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Abstract

Background: The cecal ligation and puncture (CLP) model, a gold standard in sepsis
research, is associated with an important variability in mortality. While the number of
punctures and needle size is well described in CLP animal studies, the length of cecal
ligation is often not. The relationship between cecal ligation and survival in mice is
briefly reported in the literature; therefore, we devised an investigation in mice of the
consequences of three standardized cecal ligation lengths on mortality and the severity
of the ensued sepsis.

Methods: Male C57BL/6J mice underwent standardized CLP. The cecum was ligated at
5, 20, or 100 % of its total length and further perforated by a single 20-G puncture.
Mortality was analyzed. We assessed blood lactate, serum creatinine levels, and serum
cytokines (TNF-α, IL-1β, IL-6, and IL-10) after procedure in a control group and in ligated
mice.

Results: Mortality was directly related to ligation length: median survival was 24 h for
the “100 %” group and 44 h for the “20 %” group. Blood lactate increased proportionally
with the ligation length. At 6 h post-procedure, pro-inflammatory cytokines significantly
increased in the ligated group with significantly higher serum levels of IL-6 in the 100 %
group compared to the other ligated groups. The 20 % group exhibited the characteristics
of septic shock with hypotension below 65 mmHg, pro-inflammatory balance, organ
dysfunction, and hyperlactatemia.

Conclusions: Cecal ligation length appears to be a major limiting factor in the mouse
CLP model. Thus, this experimental model should be performed with high consistency
in future protocol designs.
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Background
Severe sepsis results from a complex and dynamic pathophysiology; therefore, a better

understanding of the inflammatory process leading to sepsis is essential [1]. Although

they do not reflect entirely the clinical complexity, animal models remain a valuable

approach to developing new therapeutic strategies. Various animal models of sepsis

have already been developed such as intravascular infusion of endotoxin (lipopolysac-

charide (LPS)), live bacteria or viruses, bacterial peritonitis, cecal ligation and puncture

(CLP), soft tissue infection, pneumonia model, and meningitidis model [2–6]. However,
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since 1998 Deitch pointed out that an important number of failures in new therapeutic

approaches may be due to the use of inappropriate experimental models [7]. An

endotoxic model (LPS injection) mimics poisoning more than infection. In the LPS

endotoxic model, the cytokines peak early and transiently, whereas in the CLP model,

the pro-inflammatory response is delayed and persists over time [8]. LPS model mortal-

ity occurs early, most likely due to the effects of the intense inflammatory response on

the cardiovascular system, whereas in the CLP model, mortality is delayed with

multiple organ failure complicating induced peritonitis. In humans, endotoxic shocks

are rare and sepsis origin is often localized. The CLP model is the most widely used

model for experimental sepsis and is currently considered as a gold standard in

research since it mimics the nature and evolution of severe sepsis in humans [5, 9].

Ensuing a simple procedure, the model induces sepsis secondary to a stercoral

peritonitis, followed by a polymicrobian translocation in the blood circulation with

an early inflammatory phase, after which an anti-inflammatory response develops

[2]. However, significant variability on mortality from one experimental protocol to

another can lead to differing interpretations of the results. That being said, survival

rates can vary from 20 to 50 %. The main determinants of mortality are the size

of the needle used for cecal puncture; the number of punctures, generally between

1 and 4; and the use of antibiotics and/or fluid resuscitation [10, 11]. While the

number of punctures and needle size is standardized, the length of cecal ligation is

often not described in CLP animal studies.

To the best of our knowledge, only few brief descriptions exist regarding cecal

ligation and survival in the mouse CLP model [10, 12]. We investigated in non-

resuscitated C57BL/6J male mice the consequences of several standardized dis-

tances of CLP on mortality and sepsis severity. To do so, we used organ failure

markers such as serum creatinine levels (as an early sign of acute kidney injury),

serum lactate, and the kinetics of the inflammatory state reflected by cytokine syn-

thesis including TNF-α, IL-1β, IL-6, and IL-10.

Methods
Animals

C57BL/6J wild-type mice were obtained from Harlan (Harlan France, Gannat, France).

We used male animals aged 20 weeks, weighing 25–30 g. Animal experimentation was

performed according to national and institutional animal care and ethical guidelines

and was approved by the local board. Mice were housed in a temperature-controlled

room on a 12-h night-dark cycle. Four animals were placed in a cage and had access to

water and food ad libitum. The mice were not fasted prior to CLP procedure. The

animals were shocked or control-operated and euthanized at different times after

surgery.

Protocol design

Sepsis was induced following a modification of a previously published method of

CLP [10]. Briefly, animals were anesthetized with intraperitoneal injection of keta-

mine and xylazine (250 and 10 mg/kg, respectively). After adequate anesthesia, the

lower quadrants of the abdomen were shaved and the surgical area was disinfected.

A longitudinal midline incision was made using a scalpel, and scissors were used
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to extend the incision into the peritoneal cavity. After intramuscular, fascial, and

peritoneal incision, the cecum was located and exteriorized. In our experiments,

the cecum was ligated at different lengths below the ileocecal valve to avoid bowel

obstruction. Total cecal length was measured from the tip of the ascending cecum

to the tip of the descending cecum. The cecum was then ligated at 5, 20, and

100 % of its total length. For the “100 %” group, the cecum was ligated to the lon-

gest possible without bowel occlusion (Fig. 1).

The cecum was then perforated by a single puncture midway between the ligation

and the tip of the cecum with a 20-G needle. We chose this needle diameter to obtain

mid-grade lethal sepsis [5, 13, 14]. After removing the needle, a small amount of feces

was extruded. The cecum was relocated, after which the fascia, abdominal musculature,

and peritoneum were closed via simple running sutures; the skin was also sutured. The

control mice were anesthetized and underwent laparotomy without puncture or cecal

ligation and served as the control. The animals were shocked or control-operated and

euthanized at different times depending on the set of experiments.

Immediately post-procedure, 1 ml of saline was administered subcutaneously for fluid

resuscitation (circa 0.045 ml/g) [8, 14]. Pain control for CLP and sham mice was

achieved with 0.05 mg/kg buprenorphine every 12 h.
Spontaneous mortality determination

The first set of experiments consisted of observation of spontaneous mortality for each

ligation length. The mice were then redistributed into subgroups of three to four in

order to repeat the observation of mortality. The mortality was followed for 4 days after

the CLP protocol.
Renal function study and lactate dosage

In the second set of experiments, control and CLP animals were euthanized at 6 h.

We used serum lactates as a severity marker of septic state and serum creatinine

concentration as a marker of renal dysfunction. Samples were collected 6 h after

surgery by intracardiac puncture under general anesthesia (intraperitoneal injection of
Ileo cecal valve

Ileum
Cecum

Cecal length

Ileocecal artery

5% cecum ligated

20% cecum
ligated

100% cecum
ligated

Fig. 1 Description of cecal length ligation methods. The total length of the cecum is represented by the full
line. Dotted arrows are placed at each level of cecal ligation: 5, 20, and 100 % of the total of cecum length
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250 mg/kg ketamine and 10 mg/kg xylazine). Serum obtained after centrifugation was

immediately frozen and stored at −80 °C before being analyzed at the phenotyping

platform (GenoToul Anexplo, Toulouse, France).
Serum cytokines, bacterial blood culture, and leukocyte count

In the third set of experiments, the mice were put down at 6 and 24 h for the control,

“5 %,” “20 %,” and “100 %,” ligated groups. For the control and 20 % ligated animals, we

performed supplementary analysis at 48 h.

We measured serum cytokines TNF-α, IL-1β, and IL-6. IL-10 concentrations

were determined at 24 and 48 h for the control and 20 % ligated groups. The sam-

ples were collected by intracardiac puncture under general anesthesia (intraperito-

neal injection of 250 mg/kg ketamine and 10 mg/kg xylazine). The samples were

then immediately frozen at −80 °C and analyzed by Luminex technique (Bio-Rad

Y60-00000YU Pro Mouse Cytokines Group 4-plex 1 x 96, Bio-Rad, Hercules, CA,

USA) on the phenotyping platform (GenoToul Anexplo, Toulouse, France).

Leukocyte count was performed at the Phenotyping platform (GenoToul Anexplo,

Toulouse, France) on the MICROS-60 hematology analyzer (Horiba ABX-Diagnostics,

MA, USA). Datum is expressed in leukocytes per milliliter. Analysis was performed on

20-μl samples of heparinized blood in the first hour following cardiac blood puncture.

Bacterial blood cultures were extracted for the 20 % group 24 h after CLP. The

samples were collected by cardiac puncture. Blood was serially diluted and cultured on

a tryptic soy blood agar plate at 37 °C for 48 h (n = 10 mice).
Histological analysis

A macroscopic examination was performed to look for abscess and pus collections in

the peritoneal cavity at 24 h after surgery. Liver samples, preserved in 10 % buffered

formalin, were dehydrated and embedded in paraffin. Four-micrometer sections were

stained with hematoxylin-eosin. The sections were then evaluated for signs of hypoper-

fusion and ischemic hepatitis or “shock liver.”
Mean arterial pressure measurement

Mean arterial pressure (MAP) was measured under anesthesia in the “20 %” ligated and

control groups before surgery and at 24 h post-procedure. The femoral artery was

catheterized. After surgery, a 5-min stabilization period was observed and femoral

arterial blood pressure was monitored using a blood pressure analyzer (via a Statham

P10 EZ transducer coupled to a TA 4000; Gould, Eichstetten, Germany) for 10 min.

The published results are the mean of MAP values measured every 30 s.
Statistics

Values are not normally distributed and are expressed as median and range or

interquartile range (IQR). To assess whether the measurements changed over time,

Friedman’s test was used. When Friedman’s test was significant (p < 0.05), pair

comparisons were performed using Wilcoxon’s signed-rank test. Time comparison

between groups was made using non-parametric Kruskal–Wallis test. When the

Kruskal–Wallis test was significant (p < 0.05), then comparisons were made using
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the Dunn’s post hoc test. Survival was analyzed by log-rank test. Analysis was per-

formed using GraphPad Prism version 5.00 for Windows, GraphPad Software, La

Jolla, CA USA, www.graphpad.com. Results with p < 0.05 were considered statisti-

cally significant.
Results
Mortality and organ dysfunctions are correlated with ligation length

Median total cecal length was 29 mm (25–30 mm). For the ligated groups, mea-

surements of ligated ceca were the following: 2 mm (1–2 mm) for the 5 % ligated

group, 6 mm (5–7 mm) for the 20 % ligated group, and 21 mm (19–25 mm) for

the 100 % ligated group. Mortality was evaluated at different ligation lengths of

standardized CLP by simple puncture with a 20-G needle. Our results indicate

that the ligation length influences mortality (Fig. 2). At the end of the 96-h

follow-up period, we observed 100 % mortality in the 100 % ligated group, 88 %

mortality in the 20 % ligated group, and 20 % mortality in the 5 % ligated group

(p < 0.001). The median survival time was 24 h for the 100 % ligated group and

44 h for the 20 % group. The median survival time of the 5 % ligated group

could not be determined because of the low number of deaths at the end of the

observation period (80 % of survival). Because of death rapidity in the 100 %

group, we macroscopically analyzed ceca 24 h post-procedure when the animals

were put down for serum collection. The mice with cecum ligated at 100 % pre-

sented with ischemia of the ligated component in contrast to other groups

(Fig. 3c). Animals in the 20 % group developed macroscopic cecal abscesses

(Fig. 3a, b).

Serum creatinine and blood lactate also varied with ligation distance. Blood lactate

increased proportionally with the length of ligated cecum (Fig. 4a). For the 5 % ligated

group, it did not differ from the control group. For the 20 % and 100 % ligated groups,

blood lactate increased up to 2.6 mmol/l (1.2–4.2) for the 20 % group and up to

3.2 mmol/l (1.2–5.7) for the 100 % group. At 6 h, serum creatinine increased by 1.5-
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Fig. 2 Survival following ligation of 5 % (n = 10), 20 % (n = 17), and 100 % (n = 10) of total cecal length within
96 h after CLP procedure. At 24 h, survival was 100 % for the 5 % group, 70 % for 20 % group, and 40 % for
100 % group (log-rank test, p < 0.05). At 96 h, we observed 100 % mortality in the 100 % ligated group, 88 %
mortality in the 20 % ligated group, and 20 % mortality in the 5 % ligated group (log-rank test, p < 0.0001). The
median survival time was 24 h for the 100 % ligated group and 44 h for the 20 % group. The median survival
of the 5 % ligated group could not be determined because of the low number of deaths at the end of the
observation period (80 % of survival)
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Fig. 3 Macroscopic aspects of ceca 24 h after CLP procedure. a Sham-operated mouse. b Mouse
with 20 % of cecum ligated; we observed cecal abscess ( ). c Mouse with cecum ligated at 100 %
presented an ischemia of the ligated part ( )
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fold in the 100 % group compared to the control mice: 26.2 μmol/l (17.4–73.8) vs

15.2 μmol/l (6.6–23.9). In the 20 % group, serum creatinine was higher at 16.9 μmol/l

(12.5–39) when compared to the control group (Fig. 4b).
Inflammatory status differs in accordance with ligation length

Inflammatory response to CLP length was evaluated by serum cytokines. TNF-α, IL-1β,

and IL-6 concentrations were measured at 6 and 24 h for all the groups. We calculated

an IL-6/IL-10 ratio at 24 h to determine the balance between pro- and anti-

inflammatory responses. At 24 h post-procedure, only four animals in the 100 % group

were still alive.

At 6 h after the procedure, pro-inflammatory cytokines were significantly increased in

the ligated groups compared to the control group. TNF-α was increased in the 5 % group

(212.4 pg/ml (56.7–313.7)), 20 % (187.6 pg/ml (105.6–317)), and 100 % group (190.9 pg/

ml (112.1–317.1)) compared to the control group (136.7 pg/ml (50.3–181); p < 0.05). We

did not observe any difference in amongst the ligated groups (Fig. 5a). At 24 h, TNF-α

quickly decreased or animals subsequently died. There was no difference between the

100 % groups because of the few number of survivors at 24 h (less than five) (Fig. 5a).

IL-1β significantly increased at 6 h for the groups 5 % (218.8 pg/ml (26–320.8)) and

20 % (213.4 pg/ml (119–388.6)) compared to the control group (93.5 pg/ml (67.5–
a b

Fig. 4 Serum creatinine and blood lactate variations according to ligation distance at 6 h after procedure as
markers of organ dysfunction. a Blood lactate increased proportionally with the length of the ligated
cecum. b At 6 h, serum creatinine augmented significantly 1.5 times in the 100 % group compared
to the sham mice. Results are reported as median ± IQR. *p < 0.05; n = 14 to 20 per group
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Fig. 5 Inflammatory response to CLP length evaluated by serum cytokines. TNF-α, IL-1β, and IL-6
concentrations were measured for all the groups at 6 h (n = 10 for sham-operated and each length
of the ligated cecum) and 24 h (n = 10 for the sham-operated, 5 %, and 20 %; n = 4 for the 100 %
ligated group). At 24 h after procedure, only 40 % of the animals in the 100 % group were alive. We
expressed serum TNF-α, IL-1β, and IL-6 concentrations as fold increases relative to time-matched sham
laparotomy (a–c). a Serum TNF-α concentrations. We did not observe any difference between the
ligated groups at H6 or H24, but a decrease in time. b Serum IL-1β concentrations. We observed a
decrease in time, but no difference between the ligated groups at the same time. c Serum IL-6
concentrations. Besides decrease in time, we observed significant higher levels of serum IL-6 at H6 in
the 100 % compared to the 5 % and 20 % ligated groups. d Serum IL-6/IL-10 ratio. The longer the
ligated cecum was, the more the imbalance was significantly in favor of pro-inflammatory response.
Results are reported as median ± IQR; *p < 0.05

Ruiz et al. Intensive Care Medicine Experimental  (2016) 4:22 Page 7 of 13
150.1); p < 0.05). On the other hand, IL-1β serum concentrations of the 100 % ligated

group were not different from the control group (128.4 pg/ml (60.8–354.9)). IL-1β

concentrations did not increase in accordance with the length of ligation at 6 h but

decreased at 24 h nevertheless (Fig. 5b).

At 6 h, IL-6 serum concentrations of ligated groups were at least 15 times higher

than in the control group (Fig. 5c; p < 0.05). Serum IL-6 concentrations reached

1916 pg/ml (961–4141) for the 20 % ligated group and were evidently increased for the

100 % group, with a median value of 4262 pg/ml (2070–7723). Like other pro-

inflammatory cytokines, IL-6 concentrations decreased at 24 h (Fig. 5c).

At 24 h, when observing the pro- and anti-inflammatory balance (IL-6/IL-10), the

longer the ligated cecum, the more significant the pro-inflammatory status was

(Fig. 5d).
The “20 %” ligated group presented all characteristics of septic shock

With these results, we more closely monitored the 20 % ligated group. At 24 h after

surgery, without any resuscitation the animals presented with a decreased MAP below

65 mmHg compared to the control mice (Fig. 6a).
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Fig. 6 Clinical and biological characteristics of the 20 % ligated group. Results are reported as median ± IQR.
a Invasive mean arterial pressures (MAP) were measured in the 20 % ligated and sham groups before surgery
and at 24 h post-procedure. At 24 h after surgery, the animals presented a decreased MAP below 65 mmHg
compared to sham mice. *p < 0.05. b TNF-α, IL-1β, IL-6, IL-10, and IL-6/IL-10 ratio serum concentrations were
measured at 6 h (H6), 24 h (H24), and 48 h (H48) after surgery. We expressed serum cytokine concentrations as
fold increases relative to time-matched sham laparotomy (n = 10 for the sham-operated and 20 % group at H6,
H24, and H48). We observed a significant imbalance in favor of pro-inflammatory status. §p < 0.05 for IL-1β
between H6 and H24, and H6 and H48 after CLP. #p < 0.05 for TNF-α between H6 and H24 and H6 and H48
after CLP. &p < 0.05 for IL-6/IL-10 between H24 and H48. c, d Leukocyte (c), lymphocyte (d), and neutrophil (e)
counts in the 20 % ligated group before surgery, at H6, H24, and H48. We observed a drop after surgery, more
pronounced at H24, with an increase at 48 h. *p < 0.05
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This hypotension was associated with sepsis in the 20 % ligated group. We

observed cecal abscesses when compared to control mice (Fig. 7a, b), and blood

cultures at 24-h post-procedure were positive with enteric bacteria such Citrobacter

braakii and Enterococcus faecalis (40 %).

This was associated with a drop in leukocyte count due to leucopenia, which

peaked at 24 h (Fig. 6c, d, e). At 48 h, leukocyte count increased but was dimin-

ished compared to time before surgery. The cytokine profile was pro-inflammatory,

including status at 48 h. IL-6 levels remained high in survivors at 2.9 compared to

those in the control and were not counterbalanced by IL-10 levels. At 48 h, IL-6/

IL-10 ratio increased compared to 24 h after CLP, what highlights the persistence

of inflammation (Fig. 6c).

When observing macroscopic liver morphology, we found a patchy appearance corre-

sponding to pale ischemic areas in contrast to the control liver (Fig. 7c, d). These areas

displayed centrilobular necrosis of hepatocytes (Fig. 7f ).

Discussion
While the CLP model is the most widely used model for experimental sepsis, the length

of cecal ligation is often inaccurately described. Our results underline that, in mice,

length of cecal ligation is a major determinant of mortality and sepsis severity. Organ
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Fig. 7 Aspect of peritoneal cavity of the sham-operated mice (a, c, e) and the 20 % ligated mice (b, d, f)
24 h after surgery. a The cecum is identified by a white star. b The 20 % ligated animal with cecal abscess
( ). When observing liver macroscopic morphology, we found a patchy appearance corresponding to pale
ischemic areas (d) in contrast to the sham liver (c). f These areas were centrilobular necrosis of hepatocytes
(asterisk) (e and f hematoxylin-eosin coloration ×50)
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dysfunction markers and pro-inflammatory status increased with ligation length. The

“20 %” ligated group presented all characteristics of septic shock with a delayed mortal-

ity compared to the “100 %” group, allowing further studies as to the effect of different

treatments or physiopathology. In the “20 %” group, we confirmed the presence of sep-

sis associated with hypotension below 65 mmHg, pro-inflammatory balance with high

IL-6 levels and augmented IL-6/IL-10 ratio, organ dysfunction, hyperlactatemia,

elevated serum creatinine, and hepatocyte centrilobular necrosis.

Length of ligated cecum influenced mortality in our mice model with high lethality in

the 20 % and 100 % groups (at 4 days, 88 and 100 % mortality, respectively). As we

found in our results, the percentage of cecum ligation is more accurate than a standard

length (as length can vary from 25 to 30 mm). Rittirsch briefly described this influence

in his mouse CLP procedure but did not characterize the model except for survival rate

and for pro-inflammatory cytokines in his mid-grade sepsis group [10, 12]. Singleton

showed the same influence more extensively but in a rat CLP model [15]. In his model,

at 96 h a ligation length of 20 % allowed a 60 % survival rate whereas “25 %” of a

ligated cecum caused higher mortality with only a 24 % survival rate. Our data confirm

the importance of this variable in mouse CLP model. Singleton’s results could not be
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transposed a priori because of differences in anatomy and vascularization of these ro-

dents’ ceca. In fact, the same proportion of ligated cecum between these two breeds of

animals does not exactly have same consequence in terms of lethality. Our study was

not designed to determine which mechanisms were involved in this phenomenon.

However, we suppose that mortality in the 100 % ligated group is related to intestinal

ischemia rather than sepsis. We observed macroscopic cecal necrosis early after pro-

cedure. As discussed in Singleton’s study concerning rats, the response amplitude to

cecum ligated length may be due to the amount of feces stored in the ligated portion

and thus create bacterial inoculum that may translocate or be locally pathogenic (e.g.,

by forming abscesses like in the 20 % group).

Inflammatory response mediated by cytokines plays a major role in sepsis evolu-

tion [16, 17]. Pro-inflammatory cytokines like TNF-α, IL-1β, and IL-6 are respon-

sible for severe manifestations in sepsis and septic shock [17, 18]. In our model,

apart from IL-6 measurements, differences between groups for other cytokines are

not clinically relevant when considering the same measurement time. Serum TNF-

α levels peak at 120 min in mouse CLP models [19]. It is the first cytokine pro-

duced in response to aggression, and it promotes the activation of immune cells

and the release of immunoregulatory mediators [20]. In our model, TNF-α was sig-

nificantly increased at 6 h in ligated groups compared to control mice. However,

serum TNF-α concentrations were not proportional to ligation length as described

previously in rats [15]. We detected serum TNF-α in the control mice as well and

did not find any differences between the ligated groups; this finding was opposite

to Singleton et al.’s in rats [15]. These findings are in accordance with other stud-

ies observing severity in mice CLP models. Serum TNF-α levels did not differ

between the more severe groups which were defined by the puncture size [14].

One explanation may be the difference in pro-inflammatory response influenced by

genetic background. Serum TNF-α profiles over time are different after CLP be-

tween A/J and C57BL/6J mice; therefore, we infer it could be dissimilar between

rats and mice [21]. Moreover, TNF-α neutralization does not improve survival in

mouse CLP model [22–24]. This underlines that serum TNF-α levels are not ne-

cessarily linked to severity of insult in this model.

Serum IL-1β levels were higher in the “5 %” and “20 %” groups at 6 h compared to

the levels at 24 h. We did not observe any difference between groups at the same time

or between 6 and 24 h for the “100 %” ligated group. There is little data in the literature

concerning IL-1β in mouse CLP modeling. Initial descriptions of the inflammatory pro-

file in this mouse model did not detect serum IL-1β [8]. In the mouse CLP model, this

cytokine seemed to be significantly elevated in the sera of animals that died before the

fifth day post-procedure [25]. In a study evaluating needle size in CLP, only the group

with the largest puncture presented with a significant elevation in serum Il-1β at 24 h

[13]. In our case, the lack of difference between groups may be explained by the regula-

tion of IL-1β secretion and the small number of surviving animals in the 100 % group

at 24 h [26].

Concerning serum IL-6, our model is in accordance with previous results indicating

that serum IL-6 levels increase proportionally with mortality at 6 h after mouse CLP

[27, 28]. As described in the literature, the 20 % and 100 % groups, which presented

with the highest mortality rates, had serum IL-6 concentrations near or superior to
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2000 pg/ml. This breakpoint predicts mortality within 3 days with a specificity of 97 %

and sensitivity of 58 % [27]. When observing the pro- and anti-inflammatory balances,

the IL-6/IL-10 ratio was higher in groups with larger lengths of ligated cecum. This

ratio has been shown to be predictive of the outcome of patients with systemic inflam-

matory response syndrome [29–31].

We use in our model low dose of buprenorphine (0.05 mg/kg every 12 h) to

achieve analgesia as stated by the Office of Laboratory Animal Welfare [32].

Morphine is known to increase pro-inflammatory mediators; however, low dose of

buprenorphine seems to have no effect on mortality and inflammatory response

[33, 34]. Moreover, we gave this analgesic drug both to sham and CLP mice; hence,

we believe that buprenorphine is not a cofounding factor in our model.

In our study, we focused on the 20 % ligatured group. This was done since we

chose this group for further experimentation and wanted to ensure that the re-

sults were consistent. Furthermore, this group corresponds to a septic shock

group. The animals of this group presented both clinical and biological elements

of septic shock. They were hypotensive with a MAP below 65 mmHg. The cyto-

kine profile was in favor of a pro-inflammatory imbalance with markers predictive

of mortality, such as IL-6 and the IL-6/IL-10 ratio [27, 30]. At 48 h, IL-6/IL-10 ra-

tio increased compared to that at 24 h after CLP, which shows the persistence of

inflammation. Moreover, this group presented with a drop in leucocyte count sec-

ondary to lymphopenia, which decreased even further at 24 h. Other studies de-

scribed this change in a complete blood count, with the same kinetics [8, 13, 35,

36]. The lymphopenia was secondary to sepsis-induced apoptosis and is correlated

to the severity of an immunosuppressive phase and its late complications [37, 38].

We acknowledge that our study has potential limitations. First, we did not perform

the same analysis in the “100 %” group as we did in the “20 %” group because of the

high lethality rate. We chose animals with the same genetic background, age, and gen-

der to limit experimental variability secondary to differences in inflammatory response

and maturity of the immune system [11, 39]. Because of the mice’s age, we did not have

enough animals to compensate for the mortality of the 100 % ligated group. Further-

more, our study lacked evaluation of anti-inflammatory balance within the first hours

post-procedure. As previous studies on mouse CLP modeling described late IL-10

serum elevation, we chose to measure levels at 24 and 48 h [13, 14]. We were not able

to determine if the 100 % group had very early pro- and anti-inflammatory imbalance,

which has been shown to be predictive of mortality [25]. Third, we are aware that we

have not analyzed exhaustively the cytokine response to cecal ligation. For example,

other cytokines such as IL-12 or interferon-γ play a central role in septic inflammatory

response [40].

Conclusions
Our study suggests that the length of cecal ligation is a major severity factor in the mouse

CLP model when needle size and the number of punctures are controlled. Furthermore, it

underlines differences in the inflammatory response between rats and mice. Therefore,

this experimental model should be performed with high consistency in future protocol

designs. In order to accurately compare studies, ligature length used in protocols should

be described.
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