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Abstract

Relational self-esteem (RSE) refers to one’s sense of self-worth based on the relationship with significant others, such as
family and best friends. Although previous neuroimaging research has investigated the neural processes of RSE, it is less
clear how RSE is represented in multivariable neural patterns. Being able to identify a stable RSE signature could contribute
to knowledge about relational self-worth. Here, using multivariate pattern classification to differentiate RSE from personal
self-esteem (PSE), which pertains to self-worth derived from personal attributes, we obtained a stable diagnostic signature of
RSE relative to PSE. We found that multivariable neural activities in the superior/middle temporal gyrus, precuneus, posterior
cingulate cortex, dorsal medial Prefrontal Cortex (dmPFC) and temporo-parietal junction were responsible for diagnosis of
RSE, suggesting that the evaluation of RSE involves the retrieval of relational episodic memory, perspective-taking and value
calculation. Further, these diagnostic neural signatures were able to sensitively decode neural activities related to RSE in
another independent test sample, indicating the reliability of the brain state represented. By providing a reliable multivariate
brain pattern for RSE relative to PSE, our results informed more cognitively prominent processing of RSE than that of PSE and
enriched our knowledge about how relational self-worth is generated in the brain.
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Introduction (Kosslyn, 1999; Ochsner and Lieberman, 2001), a recent neu-
roimaging study uncovered the neural substrate of RSE (Li et al.,
2019). Nevertheless, this research depended on the traditional
univariate analyses of the magnitude of the blood oxygena-

Relational self-esteem (RSE) refers to one’s sense of self-worth
based on the relationship with significant others, such as

f?mil}’ and fri.ends (Qhen et al, 2011; Du et al, 2012.)~ Con- tion level-dependent (BOLD) response, and it remains unclear
sidering the increasing evidence that the personality sys- how RSE is organized in spatially distributed neural patterns.
tem has its corresponding neural mechanisms in the brain To this end, the current study adopted multivariate pattern
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classification to investigate the widely distributed brain signa-
ture of RSE. In addition, to eliminate some unrelated processing
related to RSE, such as social desirability and self-presentation
motivation, the brain signature of RSE was compared with
that of personal self-esteem (PSE) (Greenwald and Satow, 1970;
Baumeister et al., 1989).

RSE vs PSE

Self-esteem was defined as a person’s sense of self-worth
(Crocker and Wolfe, 2001) and can be rooted in either per-
sonal characteristics or one’s relational identity (Tajfel and
Turner, 1986). PSE pertains to self-worth derived from personal
attributes, such as abilities and talents (e.g. ‘I am intelligent’ or
‘I am incompetent’) (Rosenberg, 1965), while the RSE is derived
from one’s relationship with significant others (e.g. ‘I am a
worthy member of my circle of friends’ or ‘Tam proud of my fam-
ily’) (Duetal., 2012, 2013). As an important predictor of subjective
well-being, high RSE is associated with greater life satisfaction,
positive affect, meaning in life and subjective vitality (Wagner,
2009; Du et al., 2017). Moreover, low RSE or lack of RSE can lead
to a series of mental health problems, such as depression and
anxiety (Du et al., 2013).

Essentially, self-esteem reflects an attitude toward self,
which is featured by cognitive and affective processes (Rosen-
berg et al., 1995; Moran et al., 2006). RSE pertains to self-worth
derived from one’s relationship with significant others. Com-
pared with PSE, which is derived from one’s attributes, RSE’s
evaluative domains depend on the relatively concrete relational
situation, such as family and friends. Moreover, RSE highlights
how self-worth is generated both from introspection and from
a third perspective (Tajfel and Turner, 1986; Du et al.,, 2012),
whereas PSE only emphasizes the processing of introspection. It
is more difficult to conceptualize beliefs and attitudes of others,
whose thoughts are not accessible to us, than to conceptualize
one’s own personal attitudes and beliefs (Murray et al., 2015).
Thus, the evaluation of RSE is more cognitively demanding than
that of PSE (Rosenberg, 1995; Baumeister et al., 2003). Relatively,
affective processing, the representation of PSE, including sta-
ble characteristics which could generalize across situations, was
relatively prominent when personal self-worth was evaluated,
consistent with earlier research which emphasized that PSE is
an affectively laden self-evaluation (Leary, 2000; Brown et al.,
2001).

Brain patterns for self-esteem

Most previous neuroimaging studies invariably focused on the
neural correlates of PSE and found that the brain regions related
to PSE were widely distributed in the cortical midline struc-
tures (CMSs), which include the medial prefrontal cortex (mPFC),
the orbitofrontal cortex, the dorsal anterior cingulate gyrus, the
posterior cingulate cortex (PCC) and reward networks in the
striatum and caudate (Eisenberger et al., 2011; Yang et al., 2012,
2016; Chavez and Heatherton, 2014; Izuma et al., 2018). These
regions suggested that evaluative processing of PSE is related to
the retrieval of episodic memory and value assignments (Frewen
et al.,, 2013; Pan et al., 2015). To our knowledge, there is only
one neuroimaging study designed by authors to investigate the
neural correlates of RSE, and those results found similar acti-
vation as in PSE, including activation in the mPFC, the PCC and
the precuneus (Li et al., 2019). Meanwhile, the theory of mind
network located at the bilateral temporoparietal junction (TPJ),
which associates with the evaluation of the value of significant
others, was only recruited in the processing of RSE (Liet al., 2019).
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Notably, the neural processing of RSE in the previous study
was analyzed by traditional univariate analyses, which seek
every single voxel that showed a significant difference in acti-
vation strength across different psychological states. However,
the representation of stimuli or mental states can be charac-
terized by spatially distributed patterns of neural activity that
reflect neural population encoding of external stimuli or inter-
nal mental states (Georgopoulos et al., 1986; Haxby et al., 2001).
Multivariable pattern analysis (MVPA), mainly referred to as
multivariate pattern classification, is a subset of machine learn-
ing statistical methodology that is known to be sensitive in
detecting different psychological, cognitive or perceptual sta-
tus (Sapountzis et al., 2010; Jimura and Poldrack, 2012; Wagner
etal., 2019). Some studies have already leveraged MVPA methods
to differentiate the unique distributed neural patterns of guilt,
autobiographical memory, and somatic and vicarious pain (Riss-
man et al., 2016; Krishnan et al., 2016; Yu et al., 2020). Also, MVPA
has demonstrated an advantage in identifying neural evidence
for the validity of the measurement of implicit self-esteem
(Izuma et al., 2018).

The current study

Given that self-esteem is a higher-order personality disposition
and its processing is complicated (Chavez and Heatherton, 2014),
the ability to identify a stable signature of RSE could contribute
to our knowledge of relational self-worth. Instead of identify-
ing the neural patterns of RSE by distinguishing it from loosely
control conditions, here, we used multivariate pattern classifi-
cation to investigate the widely distributed brain signature of
RSE, in comparison with the PSE to eliminate unrelated pro-
cessing, such as that of social desirability and self-presentation
motivation (Greenwald and Satow, 1970; Baumeister et al.,
1989).

It has been revealed that RSE comprises both one’s value in
relationships with significant others and the value of those sig-
nificant others (Du et al., 2012, 2017). Regarding one’s value in
relation to significant others, it is similar to contextual self-
referential processing where individuals adopt a first-person
perspective to evaluate their traits relative to others (Chiao
et al., 2009, 2010). Neuroimaging studies strongly implicate the
CMS, including the mPFC (ventral and dorsal), cingulate gyrus
(anterior and posterior) and precuneus (Van et al., 2010; Qin
and Northoff, 2011) in mediating one’s ability to consciously
reflect about ourselves, that is, the self-referential processing
(Northoff et al., 2006). Unlike the value of self, evaluation of
the value of significant others requires not only an introspec-
tive approach but also the involvement of a perspective-taking,
similar to the other-referential processing (ORP) (Frith and Frith,
2003; Gallagher and Frith, 2003). A recent review suggested
that the CMSs, especially the dorsal regions of the mPFC, the
posterior cingulate gyrus and the precuneus, were recruited
during the processing of ORP (e.g. mother, father and spouse)
(Wagner et al., 2012, 2019; Han et al., 2016). Meanwhile, TP] was
mainly responsible for processing mental inferences about oth-
ers (Frank et al., 2009; Overwalle and Baetens, 2009). Overall, as
the RSE is characterized as more prominently involving cogni-
tive processing than PSE (Rosenberg et al., 1995; Pullmann and
Allik, 2008), we hypothesize that the multivariable patterns of
CMS and TPJ could differentiate RSE from PSE.

To this end, two experiments were designed to determine the
neural patterns of RSE relative to PSE in the current study. In
study 1, we trained a support vector machine (SVM) classifier
to determine the brain patterns that were elicited by the eval-
uation of RSE, relative to PSE. For the sake of the constraint of
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feature space and avoidance of overfitting, brain patterns were
obtained based on the parcellation scheme of the Brainnetome
atlas (Fan et al. 2016), which defines 246 independent regions of
interest (ROIs) across the whole brain as a regional mask in the
classification model. In study 2, we conducted a validation test
in another independent sample to examine the reliability of our
findings, in which brain patterns identified in study 1 were used
to decode the neural activities related to RSE.

Study 1
Methods

Participants. Information about the participants has been pre-
viously reported in Li et al. (2019). Briefly, 41 right-handed
healthy university students were recruited (20 males and
21 females, 18-28years). All participants had normal or
corrected-to-normal vision, and none reported any history
of psychiatric or neurological disorders. Participants provided
informed consent before the formal experiments, and the
experiments were approved by the Ethics Committee of the
University.

Stimuli and procedure. An adapted self-referential paradigm
was applied in study 1. Three types of experimental stimuli were
used, including RSE, PSE and semantic. In specific, stimulus on
RSE was adapted from the Relational Self-Esteem Scale (Du et al.,
2012), which measures one’s value in relationships with signif-
icant others (e.g. ‘I feel I have much to offer to my family’ and
‘1 am a worthy member of my circle of friends’), or the value
of those significant others (e.g. ‘Overall, my circle of friends is
considered good by others’ and ‘My family is proud of me’). An
equal number of trials were used to measure one’s value and
the value of significant others. The stimulus pertaining to PSE
was adapted from the Rosenberg Self-Esteem Scale (Rosenberg,
1965), which measures an individuals’ self-worth in general (e.g.
‘I take a positive attitude toward myself’ and ‘On the whole, I
am satisfied with myself’). The semantic stimulus was added to
serve as baseline control (e.g. ‘“Yangzi River is the most famous
river in China’). For each stimulus, participants rated to what
extent they agreed with the sentence by pressing one of four but-
tons that mimicked a Likert scale from 1 (strongly disagree) to 4
(strongly agree). In the current analysis, we only use the RSE and
PSE to detect the neural signature of RSE, relative to PSE.

Besides, we adopted an event-related design in the present
study. There were four runs during the functional Magnetic Res-
onance Imaging (fMRI) scanning, and each run comprised 30
trials. Every 10 trials constitute a condition in each run. To elim-
inate the influence of order effect, we randomized the order of
runs and 30 trials within one run for each participant. On each
trial, the stimulus was presented in the middle of a grey screen
for 4 s, followed by a jittered fixation period of 2, 4 or 6 s. The
illustration of one run is shown in Figure 1.

fMRI data acquisition. Functional and anatomical whole-brain
images were acquired using a 3T Siemens TRIO MRI scan-
ner. Functional data comprised 1296 volumes functional images
acquired with T2*-weighted gradient echo planar imaging (EPI)
sequence were collected from each subject. We obtained
32 echo-planar images per volume, sensitive to BOLD con-
trast (Repetition Time (TR)=2000 ms, Echo Time (TE)=30 ms,
3mm x3mm x 192 mm). Slices were acquired in an interleaved

order and were oriented parallel to the AC-PC plane with a
thickness of 3mm and a gap of 0.99 mm. High-resolution T1-
weighted 3D fast-field echo (FFE) sequences were obtained for
anatomical reference (176 slices, TR=1900ms, TE=2.52ms,
slice thickness =1 mm, Field of View (FOV) =256 mm x 256 mm,
voxel size =1mm x 1mm x 1 mm).

fMRI preprocessing and first-level analysis. The details of
preprocessing have been described previously (Li et al., 2019).
Briefly, neuroimaging data were processed and analyzed using
SPM8 software (Wellcome Department of Cognitive Neurology,
Institute of Neurology, London, UK). Preprocessing of the fMRI
data was conducted using the Data Processing Assistant for
Resting-State fMRI (DPARSF) (Yan and Zang, 2010). The func-
tional scans were adjusted for slice timing, realigned to the first
volume, co-registered to the anatomical images, normalized to
a standard Montreal Neurological Institute (MNI) template and
spatially smoothed with a 6 mm Full-Width and Half-Maximum
(FWHM) Gaussian kernel. First-level effects were estimated by
creating a general linear model, which incorporated four con-
ditions (RSE, PSE, semantic and fixation) convolved with the
canonical hemodynamic response function and six movement
parameters as covariates of noninterest. Then, a high-pass
temporal filter with a cutoff period of 128 s was applied.

For each of the participants, the estimated beta images cor-
responding to each condition of interest (i.e. RSE and PSE) and
condition of no interest (i.e. semantic and fixation) were pro-
duced across runs. Notably, we used the smoothed fMRI data
for MVPA based on previous research showing that smoothing
can improve decoding performance when large-scale activation
patterns are assumed (Beeck, 2010; Krishnan et al., 2016).

Multivariate pattern analysis. The MVPA was processed by the
following steps: (i) the extraction of beta maps of self-esteem,
(i) formation of weight maps of self-esteem, (iii) formation of
importance maps and (iv) prediction of RSE rating.

Extraction of beta maps of self-esteem. We used the maps of whole-
brain 246 regions (246 templates) to present topographic infor-
mation, which parcellates the brain into 246 ROI (Fan et al., 2016).
The averaged beta images corresponding to RSE and PSE across
runs from each ROI for each subject were constructed, resulting
in 246 averaged beta values per subject for each condition. Con-
sidering that the feature dimensions (246) of the whole brain are
acceptable and to prevent the loss of information during feature
selection (Tian et al., 2011; Liu et al., 2015), we did not perform
feature selection.

Formation of weight maps of self-esteem. Beta images from the
RSE and PSE for 41 participants were used to train a classi-
fier. SVM algorithm was applied as a classifier for machine
learning in kernel matrix (LIBSVM, http://www.csie.ntu.edu.tw/
~cjlin/libsvm/) (slack parameter C =1 was chosen a priori). SVM
had been considered to be a frequently used pattern classifier
in previous analyses, which allowed the classification of indi-
vidual observations into different groups or classes based on
high-dimensional data (Cortes and Vapnik, 1995; Haynes and
Rees, 2006; Fonseca et al., 2007) and can effectively prevent the
occurrence of overfitting. In classification analysis, we adopt the
leave-one-subject-out cross-validation scheme. In specific, we
trained the classifier on the pooled data from all but one par-
ticipant and tested the ability of this classifier to predict the
condition labels of brain patterns measured in the eld-out partic-
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ipant. This leave-one-participant-out cross-validation scheme
was iterated until each participant’s data had served as the test
set.

The primary classification performance metric was the area
under the curve (AUC). This measure, widely used in the
machine learning literature (Vilares et al., 2017; Chow et al., 2018)
and considered more informative than overall accuracy (Bradley,
1997), can be interpreted as the probability that a randomly
chosen member of one class has a smaller estimated proba-
bility of belonging to the other class than a randomly chosen
member of the other class. In other words, the AUC indexes
the mean accuracy with which a randomly chosen pair of Class
A and Class B trials could be assigned to their correct class
(chance performance is 0.5, and perfect performance is 1.0). The
receiver-operating characteristic (ROC) curves, from which the
AUCs are derived, reflected classifier performance within per-
sonal and RSE networks. To obtain meaningful statistical results
in classification performance, we used a non-parametric per-
mutation test to examine the null hypothesis that there was
no statistical discrimination between PSE and RSE. We created
1000 randomly shuffled permutations of labels (scramble 1000
self-esteem labels in the classifier and then randomly sort them
for prediction) and ran the SVM using the permutated data in
each region to obtain accuracy under the classifier. To obtain
the P-value for a particular accuracy value, we calculated the
proportion of iterations with an accuracy higher than the clas-
sifier accuracy. This null hypothesis corresponds to the P-value
of accuracy at the level of non-significance (P> 0.05).

Formation of importance maps. Weight maps for all regions were
calculated during a classifier training cycle, which represent
the contribution of a particular region to discriminating rela-
tional and PSE and were averaged across each of the leave-
one-participant-out cross-validation iterations. By convention,
a positive weight value indicated that a region’s activity magni-
tude on each trial was positively correlated with the probability
of that trial being from Class A, whereas a negative weight value
indicated increased probability of that trial belonging to Class
B. Due to trial balancing and z scoring procedures, the mean
activity level of each region for Class A trials was always the
additive inverse mean activity level for Class B trials and was
rescaled by a constant factor of 7 to aid in visualization. Mean
activities of each ROI were averaged across 41 participants from
the beta values of z scoring. These weights were then mul-
tiplied by each region’s mean activity level for Class A trials.
Regions with positive values for both activity and weight were
given positive importance values, whereas regions with nega-
tive activity and weight were given negative importance values;
regions for which the activity and weight had opposite signs
were assigned importance values of zero (Johnson et al., 2009;

Fixation stimuli:RSE Fixation

2000-6000ms

4000ms 2000-6000ms

stimuli:PSE
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McDuff et al., 2009; Rissman et al., 2016). To generate importance
maps for all regions depicting which regions provided maximal
diagnostic signals for discrimination, we adopted the threshold
of mean + 1 xs.d., which were used in previous research to rep-
resent the neural signatures of RSE relative to those of PSE (Tian
et al.,, 2011; Liu et al., 2015).

Prediction of RSE and PSE rating. Using neural signals of RSE
to predict the subjective RSE and PSE ratings, we further
examined the discriminative validity of the diagnostic brain
patterns of RSE compared with those of PSE. Combined with
the leave-one-subject-out cross-validation scheme, the support
vector regression (SVR) algorithm was applied to predict RSE rat-
ings, which was obtained during the evaluation of relational
self-worth. Cumulatively, there were 41x 10 neural signals of
RSE to predict ratings of RSE and PSE.

Results

As can be seen in Figure 2, the cross-validation estimation of
the generalization performance shows an area of 0.87864 under
the ROC curve (AUC values close to 1 indicate ‘perfect’ classifi-
cation and close to 0.5 suggest random classification) (Figure 2).
Permutation tests then further indicated that SVM was able to
significantly differentiate RSE and PSE (P <0.001, non-parametric
permutation test, n = 1000 permutations).

Importance maps for the RSE vs PSE classification based
on the threshold of mean+1xs.d. revealed that diagnostic
regions, including the dorsal Medial Prefrontal Cortex (dMPFC),
the superior/middle temporal gyrus, the TPJ, the precuneus
and the PCC, were positively predictive of RSE, whereas other
diagnostic regions, including the inferior/middle frontal gyrus,
the inferior/superior temporal gyrus, the insula, the PCC, the
caudate, the putamen and the thalamus, were positively pre-
dictive of PSE (Table 1 and Figure 3). Besides, based on the
brain patterns of RSE relative to PSE, the RSE neural signals
of the dMPFC, superior/middle temporal gyrus, TPJ], precuneus
and PCC could neither predict subjective RSE nor PSE ratings
significantly (r=-0.0143, P=0.9292; r =-0.103, P=0.5218).

Discussion

The results were consistent with our hypotheses and revealed
that the trained classifier could distinguish RSE and PSE with
good performance, implying the evaluation of RSE and PSE
involves distinct processing. Specifically, the diagnostic neural
patterns of RSE relative to those of PSE were widely distributed in
the superior/middle temporal gyrus, the precuneus, the PCC, the
dmPFC and the TPJ. In particular, social cognitive networks such
as the TPJ and the dmPFC were responsible for the evaluation

stimuli:Semantic

Fixation

4000ms
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Fig. 1. Illustration of one run. There were 30 trials in each run. On each trial, a stimulus was presented in the middle of the screen for 4 s and was followed by a

random jittered fixation period of 2,4 or 6 s.



730 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 7

Table 1. Brain regions that positively predict RSE and PSE

Classification Anatomical region L/R X y z
Positively predict RSE
Superior frontal gyrus L -11 49 40
dMPFC R 8 58 13
Superior temporal gyrus L =55 -3 -10
Middle temporal gyrus L -53 2 -30
Middle temporal gyrus L -58 -20 -9
TPJ] L -47 -65 26
R 53 -54 25
Precuneus/PCC L -6 -55 34
Precuneus/PCC R 6 -54 35
PCC L -8 -47 10
Positively predict PSE
Inferior/middle frontal gyrus L -41 41 16
R 42 42 14
Precentral gyrus L -26 -25 63
Superior temporal gyrus L -54 -32 12
Inferior temporal gyrus R 61 -40 -17
Inferior parietal gyrus R 57 -44 38
Insula L -38 -4 -9
R 39 -2 -9
L -38 5 5
PCC L -7 -23 41
R 6 -20 40
Lateral occipital cortex L -18 -99 2
Striatum (ventral caudate) L -12 14 0
Striatum (dorsal caudate) L -14 2 6
Dorsolateral putamen L -28 -5 2
Thalamus L -18 -13 3

L and R refer to left and right hemispheres; x, y and z refer to MNI coordinates that come from the Brainnetome atlas.
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Fig. 2. Classifier performance from across-participant analysis distin-
guishes relational and personal self-esteem using a leave-one-participant-out
scheme. The classifier performance is quantified using ROC curve analysis
(AUC =0.87864). The gray line represents chance-level classification (AUC = 0.5).

of the value of significant others. These results informed that
compared with PSE, more cognitive components were promi-
nent during the evaluation of RSE. To examine the reliability of
the diagnostic neural patterns of RSE, we further conducted a
validation test in another independent sample; the diagnostic
neural patterns of RSE identified in study 1 were used to decode
the relational self-worth in study 2.

Study 2
Methods
Participants. There = were 50 right-handed  healthy
participants in the formal analysis (27 females, mean

ages +s.d.=20.16 £+ 1.50 years). Written informed consent was
obtained from all participants following procedures approved by
the Ethics Committee of the University. No participants reported
a history of psychiatric or neurological illnesses, head injury
or alcohol/drug use. Participants were compensated for their
attendance.

Stimuli and procedure. The experimental stimulus of PSE and
RSE in study 2 were the same as study 1, which were adapted
from the Relational Self-Esteem Scale (Du et al., 2012) and Rosen-
berg Self-Esteem Scale (Rosenberg, 1965). Besides, the remaining
materials were associated with collective self-esteem (Luhtanen
and Crocker, 1992) and semantics (‘Reading is a good habit’). In
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Fig. 3. Classification importance maps. Group-averaged maps of classifier importance values are shown for binary classification. Specifically, the importance values
of brain regions were higher than means =+ 1s.d. of classification importance values. Warm colors indicate regions for which increased activity biased the classifier to
predict PSE, and cool colors indicate the regions for which increased activity biased the classifier to predict RSE. Importance values are shown in raw arbitrary units.

the current analysis, we used neural activities of RSE and PSE
to assess whether the neural signature decodes the RSE activ-
ities. Participants need to determine whether they agreed with
these sentences on a 4-point Likert scale ranging from 1 (strongly
disagree) to 4 (strongly agree).

fMRI data acquisition. The fMRI data acquisition parameters
were the same as study 1. Images were acquired using a 3T
Siemens TRIO MRI scanner. Functional data comprised 1296 vol-
umes acquired with a T2*-weighted gradient EPI sequence. A
total of 32 echo-planar images per volume, sensitive to BOLD
contrast (TR=2000 ms, TE=30 ms, 3mmx3mm x 192 mm),
were obtained. Slices were acquired in an interleaved order
and oriented parallel to the AC-PC plane, with a 0.99mm
gap. High-resolution T1-weighted 3D FFE sequences were
obtained for anatomical reference (176 slices, TR=1900 ms;
TE=2.52 ms; slice thickness=1mm; FOV =256mm 256 mm,
voxel size =1mm x 1 mm x 1 mm).

fMRI preprocessing and first-level analysis. Preprocessing of
fMRI data was performed using DPARSF (Yan and Zang, 2010),
and other analyses were conducted using SPM8 (Wellcome Trust
Centre for Neuroimaging, University College London, UK). The
following preprocessing procedures and first-level analysis were
the same as those in study 1.

Validation analysis. To examine the reliability of our find-
ings, we conducted a validation test in an independent sample.
Specifically, a widely distributed neural signal for diagnosing
RSE relative to PSE should discriminate against the RSE vs PSE
in study 1 and decode the neural activities related to RSE in
study 2. We extracted beta values of the brain patterns cor-
responding to RSE and PSE in 50 participants. In total, there
were 2x 10 averaged beta values per subject. Then, both beta
values and their labels of study 2 were put into the classifier
obtained in study 1. We tested the classification accuracy when
the classifier distinguished RSE vs PSE. Finally, the predictive
classification performance of the classifier was expressed by an
AUC metric. We also used a non-parametric permutation test
to examine whether the classifier could distinguish RSE vs PSE
significantly. The null hypothesis corresponds to the P-value of
accuracy at the level of non-significance (P > 0.05). We created

1000 randomly shuffled permutations of labels (scramble 1000
self-esteem labels in the classifier and then randomly sort them
for prediction) and ran the SVM using the permutated data in
each region to obtain accuracy under the classifier. Finally, to
obtain the P-value for a particular accuracy value, we calculated
the proportion of iterations with an accuracy higher than the
classifier accuracy.

Prediction of RSE and PSE rating. We also examined the dis-
criminative validity of the diagnostic brain patterns of RSE com-
pared with those of PSE in study 2. The SVR algorithm was com-
bined with the leave-one-subject-out cross-validation scheme to
predict RSE and PSE ratings. In all, there were 50 x 10 RSE neural
signals to predict ratings of RSE and PSE.

Results

Using the brain-imaging data (beta values of brain patterns),
we found that the trained classifier was sensitive to discrim-
inate RSE vus PSE in an independent sample, with relatively
high accuracy (AUC =0.7320, see in Figure 4). Permutations tests
then further indicated that SVM could significantly differen-
tiate RSE and PSE (P=0.005, non-parametric permutation test
using n=1000 permutations). In addition, based on the brain
patterns of RSE relative to PSE, the neural signals could neither
predict subjective RSE nor PSE ratings significantly (r=-0.0179,
P=0.9017; r=-0. 0115, P=0.9371).

Discussion

Results showed that the diagnostic neural patterns of RSE rela-
tive to PSE in study 1 could sensitively detect the neural activities
related to RSE in study 2. The result indicated a reliability of
the brain patterns and confirmed the more prominent cognitive
components during the evaluation of RSE compared with that of
PSE.

General discussion

Given that self-esteem is a higher-order personality disposition
with complicated processing (Chavez and Heatherton, 2014),
identifying a reliable signature of RSE would contribute to our
knowledge of relational self-worth (Du et al., 2012; Li et al.,
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Fig. 4. Predictive classification from the validation analysis distinguishes rela-
tional self-esteem and personal self-esteem. The classifier performance was
quantified using ROC curve analysis. The ROC curves differentiating RSE from
PSE had an AUC of 0.7320. The gray line represents chance-level classification
(AUC=0.5).

2019). To exclude irrelevant processing, the current work uti-
lized multivariate pattern classification to classify RSE and PSE
and obtained a diagnostic signature of RSE compared with that
of PSE. The results of study 1 suggested that the diagnostic
signatures of RSE and PSE were involved in mentalizing and
reward processing, respectively. In specific, the diagnostic sig-
nature of RSE compared with that of PSE was widely distributed
in dmPFC, TPJ, superior/middle temporal gyrus, precuneus and
PCC, whereas the diagnostic signature of PSE compared with
that of RSE was widely distributed in the caudate, putamen,
thalamus, PCC, inferior/middle frontal gyrus, inferior/superior
temporal gyrus and insula. Moreover, this diagnostic signa-
ture of RSE could well distinguish RSE from PSE in study 2 and
exhibited its reliability in an independent sample.

Although these peak regions parallel the previous univari-
ate analyses (Li et al., 2019), they nevertheless contribute to the
understanding of the neural processing mechanisms that gen-
erate relational self-worth. Compared with PSE, the multivariate
neural patterns of social cognitive networks were involved in
the diagnosis of RSE. Consistent with the assumptions, the
results showed that cognitive processing was prominent dur-
ing the evaluation of relational self-worth. On one hand, the
RSE is self-knowledge that is linked by memory to knowledge
about significant others (Chen et al., 2006). Activation of the spe-
cific relational situations was related to the retrieval of those
memories. Brain regions like the PCC/precuneus and the middle
temporal cortex play a key role in the retrieval of information
from episodic and autobiographical memory (Feng et al., 2018).
The multivariable patterns of activity in the precuneus/PCC and
middle temporal cortex were responsible for the retrieval of the
relational episodic memory, which means activating the rela-
tional situations. Meanwhile, it is necessary to conceptualize
beliefs and attitudes of others in the evaluation of the value of
those significant others. The TPJ and the dmPFC, as key regions
of the theory of mind network, play important roles in inferring

the goals, desires and beliefs of others in various social contexts
(Lou et al., 2004; Van, 2009; Sajonz et al., 2010; Denny et al.,
2012). In addition, these would be involved in value assessment
during the evaluation. Findings from multiple lines of inquiry
revealed a role of the dmPFC in encoding the subjective value of
the others (Sul et al., 2015; Piva et al., 2019). It may be inferred
that the dmPFC is not only responsible for considering another
perspective but also for calculating the value of significant oth-
ers. Overall, upon analyzing the fundamental functions of the
diagnostic signature of RSE, we inferred that the evaluation of
relational self-worth involves the retrieval of relational episodic
memory, perspective-taking and value calculation.

By training a classifier that distinguished RSE and PSE, we
found that the multivariate patterns of activity in the caudate,
putamen, thalamus, PCC, inferior/middle frontal gyrus, infe-
rior/superior temporal gyrus and insula were associated with
representations of the finer-grained structures of PSE relative
to RSE. The caudate and the putamen, which form part of the
mesolimbic dopaminergic pathway, are associated with hedo-
nic motivation and reward (O’Doherty et al., 2004; Balleine
et al., 2007; Peng et al., 2019). Many researchers have also
found these regions involve the evaluation of PSE (Chavez and
Heatherton, 2014). This implies that affective components were
prominent when evaluating personal self-worth, which leads
to generating a reward-like emotion. Moreover, the evaluation
of PSE was related to the retrieval of personal episodic mem-
ory and value calculation. The insula is related to maintain-
ing unique self-awareness (Seth et al., 2012). The multivariate
neural pattern of the PCC is responsible for retrieval of the
personal episodic memory (Cavanna and Trimble, 2006). In addi-
tion, inferior/middle frontal gyrus has been associated with
higher-order semantic representations, such as abstract con-
cepts and semantic contents (Cappa, 2008; Shallice and Cooper,
2013; Borghi et al,, 2017). This might be due to the evalua-
tion of personal attributes and traits leading to the recruit-
ment of these regions to retrieve more abstract semantic
representation.

Taken together, by analyzing multivariable neural activities
to classify RSE and PSE, our results provide neuroimaging evi-
dence supporting the cognitively prominent processing of RSE
and the affectively prominent processing of PSE. The process-
ing of RSE comprises characteristics that define roles within
the relationship and seems more concrete than PSE (Sedikides
et al., 2011). In this case, people would be involved in every
specific context in RSE processing, which would be cognitively
demanding. Conversely, regarding PSE, it comprises stable char-
acteristics, such as traits and behaviors, which could be more
abstract than RSE. In this case, people would be deeply involved
in reflected emotion in the processing of PSE, which would be
affectively demanding.

There are still some regions between RSE and PSE that
need further explanation. Specifically, the PCC in PSE was
located close to the middle portion, and the PCC/precuneus
in RSE was closely located on the posterior side. The meth-
ods used in this study to explore the distinction between cog-
nitive processing of PSE and RSE were not suitable to iden-
tify shared cognitive processing. A future study could adopt
representational similarity analysis (Kriegeskorte et al., 2006;
Nili et al, 2014) of BOLD responses between RSE and PSE,
to paint a comprehensive understanding of the similarity of
episodic memory between PSE and RSE. Furthermore, exist-
ing studies have found that the ventral region of the mPFC
is responsible for calculating subjective values (Garvert et al.,
2015), especially for the self (Yankouskaya et al., 2017). For



example, some researches indicate delineated functions of
the ventral medial Prefrontal Cortex (vimPFC) in value-based
decision-making in self-referencing decisions (McClure et al.,
2004; Kable and Glimcher, 2007; Levy et al., 2010). However,
due to the similarity of self-value computation in both RSE and
PSE, we were unable to distinguish the role of the vmPFC in our
classification.

This study had several limitations. First, although we have
elaborated on the role of several specific brain regions for the
classification of RSE and PSE, it is still important to keep in mind
that the conclusions drawn from the application of the SVM pat-
tern recognition algorithm indicate the activated brain regions
should be considered as parts of an integrated regional pattern,
instead of isolated regions. Thus, one must carefully interpret
the contribution of individual regions in the context of the whole
neural pattern. Second, the diagnostic neural patterns of RSE in
our analysis were not predictive of relational self-worth ratings
in study 1. One explanation is that the predictive performance
of RSE may have been influenced by the sample size, which was
underpowered to detect small inter-person correlations. A larger
and wider sample population may show a positive predictive
performance in future research. Third, caution should be taken
when generalizing these neural patterns of RSE to a person with
an individualistic culture. Culture likely affects the way people
define themselves (Markus and Kitayama, 1991), so we specu-
late that people in different cultures may show distinct cognitive
processing when evaluating RSE. The diagnostic signatures of
RSE obtained in a more collective culture may not represent
those of RSE in an individualistic culture. Future investigations
may consider identifying the diagnostic neural patterns of RSE
in individualistic cultures to test the cross-cultural performance
of our results.

Conclusion

Using multivariate pattern classification to differentiate RSE
from PSE, we obtained a stable diagnostic neural signature of
RSE relative to PSE. The diagnostic signature mainly involved
social cognitive networks, including the superior/middle tem-
poral gyrus, the precuneus, the PCC, the dmPFC and the TPJ,
implying that compared with PSE, cognitive components were
prominent during the evaluation of RSE. Furthermore, a valida-
tion test confirmed the reliability of diagnosing brain patterns.
In conclusion, by providing a reliable multivariate brain pattern
for RSE relative to PSE, our findings enrich our knowledge of
how RSE is generated in the brain and further supporting the
cognitively prominent processing of RSE relative to PSE.
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