014, the ECE in the Kanto region ranged

from 8.8% to 11.2%, while the ECE in the Kansai region ranged from 6.0% to 11.7%. Kabe [16]

estimates a regression model of annual electricity demand in the residential sector, and

pointed out the possibility that electricity conservation after the earthquake was partly moti-

vated by the rise in electricity price. Mase and Hayashida [17] estimate a regression model of

quarterly electricity demand in the industrial sector. They apply the Wald test to the model

and find that the production elasticity of electricity demand had a structural change in the

summer of 2011.

Previous studies help us understand the impact of the earthquake on electricity demand,

but they have three limitations. First, previous studies use annual or quarterly data, and the

data size after the earthquake is quite small. Time variation of the ECE has not yet been suffi-

ciently analyzed, and it remains unclear whether consumers’ electricity conservation behavior

after the earthquake became established as a habit or not. Second, previous studies use static

regression models (SRMs) with constant parameters and pay little attention to long-term

changes in electricity consumption behavior of companies and households. Time series data of

energy demand contain a trend driven by changes in technologies and consumers’ habits,

which is called underlying energy demand trend (UEDT). It is known that the UEDT follows a

stochastic process rather than a deterministic process [18–23]. Furthermore, the coefficients of

explanatory variables (e.g. energy price, income, and air temperature) also stochastically

change with time [20, 22, 24–26]. Due to the non-stationarity of electricity demand data, the

SRM fails to separate the ECE from the effects of other irrelevant factors. Third, the estimation

of the ECE by the SRM causes the overfitting problem. The SRM requires a dummy variable to

estimate the ECE at each time step [7, 15]. The number of dummy variables increases as the

data size after the earthquake increases. If the same approach is applied to monthly electricity

demand, the model is overparameterized, and the estimation result becomes unreliable.

In this study, we develop a time series model of Japan’s monthly electricity demand and

estimate time variation of the ECE. At the same time, we evaluate the reduction of CO2 emis-

sions achieved by electricity conservation. To overcome the limitations of previous studies, we

use the dynamic linear model (DLM) [27–30] instead of the SRM. The DLM, which is a natural

expansion of the SRM, has time-varying parameters which follow stochastic processes (e.g.

Gaussian random walk). The DLM has an advantage that it can detect stochastic trends hidden

in time series data. The DLM with the time-varying intercept is helpful in estimating the

UEDT, and it has been applied to energy demand data in various countries [18, 19, 21–23]. If

time series data have cyclic patterns (e.g. monthly electricity demand), seasonal components

are added to the model [20, 31–33]. The DLM is also used to investigate whether price and

income elasticities of energy demand are time-varying or not [22, 24, 25]. Another advantage

of the DLM is that it can easily describe structural changes in time series data. By introducing

an intervention variable [30, 34] into the model, we can estimate the time-varying effect of an

exogenous shock without inflating the number of parameters. These characteristics of the

DLM are suitable for our research purpose.

Time variation of electricity conservation effect
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In addition to the DLM, the artificial neural network (ANN) is also a powerful tool for pre-

dicting time variation of electricity demand. The ANN is the learning model which converts

input vectors to output vectors using the network structure called hidden layer. The ANN

requires less mathematical restrictions compared to statistical models (e.g. SRM and DLM)

and can predict complex time series such as hourly electricity demand with high accuracy [35,

36]. Due to the network structure, however, it is difficult to extract interpretable information

about the effects of explanatory variables from the estimated ANN. In contrast, we can easily

interpret the estimation result of the DLM because the effects of explanatory variables are inde-

pendent of each other. The ECE is directly given by the coefficient of the intervention variable

which represents the impact of the earthquake on electricity demand. For this reason, the

DLM is preferable to the ANN in the ECE estimation.

This paper is structured as follows. In Materials and Methods, the industrial and residential

electricity demand models are defined. The model structure is determined based on Akaike

information criterion (AIC) [30, 37]. In Results and Discussion, the estimation results of the

electricity demand models are shown. The monthly ECEs are calculated, and the impacts of

electricity conservation on electricity-related CO2 emissions are evaluated. Limitations of our

approach are also discussed. Conclusion summarizes this paper.

Materials and methods

Electricity demand in Japan

In Japan, electricity demand is traditionally classified into two categories: Doryoku and Dento.

The former indicates electricity used for large equipment of factories and office buildings (e.g.

industrial motors, pumps, and elevators), while the latter indicates electricity used for small

appliances (e.g. personal computers, packaged air conditioners, and room lights). For simplic-

ity, we refer to Doryoku and Dento as the industrial and residential electricity demands,

respectively. Fig 2 shows the industrial, residential, and total electricity demands between Jan-

uary 1988 and March 2016. The total electricity demand increased by 60% between 1988 and

2008, but no clear increase was observed in recent years. The industrial electricity demand

accounts for 60%–78% of the total electricity demand. It has a seasonal peak in summer and is

influenced by changes in economic production. A rapid fall caused by the 2008–2009 global

financial crisis is seen. Meanwhile, the residential electricity demand has two seasonal peaks in

summer and winter. The level of winter has continued to increase since 1988, and the seasonal

difference is expanding. As the industrial and residential electricity demands show different

cyclic patterns, we need to analyze them separately.

Model equations

A DLM consists of an observation equation and state equations. The observation equation

describes the relationships between electricity demand and explanatory variables. As explana-

tory variables, statistical models of electricity demand include economic activity indices (e.g.

GDP, disposable income, and household consumption expenditure), energy prices, and

weather conditions. We consulted previous studies about Japan’s electricity demand [15–17]

and selected the explanatory variables such that long-term monthly data are available. Unlike

the SRM, parameters can vary with time. The dynamics of parameters are described by state

equations. To simplify the process of model estimation, we assume that parameters follow

Gaussian random walks. In this case, parameters can be estimated by combining the maxi-

mum likelihood estimation and the Kalman filter. The R package dlm [29, 38] is used for

model estimation.

Time variation of electricity conservation effect
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Industrial electricity demand. The observation equation of industrial electricity demand

(Eind
t ) is defined as

logEind
t ¼ sind

t þ y
1

t þ y
2

t Ct þ y
3

t Ht þ y
4

t logQt þ y
5

t logPind
t þ y

6

t It þ vind
t ; ð1Þ

where

vind
t � Nð0;V indÞ: ð2Þ

Ct and Ht are cooling and heating degree days (CDD and HDD), respectively. Let

T1
t ;T

2
t ; . . . ;TnðtÞ

t be the data of daily average temperature (DAT) in month t. Then

Ct ¼
XnðtÞ

i¼1

maxfTi
t � T�cdd; 0g; ð3Þ

Ht ¼
XnðtÞ

i¼1

maxfT�hdd � Ti
t ; 0g; ð4Þ

where T�cdd and T�hdd are base temperatures. As the proxies of countrywide CDD and HDD, we

use the population-weighted mean values of the degree-day indices in the central cities of 47

prefectures. The base temperatures differ from region to region because the demand for air

conditioning depends on climatic conditions, types of buildings, and consumers’ lifestyle [39–

41]. We consider the base temperatures as parameters and search the best combination

Fig 2. Industrial, residential, and total electricity demands in Japan, January 1988–March 2016. Source: EDMC Databank [11]. Self-consumption in

companies with private power plants is not included.

https://doi.org/10.1371/journal.pone.0196331.g002
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through model selection (see Model selection). Qt is an economic production index, and Pind
t is

an electricity price index in the industrial sector. It is the intervention variable that switches

from zero to one in March 2011. The seasonal component sind
t represents the basic electricity

demand that is unique in each month. y
1

t is the intercept, and y
2

t ; y
3

t ; . . . ; y
6

t are the coefficients

of the explanatory variables. vind
t is an observation error term with variance Vind.

The state equations of industrial electricity demand are defined as follows:

sind
tþ1
¼ �

X11

i¼1

sind
tþ1� i þ sind

t ; sind
t � Nð0; SindÞ; ð5Þ

y
j
tþ1
¼ y

j
t þ wj

t; wj
t � Nð0;WjÞ; j 2 f1; 2; . . . ; 6g: ð6Þ

sind
t ;w

1
t ;w

2
t ; . . . ;w6

t are state error terms with variances Sind, W1, W2, . . ., W6, respectively.

From the signs of the state error variances (SEVs), we can know whether parameters are time-

varying or not. If all the SEVs are zero, the DLM is equivalent to the SRM. Eq (5) describes the

dynamics of the seasonal component. Monthly electricity demand has a cycle of 12 months.

The static seasonal component is given by the combination of constants sind
t
; sind

tþ1
; . . . ; sind

tþ11

such that
Ptþ11

t¼t
sind
t ¼ 0 for any τ� 1. Hence sind

tþ11
¼ �

Ptþ10

t¼t
sind
t . This equality is rewritten

as sind
tþ1
¼ �

P11

i¼1
sind
tþ1� i for any t� 11. By adding the state error term to the right-hand side,

we obtain Eq (5). See Durbin and Koopman [30] for details.

Residential electricity demand. The observation equation of residential electricity

demand (Eres
t ) is defined as

log
Eres
t

Nt

� �

¼ sres
t þ z

1

t þ z
2

t Ct þ z
3

t Ht þ z
4

t logYt þ z
5

t logPres
t þ z

6

t It þ ut; ð7Þ

where

ut � Nð0;UÞ: ð8Þ

Nt is population, Yt is the real wage index, and Pres
t is an electricity price index in the residential

sector. To separate the ECE from the effect of population growth, we use residential electricity

demand per capita as the response variable. sres
t is the seasonal component, z

1

t is the intercept,

and z
2

t ; z
3

t ; . . . ; z
6

t are the coefficients of the explanatory variables. ut is an observation error

term with variance U. It is known that the day of the week (DOW) influences electricity

demand in households through occupants’ activities [42–45]. To separate the ECE from the

DOW effect, we add the following static regression term to the observation equation:

ut ¼
X7

i¼1

ZiDi
t þ vres

t ; vres
t � Nð0;V resÞ; ð9Þ

where D1
t ;D

2
t ; . . . ;D7

t are the numbers of Mondays, Tuesdays, Wednesdays, Thursdays, Fri-

days, Saturdays, and Sundays in each month, respectively. η1, η2, . . ., η7 are constant parame-

ters, and vres
t is an observation error term with variance Vres. Not all of the DOW variables are

necessary for predicting residential electricity demand. We select the combination of the

DOW variables that minimizes AIC of the model (see Model selection).

Time variation of electricity conservation effect
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Similar to the industrial electricity demand model, the state equations of residential electric-

ity demand are defined as follows:

sres
tþ1
¼ �

X11

i¼1

sres
tþ1� i þ sres

t ; sres
t � Nð0; SresÞ; ð10Þ

z
j
tþ1
¼ z

j
t þ zjt; zjt � Nð0;ZjÞ; j 2 f1; 2; . . . ; 6g; ð11Þ

where sres
t ; z

1
t ; z

2
t ; . . . ; z6

t are state error terms, and Sres, Z1, Z2. . ., Z6 are unknown variances.

Data

The index of all industry activity (IAA) is used as the economic production index. The IAA is

the added-value weighted mean of the production indices in construction, mining,

manufacturing, and service industries. The IAA can be interpreted as the monthly GDP. The

electricity price indices in the industrial and residential sectors are taken from corporate goods

price index (CGPI) and consumer price index (CPI), respectively. The real wage index was cal-

culated by deflating the nominal wage index with CPI (all items except the imputed rent). The

base year of the economic indices is 2010. The data sources are listed in Table 1. We use the

dataset between January 1988 and March 2016 for model estimation (Fig 3). The data size is

339. The data period was determined based on the data availability. The primary source of the

electricity demand data is Energy Survey Statistics [46] provided by Agency for Natural

Resources and Energy. As of February 2018, the period of the electricity demand data is Janu-

ary 1986–October 2017, but the IAA data before January 1988 are not available. Moreover, the

system of Energy Survey Statistics greatly changed in April 2016 because of the liberalization

of electricity retailing. For these reasons, we selected the above data period.

Model selection

In the previous section, we defined the model equations of the industrial and residential elec-

tricity demands. A number of different models are generated from the model equations

depending on (i) the base temperatures of the degree-day indices, (ii) the signs of SEVs (zero

or positive), and (iii) the combination of DOW variables. Following previous studies [28, 30,

31], we select the best model based on AIC. AIC of each model is calculated as

AIC ¼ � 2Lþ 2k; ð12Þ

where L is the maximum log likelihood and k is the number of unknown parameters. For

Table 1. Model variables and data sources.

Symbol Variable Data source

Eind
t ;E

res
t Industrial and residential electricity demands IEEJ [11]

Nt Population Statistics Bureau [47]

Ct, Ht Cooling and heating degree days JMA [48], Statistics Bureau [47]

Qt Index of all industry activity METI [49]

Yt Real wage index IEEJ [11], Statistics Bureau [50]

Pind
t Corporate goods price index (low tension power) Bank of Japan [51]

Pres
t Consumer price index (electricity) Statistics Bureau [50]

D1
t ;D

2
t ; . . . ;D7

t DOW variables Calculated by the authors

It Intervention variable Calculated by the authors

https://doi.org/10.1371/journal.pone.0196331.t001
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example, if we assume the fully dynamic model for industrial electricity demand, an observa-

tion error variance, seven SEVs, eleven seasonal components, an intercept, and five coefficients

need to be estimated from the dataset (see Eq (1)). Hence k = 25. Meanwhile, if we assume the

SRM for industrial electricity demand, all the SEVs are set to zero. In this case k = 18. A smaller

value of AIC indicates a better model. To reduce the amount of calculation, we sequentially

determine (i)—(iii) rather than simultaneously.

Fig 3. Data of the explanatory variables, January 1988–March 2016. The degree-day indices with the base temperature of 18˚C are shown as

reference. The DOW and intervention variables are not shown. Data sources are listed in Table 1.

https://doi.org/10.1371/journal.pone.0196331.g003

Time variation of electricity conservation effect
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We did not employ the hierarchical likelihood ratio test (HLRT) for model selection. The

HLRT attempts to select the best model by iterating the process of applying the likelihood ratio

test to two nested models. However, the HLRT has two severe problems [52, 53]. First, the

result of model selection can change depending on the order in which candidate models are

compared. Second, the HLRT iteratively applies the likelihood ratio test to the same dataset,

which inflates the probability of type I error (false positive). When the number of candidate

models is large, it is difficult to find the best model by the HLRT.

Step (i): Base temperatures of the degree-day indices. First, we determine the base tem-

peratures of the degree-day indices. At this stage, the DOW effect represented by Eq (9) is not

included in the observation equation of residential electricity demand. It is assumed that all

the SEVs are positive. The base temperature of CDD (T�cdd) is chosen from 18, 19, . . ., 27˚C,

and the base temperature of HDD (T�hdd) is chosen from 4, 5, . . ., 18˚C. The lower and upper

bounds of the candidate temperatures correspond to 0.1- and 0.9-quantiles of the DAT data

in the 47 prefectures (1 January 1988–31 March 2016) [48], respectively. There are 150

(= 10 × 15) candidate models for each of the industrial and residential electricity demands.

We calculate AIC for all the candidate models and search the combination ðT�cdd;T
�
hddÞ that

minimizes AIC.

Fig 4 shows the result of model selection. AIC of the industrial electricity demand model is

minimized at ðT�cdd;T
�
hddÞ ¼ ð19�C; 11�CÞ. AIC of the residential electricity demand model is

minimized at ðT�cdd;T
�
hddÞ ¼ ð23�C; 18�CÞ. The base temperature of HDD in the industrial sec-

tor is much lower than that in the residential sector. This result is explained by the fact that

major industries use a large amount of electricity for cooling equipment and goods throughout

the year. For example, the information and communication industry must constantly cool

down computers in data centers. The retail industry also needs to keep food products cold

regardless of the season. As the DAT decreases, the demand for space heating increases, while

the demand for cooling equipment and goods decreases. The correlation of electricity demand

with the DAT is unclear when the DAT lies between 11˚C and 18˚C. If the DAT decreases to

below 11˚C, the correlation becomes visible. Meanwhile, the base temperature of CDD in the

residential sector is much higher than that in the industrial sector. This result can be explained

Fig 4. Result of model selection (i): Relationships between the base temperatures of the degree-day indices and AIC of the electricity demand

models.

https://doi.org/10.1371/journal.pone.0196331.g004
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by two hypotheses. First, the residential sector may be less sensitive to hot weather than the

industrial sector because workers use air conditioners in offices or factories during the daytime

on weekdays. Second, consumers’ electricity conservation behavior may lead to high room

temperature in summer. In 2005, the Ministry of the Environment launched the Cool Biz cam-

paign to reduce electricity consumption in summer [54–56]. This campaign encourages com-

panies and households to keep the room temperature at 28˚C between May 1 and September

30. To prevent heatstroke, workers are recommended to wear light clothes without ties and

jackets. According to the online questionnaire survey performed by Mizuho Information and

Research Institute in 2015 [57], the Cool Biz was recognized by approximately 80% of respon-

dents (adults living in Japan). Indraganti et al. [55] conducted a field survey on thermal com-

fort in offices in Tokyo and obtained the result that the comfort temperature for occupants in

the summer of 2012 was 27.2˚C.

Step (ii): Signs of state error variances. Second, we estimate the signs of the SEVs and

check whether parameters of the observation equations are time-varying or not. Similar to the

step (i), the DOW effect (Eq (9)) is not considered at this stage. The base temperatures of the

degree-day indices are set to the optimal levels based on Fig 4. Both of the industrial and resi-

dential electricity demand models have seven SEVs. As the ECE is expected to be time-varying

from results of previous studies [4, 6–8], we assume W6 > 0 and Z6 > 0. There are 64 (= 26)

candidate models for each of the industrial and residential electricity demands. We select the

best model by minimizing AIC.

Table 2 lists AIC and the signs of SEVs for the top five candidate models. The top five mod-

els show similar performance in terms of AIC. This result indicates that electricity demand

data can be explained in several different ways. The best model of industrial electricity demand

(Ind1) has the dynamic seasonal component, which means that the UEDT follows a stochastic

process. The coefficients of the degree-day indices, CGPI, and the intervention variable are

time-varying, while the intercept and the coefficient of IAA are constant. The best model of

residential electricity demand (Res1) has the static seasonal component. The coefficients of the

degree-day indices, CPI, and the intervention variable are time-varying, while the intercept

Table 2. Result of model selection (ii): Relationships between the signs of state error variances (SEVs) and AIC of the electricity demand models.

Industrial electricity demand

Model ID AIC Signs of SEVs

Sind W1 W2 W3 W4 W5 W6

Ind1 −2024.88 + 0 + + 0 + +

Ind2 −2024.56 + 0 + 0 0 + +

Ind3 −2024.24 + + + + 0 0 +

Ind4 −2023.94 + + + 0 0 0 +

Ind5 −2022.88 + 0 + + + + +

Residential electricity demand

Model ID AIC Signs of SEVs

Sres Z1 Z2 Z3 Z4 Z5 Z6

Res1 −1354.14 0 0 + + 0 + +

Res2 −1353.65 + 0 + + 0 + +

Res3 −1353.31 0 + + + 0 0 +

Res4 −1352.80 + + + + 0 0 +

Res5 −1352.71 0 0 + + + 0 +

Note: Only top five models are listed. W6 and Z6 are positive by definition.

https://doi.org/10.1371/journal.pone.0196331.t002
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and the coefficient of the real wage index are constant. No stochastic change was detected

from the UEDT.

Step (iii): DOW variables. Finally, we select the DOW variables which improve AIC of

the residential electricity demand model. We applied the stepwise regression to Eq (9). The

standard prediction error (SPE) of the Res1 model was used as the response variable (ut). We

obtained the result that the numbers of Tuesdays, Thursdays, and Saturdays are statistically

significant at the 5% level (Table 3). The number of candidate models which include at least

one of the three DOW variables is seven (= 23 − 1). Table 4 lists AIC of the candidate models.

The Res1A model, which includes only the number of Tuesdays, has the minimum AIC. AIC

of the Res1A model is lower than the Res1 model, which means that the number of Tuesdays

contributes to the prediction of residential electricity demand.

Results and discussion

Results of model estimation

The estimation of the electricity demand models (Ind1 and Res1A) consists of two steps. First,

we computed the maximum likelihood estimates of the observation and state error variances

(Table 5). Second, we input the estimated variances to the models and computed time varia-

tion of parameters with the Kalman filter. This study aims at explaining past electricity

demand rather than forecasting future electricity demand. Therefore, we smoothed parameter

estimates using the Kalman smoother. As discussed by Petris et al. [29], it is possible to inter-

pret the DLM as a member of Bayesian models. For reference, we numerically estimated the

probability distributions of parameters using the MCMC (Markov chain Monte Carlo)

method. The estimation results are briefly shown in S1 Appendix.

Fig 5 compares electricity demand data with the model estimates. The plot markers are

distributed along the 45-degree line, and no outlier is seen. The MAPEs (mean absolute

Table 3. Result of the stepwise regression applied to Eq (9).

DOW variable Parameter estimate Standard error t value p value

Tuesday (D2
t ) −0.526 0.072 −7.332 0.000

Thursday (D4
t ) 0.319 0.082 3.889 0.000

Saturday (D6
t ) 0.234 0.071 3.284 0.001

Notes: The criterion of model selection is AIC. AIC = 894.83, R2 = 0.149, F = 20.8 (p = 0.000).

https://doi.org/10.1371/journal.pone.0196331.t003

Table 4. Result of model selection (iii): Relationships between the DOW variables and AIC of the residential electricity demand model.

Model ID AIC Tuesday (D2
t ) Thursday (D4

t ) Saturday (D6
t )

Res1A −1383.71 1 0 0

Res1B −1356.67 0 0 1

Res1C −1356.64 1 0 1

Res1D −1355.58 1 1 0

Res1E −1347.28 0 1 1

Res1F −1332.01 1 1 1

Res1G −1331.64 0 1 0

Note: The number 1 (0) means that the DOW variable is (not) included in the model.

https://doi.org/10.1371/journal.pone.0196331.t004
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percentage errors) of the Ind1 and Res1A models are 0.54% and 2.09%, respectively. Our mod-

els have the ability to explain historical data of electricity demand.

Fig 6 shows the smoothed parameter estimates of the Ind1 model and their 95% confidence

intervals. The Ind1 model has the dynamic seasonal component, which indicates that the

underlying electricity demand in each month stochastically changes every year. The coefficient

of CDD increased with time but began to decrease in the 2000s. Meanwhile, the coefficient of

HDD continued to increase during the period. The coefficients of the degree-day indices

determine the amounts of electricity used for cooling and heating under a given DAT. Our

result suggests that electricity use for cooling was saved by consumers, while electricity use for

heating was not. The coefficient of log(IAA) (production elasticity) is constant. If the IAA

increases by 1%, industrial electricity demand increases by 0.54%. The coefficient of log

(CGPI) (price elasticity) is time-varying and slowly approaches zero. The price elasticity has a

wide confidence interval. An increase in electricity price leads to a decrease in industrial elec-

tricity demand, but the effect size is unclear in our dataset. The coefficient of the intervention

Table 5. Maximum likelihood estimates of observation and state error variances.

Industrial electricity demand Residential electricity demand

Estimate Estimate

Vind 8.77076e-05 Vres 9.34049e-04

Sind 2.95388e-06 Sres 0

W1 0 Z1 0

W2 1.06666e-10 Z2 1.37188e-09

W3 2.09909e-11 Z3 1.68917e-10

W4 0 Z4 0

W5 1.78099e-06 Z5 3.11607e-06

W6 1.69895e-05 Z6 3.22431e-04

Note: W1, W4, Sres, Z1, and Z4 are zero by definition.

https://doi.org/10.1371/journal.pone.0196331.t005

Fig 5. In-sample prediction results of the electricity demand models. The solid line is the 45-degree line.

https://doi.org/10.1371/journal.pone.0196331.g005
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variable is negative. A structural decrease is observed in industrial electricity demand after the

earthquake.

Fig 7 shows the smoothed parameter estimates of the Res1A model and their 95% confi-

dence intervals. The Res1A model has the static seasonal component. The underlying electric-

ity demand in each month was constant throughout the period. The coefficients of the degree-

day indices are time-varying and show similar trends to those in the Ind1 model. The CDD

coefficient decreased to the level of 1990, while the HDD coefficient continued to increase dur-

ing the period. The coefficient of log(Wage) (wage elasticity) is constant. If the real wage index

increases by 1%, residential electricity demand increases by 0.74%. The coefficient of log(CPI)

(price elasticity) is time-varying and slowly approaches zero. The wage and price elasticities

have wide confidence intervals, and the effect sizes are unclear in our dataset. The coefficient

of the DOW variable is negative. Residential electricity demand on Tuesday tends to be less

Fig 6. Smoothed parameter estimates of the industrial electricity demand model. The gray regions indicate the 95% confidence intervals. The first

17 estimates corresponding to diffuse initial elements are not shown. For the coefficient of the intervention variable, the estimates between January 2010

and March 2016 are shown.

https://doi.org/10.1371/journal.pone.0196331.g006
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than that on other days. The coefficient of the intervention variable is negative. A structural

decrease is observed in residential electricity demand after the earthquake.

To understand the role of the seasonal component in predicting electricity demand, we esti-

mated the model which has no seasonal component and compared it with the original model.

We focused on the difference between standardized prediction errors (SPEs) of the seasonal

and non-seasonal models. The SPE represents time variation of electricity demand which is

not explained by the model. Fig 8 shows the autocorrelation functions of the SPEs. The SPEs

of the non-seasonal models have positive autocorrelation at lags 12, 24, 36, and 48. This result

indicates that electricity demand in each month is close to the level in the same month of past

(or future) years. In other words, the industrial and residential electricity demand data contain

the seasonal trends with a cycle of 12 months. The seasonal trends are driven by consumers’

habits which are associated with the calendar. For example, public holidays (e.g. Golden Week

Fig 7. Smoothed parameter estimates of the residential electricity demand model. The gray regions indicate the 95% confidence intervals. The first

18 estimates corresponding to diffuse initial elements are not shown. For the coefficient of the intervention variable, the estimates between January 2010

and March 2016 are shown.

https://doi.org/10.1371/journal.pone.0196331.g007
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holidays, Bon holidays, and New Year holidays) change consumers’ activities and create

unusual electricity demand patterns. The seasonal component is useful for describing the sea-

sonal trends and contributes to the mitigation of autocorrelation.

Electricity conservation effect

The definition of the ECE is not self-evident, and previous studies compute the ECE estimates

in several different ways. The easiest way is the direct comparison of electricity demands before

and after the earthquake. Some previous studies [6–8] set the base year to 2010 in accordance

with the governmental guideline for electricity conservation [3]. However, this base-year

approach has two disadvantages. First, the estimation result changes depending on the choice

of the base year. Second, the estimation result is affected by irrelevant factors because electric-

ity demands in different years are directly compared without controlling the differences in

demographic, meteorological, and economic conditions. To avoid these disadvantages, we

adopt the intervention-variable approach. The monthly ECE is defined as

ECEt ¼ �
E1
t � E0

t

E0
t

¼
dt

E0
t

; ð13Þ

where E1
t is electricity demand with the ECE and E0

t is electricity demand without the ECE.

dt ¼ E0
t � E1

t is the amount of electricity saved by consumers. The ECE takes a positive value if

electricity demand is saved (i.e. E0
t > E1

t ). We use the model estimates of electricity demand

for the data of E1
t . The data of E0

t are obtained from the model by replacing the intervention

variable with the zero vector. By Eq (13), we can compute the ECE estimate which is indepen-

dent of irrelevant factors. The intervention-variable approach requires no base year, and the

estimation result depends only on the structure of the electricity demand model.

Fig 9 shows the ECEs on the industrial, residential, and total electricity demands between

January 2010 and March 2016. The ECEs are expressed in percentage. Since the earthquake in

March 2011, the industrial and residential ECEs have been positive. The industrial ECE ranged

from 3.9% to 5.4% (mean 4.6%, SD 0.3%). The residential ECE ranged from 1.6% to 7.6%

Fig 8. Autocorrelation functions of standardized prediction errors derived from the seasonal and non-seasonal models. The gray regions indicate

the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0196331.g008
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(mean 4.4%, SD 1.5%). The total ECE is estimated at 3.2%–6.0% (mean 4.5%, SD 0.6%). No

clear increasing or decreasing trend is observed in the ECE estimates. This result suggests that

electricity conservation behavior triggered by the earthquake was not temporary but became

established as a habit. Although no legal restriction was imposed on electricity use in house-

holds, the residential ECE was close to the industrial ECE. A seasonal trend is observed in the

residential ECE. Fig 10 shows the ECEs in summers (July–September) and winters (Decem-

ber–March) of 2011–2015. The residential ECEs in the summers are 0.9%–2.0% higher than

Fig 9. Electricity conservation effects on the industrial, residential, and total electricity demands, January 2010–March 2016. The red region

indicates the summer (July–September), and the blue region indicates the winter (December–March).

https://doi.org/10.1371/journal.pone.0196331.g009

Fig 10. Electricity conservation effects in summers and winters of 2011–2015.

https://doi.org/10.1371/journal.pone.0196331.g010
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the levels in the winters (mean +1.3%, SD 0.4%). A similar trend is also observed in the indus-

trial ECE, but the seasonal difference is relatively small (mean +0.2%, SD 0.2%). S1 Fig shows

the correlation between the reduction of electricity demand (δt) and potential electricity

demand (E0
t ). In the industrial sector, δt linearly increases as E0

t increases. In the residential sec-

tor, the correlation is weak, and δt randomly distributes in the range of 0.5 TWh–1.5 TWh.

A hypothesis explaining the seasonality of the residential ECE is that Japanese households

pay more attention to electricity conservation in summer than that in winter. As shown in Fig

7, the HDD coefficient has an increasing trend, while the CDD coefficient has an inverted

U-shaped trend. This result is consistent with our hypothesis. There is another supporting

information. To reduce electricity consumption in winter, the Ministry of the Environment

launched the Warm Biz campaign in 2005 and encourages companies and households to

keep the room temperature at 20˚C between November 1 and March 31 [54]. However, the

awareness of the Warm Biz is approximately 50%, which is 30% lower than the awareness of

the Cool Biz [57]. Further research is needed to prove the seasonality hypothesis.

Emissions reduction effect of electricity conservation

CO2 emissions from power plants are expressed as the product of electricity demand and CO2

intensity of electricity (CO2 emissions per unit of electricity consumption). Consumers’ elec-

tricity conservation behavior after the earthquake decreased electricity demand and contrib-

uted to the emissions reduction. Here we estimate the emissions reduction effect of electricity

conservation by comparing the emissions in three cases: (1) actual, (2) zero-ECE, and (3) stable

electricity supply (SES). First, the emissions in the actual case are expressed in two ways:

G1
t ¼ S0tE

0
t ¼ StEt: ð14Þ

E0t is the amount of fossil energy input to power plants, and S0t is CO2 intensity of the fossil

energy. Et ¼ Eind
t þ Eres

t is the total electricity demand, and St is CO2 intensity of electricity.

S0tE
0
t and St Et are the supply-side and demand-side representations of the emissions, respec-

tively. The data of S0t and E0t were calculated from fuel consumption in electric power compa-

nies [11]. Calorific values and CO2 intensities of fossil fuels were taken from General Energy

Statistics [58]. Second, the emissions in the zero-ECE case are given by

G2
t ¼ StðEt þ dtÞ ¼ G1

t þ Stdt: ð15Þ

G2
t includes the additional emissions (St δt) corresponding to the amount of electricity saved by

consumers. Third, the emissions in the SES case are given by

G3
t ¼ Sses

t ðEt þ dtÞ: ð16Þ

Sses
t is CO2 intensity of electricity when nuclear power plants are in operation. For the calcula-

tion of Sses
t , the equation derived by Honjo and Fujii [59] is useful:

St ¼
RtS0t
Ft

: ð17Þ

Rt is the rate of electricity converted from fossil energy, and Ft is the input-output efficiency of

power generation and transmission. The derivation of Eq (17) is summarized in S1 Text. The

data of Sses
t were calculated by setting Rt between March 2011 and March 2016 to the average

level of 2006–2010. Fig 11 shows CO2 intensity of electricity and its components (Rt, S0t , and Ft)
between January 1988 and March 2016. Due to the shutdown of nuclear power plants, the

annual mean of Rt increased from 0.595 in 2010 to 0.910 in 2014. As a result, the annual mean

Time variation of electricity conservation effect
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of St reached 132.7 tCO2/TJ in 2014, which was approximately 1.5 times as high as CO2 inten-

sity of coal.

Fig 12 shows electricity-related CO2 emissions in the three cases. The shutdown of nuclear

power plants after the earthquake resulted in a rapid increase in the emissions. By ðG2
t � G3

t Þ,

the emissions increase is estimated at 1.49 MtCO2–13.31 MtCO2 (mean 10.07 MtCO2, SD 2.55

MtCO2). The emissions in the zero-ECE case were 40.4% larger on average than the emissions

in the SES case. This emissions increase was mitigated by consumers’ electricity conservation

behavior. By ðG2
t � G1

t Þ, the emissions reduction effect is estimated at 0.82 MtCO2–2.26

MtCO2 (mean 1.59 MtCO2, SD 0.30 MtCO2). The emissions in the actual case were 4.5%

smaller on average than the emissions in the zero-ECE case. Our result indicates that the time-

varying ECE has a non-negligible impact on the prediction of CO2 emissions from electric

power companies. Electricity demand models developed before the earthquake are no longer

effective and need to be updated.

Fig 11. CO2 intensity of electricity and its components, January 1988–March 2016. Calculated by the authors from IEEJ [11] and ANRE [58].

https://doi.org/10.1371/journal.pone.0196331.g011

Time variation of electricity conservation effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0196331 April 30, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0196331.g011
https://doi.org/10.1371/journal.pone.0196331


Limitations

We conclude this section by discussing three limitations of our study. First, we assumed

Gaussian random walk for the ECE to simplify the process of model estimation. This assump-

tion means that time variation of the ECE is purely stochastic and contains no deterministic

trend. Our model can evaluate the effect size of electricity conservation but cannot explain the

reason why the ECE changes with time. Actually, the stochastic process of the ECE is more

complex. Our result suggests that the ECE in the residential sector has seasonality (Fig 10).

Previous studies [4, 6–8] report that consumers’ electricity conservation behavior is motivated

by various socioeconomic factors: corporate social responsibility, cost reduction, and increased

electricity price. Further research about time variation of the ECE is needed. Second, due to a

lack of data, we excluded self-consumption of electricity in companies with private power

plants. This restriction can cause an over- or under-estimation of the ECE. If a company with

constant electricity demand increases self-consumption by 1%, power supply from electric

power companies decreases by 1%. In this case, the true ECE is 0%, but our model gives the

pseudo-ECE of 1% because self-consumption is unobservable. Self-consumption data are nec-

essary to enhance the accuracy of the ECE estimation. In Japan, unfortunately, it is difficult to

access long-term self-consumption data. Third, the ECE in this study represents the aggregate

impact of the earthquake on electricity demand. In addition to electricity conservation, the

loss of fixed capital stock because of the tsunami also curbed electricity demand in the Tohoku

region. However, our model cannot distinguish between the two different effects. This restric-

tion is common in the studies using intervention and dummy variables. For these reasons, the

ECE estimates obtained from our model need to be treated carefully.

Fig 12. CO2 emissions from power plants, January 1988–March 2016.

https://doi.org/10.1371/journal.pone.0196331.g012
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Conclusion

In this study, we developed a dynamic linear model of Japan’s monthly electricity demand

and estimated time variation of electricity conservation effect (ECE). Our result clearly

shows that consumers’ electricity conservation behavior after the Great East Japan earth-

quake was not temporary but became established as a habit. Between March 2011 and March

2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4% (mean 4.6%, SD

0.3%). The ECE on residential electricity demand ranged from 1.6% to 7.6% (mean 4.4%,

SD 1.5%). The reduction of the domestic electricity demand achieved by electricity conserva-

tion was estimated at 3.2%–6.0% (mean 4.5%, SD 0.6%). Although no legal restriction was

imposed on electricity use in households, the residential ECE was close to the industrial

ECE. We found that the residential ECE has seasonality. Between 2011 and 2015, the residen-

tial ECEs in summers were 0.9%–2.0% higher than the levels in winters. Using the electricity

demand model, we also estimated CO2 emissions from power plants. The emissions increase

caused by the shutdown of nuclear power plants was estimated at 1.49 MtCO2–13.31 MtCO2

(mean 10.07 MtCO2, SD 2.55 MtCO2, +40.4% on average compared to the stable electricity

supply case). This emissions increase was mitigated by electricity conservation. The emis-

sions reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (mean 1.59 MtCO2, SD

0.30 MtCO2, −4.5% on average compared to the zero-ECE case). The time-varying ECE is

necessary for predicting electricity demand and CO2 emissions in Japan. Japanese policy-

makers need to update electricity demand models which were developed before the

earthquake.
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